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The quantum phase transition (QPT) describes a sudden qualitative change of the macroscopic properties
mapped from the eigenspectrum of a quantum many-body system. It has been studied intensively in quantum
systems with the spin-boson model, but it has barely been explored for systems in coupled spin-boson models. In
this paper, we study the QPT with coupled spin-boson models consisting of coupled two-level atoms embedded
in three-dimensional anisotropic photonic crystals. The dynamics of the system is derived exactly by means of
the Laplace transform method, which has been proven to be equivalent to the dissipationless non-Markovian
dynamics. Drawing on methods for analyzing the ground state, we obtain the phase diagrams through two exact
critical equations and two QPTs are found: one QPT is that from the phase without one bound state to the phase
with one bound state and another is that from one phase with the bound state having one eigenvalue to another
phase where the bound state has two eigenvalues. Our analytical results also suggest a way of control to overcome
the effect of decoherence by engineering the spectrum of the reservoirs to approach the non-Markovian regime
and to form the bound state of the whole system for quantum devices and quantum statistics.
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I. INTRODUCTION

It is exploitable to effectively describe many realistic
situations, and a two-level system (TLS) [1–3] coupled to
a bath of bosonic modes is of great significance. Despite
its simplicity, the system reveals a multifaceted behavior
in statics, dynamics, and quantum criticality, for which it
becomes a paradigmatic model in the field of quantum
dissipation. The theoretical analysis as well as the practical
implementation of two-level systems thus represents a central
topic in several branches of modern physics ranging from
high-energy to nuclear and condensed matter physics [4–10].

The quantum phase transition (QPT) [11] based on TLSs
has attracted considerable attention within various fields of
physics in recent years. They have been studied in condensed-
matter physics because they provide valuable information
about the novel type of zero-temperature states of matter
that emerge in the vicinity of QPTs, which occur at zero
temperature and are driven by purely quantum effects. In
the parameter space, the points of nonanalyticity of the
ground-state energy density are referred to as critical points
and they define the QPTs. The QPT describes a sudden
qualitative change of the macroscopic properties mapped from
the eigenspectrum of a quantum many-body system [11]. One
of the motivations is that the exploration of the QPT in the
TLS could result in some insight into the decoherence control
of systems. QPTs have been intensively studied for quantum
systems subject to the environment [12–19]. These phenomena
happen when some kinds of nonanalytic behavior [20,21]
arise in an excited region of the energy spectrum, normally
a singularity in the density of states or in the flow of the
energy spectrum through the critical energy line. To the
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present, many methods have been explored to investigate the
QPTs, such as unitary transform [22–25], the path-integral
method [4], the quantum Monte Carlo method [26], the nu-
merical renormalization-group method [27,28], and numerical
diagonalization in a coherent-state basis [12]. Subsequently, a
sequence of experimental groups have observed the reservoir-
induced QPT by employing mesoscopic metal rings [29], cold
atoms in optical lattices [30,31], as well as single-electron
transistors with electromagnetic noise [32,33].

Many explorations of quantum phase transition are mainly
based on the physics with the spin-boson model, where the
delocalized regime exhibits many interesting phenomena. For
example, it was found that an eigenstate with one real eigen-
value for atom plus environment shows the system possesses
a bound state [34–37]. Nevertheless, the understanding of this
dynamical transition and the physics in the regime of finite
coupling strength between two coupled spin-boson models
have not been clear so far.

For this purpose, we study quantum phase transition with
coupled spin-boson models consisting of coupled two-level
atoms embedded in three-dimensional anisotropic photonic
crystals. The ground-state property of the system is obtained
analytically with and without the rotating wave approximation
(RWA), respectively. Under the RWA, our starting point is to
examine whether bound states exist between two two-level
atoms in a three-dimensional anisotropic photonic crystal.
Two critical equations for three phases are exactly derived
and we analytically give the formulas of the energy spectrum
for the whole system including system-plus-environment. Two
typical QPTs occur in our system, and different ground states
are associated with three phases that we label (I)–(III), which
correspond to a zero-exciton eigenstate, a bound state with a
real eigenvalue, and a bound state with two real eigenvalues,
respectively. The first QPT occurs between phases I and II. The
existence of the second QPT originates from the transition of
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two bound states II and III. This novel bound state shows
the period oscillation behavior for the system, which arises
from the quantum interference of two localized modes. When
the non-RWA is applied, we show that the similar QPT still
exists in the delocalized phase regime, where the renormalized
factors take finite values by enjoying the perturbation approach
to neglect the high-order interaction terms in a unitarily
transformed Hamiltonian. The approximation is justified by
the fact that the high-order excitations are negligible in the
weak-coupling regime. Also, one can verify that the neglected
terms give no contribution to the QPT we obtained, which
validates our approximations.

The remainder of the paper is organized as follows. In
Sec. II, we introduce a general model to describe the coupled
spin-boson models consisting of two coupled two-level atoms
embedded in three-dimensional anisotropic photonic crystals
and derive the exact Dyson equation. In Sec. III, we give
the exact solution of the system dynamics. In Sec. IV, we
analyze the structure of roots for Green function G(s) and
exactly derive two critical equations. In Sec. V, we analyze
the phase diagrams. In Sec. VI, we discuss the time evolution
and long-time behavior of the population and correlation
corresponding to three phases, respectively. In Sec. VII,
we study ground-state fidelity and entanglement entropy to
further confirm the existence of the quantum phase transitions.
Section VIII is devoted to the study of the quantum phase
transition without rotating wave approximation by means of
pertubation approach based on a unitary transform. Discussion
and conclusions are given in Sec. IX.

II. EXACT TIME EVOLUTION FOR THE
SYSTEM DYNAMICS

A. The model

We now consider two coupled spin-boson models con-
sisting of two-level atoms, with atomic levels |e〉 and |g〉
and eigenfrequencies ωa and ωb, respectively, embedded in
a three-dimensional anisotropic photonic crystal, as shown in
Fig. 1. The two atoms are assumed to be near the edge of a
photonic band gap with frequency ωe. An interesting problem
in this type of system is the decoherence resulting from the
influence of an environment, which is usually represented by

J

J
 ,  ,

band edge of photonic crystal

atom  

FIG. 1. (a) The scheme of two two-level atoms embedded in
photonic crystals with the counter-rotating terms.

an infinite set of harmonic oscillators. The coupled spin-boson
models without RWA take

Ĥ = Ĥa + Ĥb + Ĥab, (1)

with

Ĥm = �ωmσ+
m σ−

m +
∑

k

[
�Vm,kσ

x
m(b̂m,k + b̂

†
m,k)

]

+
∑

k

�ωm,kb̂
†
m,kb̂m,k, (2)

Ĥab = �Jσx
a σ x

b ,

where m = a,b; σ− = |g〉〈e| is Pauli matrix; |e〉 and |g〉 rep-
resent the excited and ground states of the qubit, respectively;
and σx

m = σ−
m + σ+

m . H.c. denotes the Hermitian conjugate.
b̂m,k (b̂†m,k) is the annihilation (creation) operator for the
k-th reservoir mode with frequency ωm,k for m-th atom, and
Vm,k the coupling strength between the m-th atom and the
k-th electromagnetic mode. The detailed evolution of J as a
function of atomic distance R for a typical anisotropic photonic
band gap can be found in Refs. [38,39]. Since our model is very
close to the edge of the band gap, Vm,k can be approximated
to [40]

Vm,k = (ωmdm/�)
√

�/(2ε0ωm,kV )�em,k · �um, (3)

where k represents both the momentum and the polarization of
the modes. dm and �um are the magnitude and unit vector of the
atomic dipole moment of the transition, respectively. V is the
quantization volume, �em,k are the transverse unit vectors for the
reservoir modes, and ε0 is the vacuum dielectric constant. If a
three-dimensional anisotropic photonic crystal has an allowed
point-group symmetry, then the dispersion relation near the
band edge could be expressed approximately with [41]

ωm,k = ωe + Bm

∣∣�k − �kj

0

∣∣2
, (4)

where ωe is the cut-off frequency of the band edge. k
j

0 are the
finite collections of symmetry related points, which are associ-
ated with the band edge. Bm is the model-dependent constant.
The corresponding state density is ρ(ω) ∝ (ω − ωe)1/2θ (ω −
ωe) [37,38] [see Fig. 2(a)], and here θ is step function.
Figures 2(b) and 2(d) will be discussed in Sec. V.

B. Exact dynamics for the system under RWA

The interaction Hamiltonian in Eq. (1) contains the counter-
rotating terms b̂m,kσ

−
m and b̂

†
m,kσ

+
m . A used approximation in

quantum optics and quantum information communities is the
RWA, which is valid in the weak-coupling limit. Then, in this
condition, Eq. (1) can be written as

Ĥ RWA = Ĥ RWA
a + Ĥ RWA

b + Ĥ RWA
ab , (5)

with

Ĥ RWA
m = �ωmσ+

m σ−
m +

∑
k

[�Vm,kb̂m,kσ
+
m + H.c.]

+
∑

k

�ωm,kb̂
†
m,kb̂m,k, (6)

Ĥ RWA
ab = �Jσ+

a σ−
b + �Jσ−

a σ+
b ,
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FIG. 2. Band structures of photonic crystals and localized photon
modes. (a) The state density ρ(ω) of the two-level atoms coupled
to photonic crystals. The spectrum is divided into three regimes:
photonic band gap (PBG), the vicinity of the photonic band edge
(PBE), and the photonic band (PB). (b) The corresponding localized
photon mode eigenfrequency Ej given by Eq. (31) as a function of the
detuning �a = ωa − ωe, and (d) the corresponding localized photon
mode amplitudes, given in Eqs. (17) and (18). Other parameters
chosen are ωe = 100ce,J = 4ce, where ce is given by Eq. (13). (c)
Frequency regimes in a photonic crystal. For frequency detunings, �a

from the band edge ωe with �a < �1, (region I), the atom frequency
lies in the forbidden band. For �1 < �a < �2 (region II), the atom
frequency is exactly at the band edge, and �a > �2 (region III) the
atom frequency stays in the allowed band.

Hamiltonian (5) is analytically solvable due to the total
excitation number N in Eq. (A1) is conserved. For simplicity,
we initially prepare the two atoms in a linear superposition of
states with one exciton

|ψ(0)〉 = [Aa(0)|eg〉 + Ab(0)|ge〉] ∗ |0k〉a|0k〉b, (7)

with |Aa(0)|2 + |Ab(0)|2 = 1. In order to study the ground-
state properties of the system, we derive the retarded Green
function at zero temperature, which can be defined by [42,43]

Umn(t − t ′) = −iθ (t − t ′)〈{σ−
m (t),σ+

n (t ′)}〉, (8)

where 〈·〉 denotes expectation value with the initial state (7)
and {·} the anticommutation relation.

Taking the initial time t ′ = 0 and considering Eq. (A2), we
obtain the matrix form of the Green function,

U(t) =
[−iAa(0)∗Aa(t) −iAb(0)∗Aa(t)
−iAa(0)∗Ab(t) −iAb(0)∗Ab(t)

]
, (9)

which can be fully determined by the Dyson equation,

U̇(t) + iMU(t) +
∫ t

0
dτF(t − τ )U(τ ) = 0, (10)

where the other coefficients M = (ωa J

J ωb
), F(t) =

(fa (t) 0
0 fb(t)). The exact Green function equation (10) can be

solved by means of a Laplace transform in the frequency
domain. For more detailed derivations of Eq. (10), see
Appendix A. The Dyson equation (10) characterizes all the

back-actions between the atoms and photonic crystals and
can be determined uniquely by the coupled strength |Vm,k|2
between atoms and photonic crystals through the fluctuation
dissipation relation (A5).

III. THE EXACT SOLUTION OF THE SYSTEM DYNAMICS

To investigate excitation state evolutions in photonic
crystal [44–50], we must first solve the dynamics of photon
determined by Eq. (10). We proceed to make use of Laplace
transform X(s) = ∫ ∞

0 X(t)e−st dt [51–54] and obtain from
Eq. (10)

Aa(s) = −iAb(0)J + Aa(0)[s + iωb + fb(s)]

J 2 + [s + iωa + fa(s)][s + iωb + fb(s)]
,

(11)

Ab(s) = −iAa(0)J + Ab(0)[s + iωa + fa(s)]

J 2 + [s + iωa + fa(s)][s + iωb + fb(s)]
,

where

fm(s) =
∑

k

|Vm,k|2
s + iωm,k

. (12)

Using the dispersion relation (4), and converting the mode sum
over transverse plane waves into an integral and performing
the integral (see Appendix B), we have

fm(s) = −ice√
ωe + √−is + ωe

, (13)

where we have assumed ca = cb ≡ ce with cm =
(ωmdm)2 ∑

j1
sin2(θj1 )/(8πε0�B

3/2
m ) (m = a,b) because we

can make the atomic dipole moments of two transitions parallel
to each other and appropriately adjust the magnitude dm and Bm

and make Va,k = Vb,k = Vk . Therefore we set fa(s) = fb(s)
for the sake of simplicity. Here θj1 is the angle between the
dipole vector of the atom and the j -th k

j

0 . The phase angle
of s is defined by −π < arg(s) < π , and the phase angle of√−is + ωe in fm(s) is defined by −π

2 < arg
√−is + ωe < π

2 .
The amplitudes Aa(t) and Ab(t) can then be obtained by means
of a inverse Laplace transform

Am(t) = 1

2πi

∫ σ+i∞

σ−i∞
Am(s)estds, (14)

where the real number σ is conditionally chosen so s = σ

lies to the right of all the singularities (poles and branch
points) of functions Aa(s) and Ab(s). With the help of complex
function integration and the residue theorem, we can obtain the
expression of the amplitudes:

Aa(t) =
∑

j

m1
(
x

(1)
j

)
ex

(1)
j t

G′(x(1)
j

) +
∑

j

m2
(
x

(2)
j

)
ex

(2)
j t

L′(x(2)
j

)
+ 1

2πi

∫ ∞

0
dyλa(−y − iωe)e−yt−iωet , (15)

Ab(t) =
∑

j

m3
(
x

(1)
j

)
ex

(1)
j t

G′(x(1)
j

) +
∑

j

m4
(
x

(2)
j

)
ex

(2)
j t

L′(x(2)
j

)
+ 1

2πi

∫ ∞

0
dyλb(−y − iωe)e−yt−iωet , (16)
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where λa(s) = m2(s)
L(s) − m1(s)

G(s) and λb(s) = m4(s)
L(s) − m3(s)

G(s) . The
other functions m1(s), m2(s), m3(s), m4(s), G(s), and L(s)
in Eqs. (15) and (16) are defined in Appendix C. Detailed
derivations of Eqs. (15) and (16) are given in Appendix C.
x

(1)
j are the roots of equation G(s) = 0 in region [Re(s) > 0

or Im(s) > −ωe], and x
(2)
j are the roots of L(s) = 0 in region

[Re(s) < 0 and Im(s) < −ωe]. G′(s) and L′(s) are derivatives
of those functions G(s) and L(s), respectively.

The first term in (15) and (16) corresponds to localized
modes with s = −iEj (Ej are real numbers, which correspond
to the energy spectrum of the whole system). The localized
modes exist if and only if the environmental spectral density
has band gaps located at the pure imaginary zeros with
G(−iEj ) = 0. These localized modes do not decay, which give
dissipationless non-Markovian dynamics. The nonlocalized
mode contains two parts: One is the second term in Eqs. (15)
and (16), which is the oscillating damping process due to
the complex roots in L(s) = 0 in the regime of [Re(s) < 0
and Im(s) < −ωe]. The other is the integral part, i.e., the
nonexponential parts will oscillate rapidly in time. This rapidly
oscillating damping, which originates from the terms contain-
ing eiωet in Eqs. (15) and (16). Therefore the nonlocalized mode
parts in (15) and (16) are the contribution of the allowed bands,
which usually generate exponential decays. This is another
significance of the non-Markovian dynamics.

We show that the probability amplitudes in Eqs. (15)
and (16) from the Lebesgue-Riemann lemma [55] in the
long-time regime (t → ∞) reach

Aa(t → ∞) =
∑

j

m1
(
x

(1)
j

)
ex

(1)
j t

G′(x(1)
j

) , (17)

Ab(t → ∞) =
∑

j

m3
(
x

(1)
j

)
ex

(1)
j t

G′(x(1)
j

) . (18)

In particular, we notice that the two atoms decouple each
other when coupled strength J = 0. Therefore, using a method
similar to Eq. (15), one can obtain the expression of the
amplitude,

Aa(t) =
∑

j

Aa(0)eu
(1)
j t

G′
0
(
u

(1)
j

) +
∑

j

Aa(0)eu
(2)
j t

L′
0
(
u

(2)
j

)
+ 1

2πi

∫ ∞

0
dyμ(−y − iωe)e−yt−iωet , (19)

where G0(s) = s + iωa − i√
ωe+

√−is+ωe
,L0(s) = s + iωa −

i√
ωe−i

√
is−ωe

, μ(s) = Aa(0)[ 1
L0(s) − 1

G0(s) ], and G′
0(s) and L′

0(s)

are derivatives of functions G0(s) and L0(s). respectively. u
(1)
j

and u
(2)
j are the roots of G0(s) = 0 and L0(s) = 0, respectively.

These results are in agreement with earlier studies [40,49,56].

IV. THE STRUCTURE OF ROOTS FOR GREEN FUNCTION

Equations (15) and (16) provide the analytical expres-
sions of the non-Markovian dissipative dynamics in three-
dimensional photonic crystal. It shows that the dynamics in
PCs always contains two parts: a localized photon mode

(the first term) plus a nonexponential photon damping (the
terms except the first term). The localized photon mode is a
long-lived non-Markovian effect (dissipationless), induced by
the PBG structure in PCs. Therefore to study the dissipationless
dynamics of the system, we need to obtain the structure of
pure imaginary roots for G(s) = 0. According to the Green
function theory [43], the zero point of the denominator in the
frequency domain of the Green function U(s) corresponds to
the energy spectrum of the whole system. In the following, we
will confirm this point.

A. Energy spectrum analysis of the Green’s function

Here we highlight the Green’s function U(t), which can
give rise to different dissipations and fluctuations through
different forms of the spectral density. The solution of the
Dyson equation (10) determines the evolution of the system.
A general solution for such an integrodifferential equation
has been derived by applying the Laplace transform. It is
straightforward to apply these results to our model (5); one
finds the dissipationless non-Markovian dynamics exist only
when

G(s) = J 2 + [s + iωa + fa(s)][s + iωb + fb(s)] = 0,

(20)

where fm(s) is given by Eq. (13). This means pure imaginary
roots of the above equation exist only in region Im(s) > −ωe.
From a physical point of view, it can also be explained
by the bound state generated between the system and its
environment [40,57,58]. A bound state is actually a stationary
state with a vanishing decay rate during the time evolution.
If such a bound state is formed, then it will lead to a
dissipationless dynamics. To make this aspect clearly, we solve
the eigenequation

Ĥ RWA
∣∣φEj

〉 = Ej

∣∣φEj

〉
. (21)

We assume one excitation is excited in the system, then

∣∣φEj

〉 =
[
Āa(Ej )|e,0〉a +

∑
k

C̄k(Ej )|g,1k〉a
]

⊗ |g,0〉b

+ |g,0〉a ⊗
[
Āb(Ej )|e,0〉b +

∑
k

D̄k(Ej )|g,1k〉b
]
.

(22)

Substituting Eqs. (5) and (22) into Eq. (21), we can obtain a
set of equations for Āa and Āb,

ωaĀa + J Āb − ifa(−iEj )Āa = EjĀa,

ωbĀb + J Āa − ifb(−iEj )Āb = EjĀb,
(23)

where fm(s) is given by Eq. (12). By solving the eigenvalue
equations (23), we find the bound state exists only when

det

[
ωa − Ej − ifa(−iEj ) J

J ωb − Ej − ifb(−iEj )

]
= 0,

(24)
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which is equivalent to

K(Ej ) ≡ J 2 − [ωa − Ej − ifa(−iEj )]

× [ωb − Ej − ifb(−iEj )] = 0. (25)

Therefore, if we set s = −iEj and consider Eq. (C3), we can
immediately obtain the identity

G(−iEj ) = K(Ej ). (26)

Therefore, we find that Eq. (20) and Eq. (25) are completely
equivalent, because the zero point of denominator G(s) of
the Green function U(s) in the frequency domain reveals the
eigenenergy of the whole system [43]. Based on these results,
we will present an analytical treatment of eigenvalue questions
in the following.

B. The purely imaginary roots for G(s) = 0 in region
Im(s) > −ωe

We now discuss the purely imaginary root for G(s) = 0 in
Eq. (C3) in region Im(x) > −ωe. If we set s = −iEj (Ej is
a real number), which corresponds to identity (26), then the
above equation reduces to an eigenequation (25)

K(Ej ) = J 2 − ϕa(Ej )ϕb(Ej ) = 0, (27)

where ϕm(Ej ) = ωm − Ej − ce√
ωe+

√
−Ej +ωe

, so ϕ′
a(Ej ) =

ϕ′
b(Ej ) = −1 − ce

2(
√

ωe+
√

ωe−Ej )
2√

ωe−Ej

< 0, therefore

K ′(Ej ) = −ϕ′
a(Ej )[ϕa(Ej ) + ϕb(Ej )]. We can obtain

extreme values E0 by setting K ′(E0) = 0 being equivalent
to ϕa(E0) + ϕb(E0) = 0, also K(E0) = J 2 + ϕ2

a(E0) > 0.
Therefore, we arrive at

γ (E0) ≡ ωa + ωb

2
− ce√

ωe + √−E0 + ωe

= E0. (28)

The existence of a extreme value point requires that Eq. (28)
has at most one real solution for Ej < ωe. It is easy to check
that the solution always exists if the condition γ (ωe) � 0, i.e.,

μ ≡ ωa + ωb − 2(ce + ωe
3/2)√

ωe

� 0 (29)

is satisfied. Otherwise, no extreme value point exists, i.e., if
μ > 0 is satisfied. And K(Ej )|Ej →−∞ → −∞, thus there is
only one real root of the equation K(Ej ) = 0 as

ν ≡ J 2 −
(

ωa − ωe − ce√
ωe

)(
ωb − ωe − ce√

ωe

)
> 0,

(30)
μ � 0,

see Fig. 3(a). Based on above analysis, we summarize four
regimes in Fig. 3.

Now we give the analytical expression of energy spectrum
for K(Ej ) = 0 in Eq. (27). Setting r = Ej + ce√

ωe+
√

−Ej +ωe

,

we obtain r1,2 = 1
2 [ωa + ωb ±

√
4J 2 + (ωa − ωb)2]. Set p =√

ωe + √−Ej + ωe so the energy spectrum is

Ej = −p2 + 2p
√

ωe, (31)

where p satisfies cubic equation and its three roots can be
obtained easily by the formula presented in the Appendix D.

FIG. 3. Discriminants of the regions for these roots in Eq. (27).

We show that the structures of roots in K(Ej ) = 0 in Fig. 3
play important roles in the study of non-Markovian dynamics
and they completely determine the phase diagrams of the
ground states of the system.

Especially, when the hopping rate J equals zero, G0(s) in
Eq. (19) has at most one pure imaginary root when

ωa − ce√
ωe

� ωe, (32)

otherwise G0(s) has no pure imaginary roots.

V. PHASE DIAGRAM

The phase diagram derived from Eqs. (29) and (30) is
quite rich. Here we extend the analysis and provide more
detailed discussions. For simplicity we use the following
notations: phase-BS-ORR, phase with bound-state and the
eigenequation (27) that has one real root (31) marked by E1;
phase-BS-TRR, phase with bound state and the eigenequa-
tion (27) that has two real roots (31) marked, respectively,
by E2 and E3; and phase-GS-NRR, phase with ground state
and the eigenequation (27) that has no real roots. Due to
the hopping rate J between the two atoms, the steady-state
phases can be classified into phase-BS and phase-GS. This
is a general feature of the exact model and it is captured
in the analytical expression by taking into account critical
equation for quantum phase transitions. In the phase-GS, the
population and correlation is damped, which means a vanish
after long time. In the phase-BS, The population retains a
finite value, which means a nonzero correlation. Yet this is not
the whole story. For some values of the coupling constants,
the observables can never be time independent even in the
long-time limit. Instead, the system will enter an oscillatory
phase in which the populations of the excited state for each
atom oscillate periodically. The richness of the steady-state
phase diagram arises due to all combinations that can appear.
In the following we choose two different parameter spaces for
phase diagram.
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FIG. 4. (a) Phase diagram of the system for photonic crystal in
the �a-�b plane at finite hopping J between two atoms. The white
and black dashed lines denote the first critical equation in Eq. (30),
while the red bold line corresponds to the critical equation (29). In
this figure, the system parameters are expressed in units of ce. We
can see from the figure that the three phases cannot continuously be
controlled by tuning the parameters �a and �b with the other fixed
parameters: ωe = 100ce, J = 4ce.

A. Finite hopping rate between two atoms

Since the stationary solutions are dependent on the two
detunings from the photonic band edge in photonic crystal, we
plot the phase diagram in the parameter space of (�a,�b)
in Fig. 4. Phase-BS and phase-GS governed by critical
equations (29) and (30) are plotted in red bold and black
and white dashed lines, respectively. Phase-GS (regime I in
Fig. 4) corresponds to the decay phase. We find that the
phase-BS can be detailed divided into two different phases,
i.e., phase-BS-ORR (regime II in Fig. 4) and phase-BS-TRR
(regime III in Fig. 4). Very clearly, the ground-state energy
of the total Hamiltonian including system and environment
can be shown in Fig. 5. In Fig. 5(b) with the fixed detuning
�b = −10ce, accompanying the formation of a bound state,
the ground-state energy is changed from E1 to E2, which
corresponds to the transition of the phase diagram from
phase-BS-ORR to phase-BS-TRR, whereas with �b = 10ce

in Fig. 5(c) we find the ground-state energy changes from Eg

to E1 as the detuning �a crosses over its critical point, which
corresponds to the change of phase from phase-GS-NRR to
phase-BS-ORR. Therefore the quantum phase transition can
be exactly controlled by tuning the detuning from the atom a.
On the other hand, we can see from Fig. 4 that the three phases
cannot continuously be controlled by tuning the parameters �a

and �b. Instead, in the parameter space of (ce,�b) in Fig. 6,
we find phases regime continuously undergo three regimes as
the coupling strength ce increases. When the detuning �b is
fixed, e.g., �b = 10ωe, at small ce (0 < ce < 6ωe), system is
in phase-GS-NRR, which corresponds to the eigenstate |φg〉 =
|g,0〉a|g,0〉b for the zero-excitation subspace. Its ground-state
energy is Eg as shown in Fig. 5(a). When ce crosses the
critical point (ce = 6ωe), the phase-GS-NRR becomes the
phase-BS-ORR, corresponding to the eigenstate |φE1〉 in
Eq. (22) of Hamiltonian and system reaching a no inversion for
steady-state population and correlation. This phase transition
also corresponds to the change of ground-state energy from
Eg to E1. As ce increases further to the value larger than 14ωe,
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FIG. 5. Ground-state energy E of the total Hamiltonian that
includes system and environment given by Eq. (31). Panel (a)
corresponds to Fig. 6 with �b = 10ωe, (b) corresponds to Fig. 4
with �b = −10ωe, (c) corresponds to Fig. 4 with �b = 10ωe, while
(d) corresponds to Fig. 7 with ωe = 4ce.
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FIG. 6. (a) Phase diagram of the system for photonic crystal in
the ce-�b plane at finite hopping J between two atom. The pink and
black dashed lines denote the first critical equation in Eq. (30), while
the white bold line corresponds to the critical equation (29). In this
figure, the system parameters are expressed in units of ωe. We can see
from the figure that the three phases can continuously be controlled
by tuning the parameters ce with fixed parameters: �a = 10ωe,
J = 4ωe. For example, when �b = 10ωe, the coupled strength ce

(blue dashed line) runs across this three regimes as ce increases, which
correspond to three different ground states |φg〉 = |g,0〉a |g,0〉b, |φE1 〉,
|φE2 〉 and |φE3 〉 in Eq. (22), respectively. Here Ej is given by
Eq. (31).
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critical equation (32). We find that there is no phase-BS-TRR when
the hopping rate J = 0.

the phase-BS-ORR becomes phase-BS-TRR, corresponding
to the two eigenstates |φE2〉 and |φE3〉 in Eq. (22) of the
Hamiltonian and giving rise to a pair of real roots given by
Eq. (31) and the system enters the oscillatory phase. In the
aspect of ground-state energy, this quantum transition can be
shown in Fig. 5(a) with the transition of the ground-state energy
from E1 to E2.

B. Zero hopping rate between two atoms

For the situation in which the two atoms decouples each
other, the phase structure can be divided into two phases. In
Fig. 7, when ωe is fixed, at small �a there exists only the phase-
GS-NRR, and as �a crosses the critical point (�a = 0.5ce),
the system enters the phase-BS-ORR. From the aspect of the
ground-state energy in Fig. 5(d), the quantum phase transition
can be further verified by the change of the ground-state energy
from Eg to E1. We find the phase-BS-TRR does not exist in
this case due to the vanishing hopping rate. The result with a
bound state is consistent with earlier works [34–36].

VI. TIME EVOLUTION AND LONG-TIME BEHAVIOR
FOR POPULATION AND CORRELATION

Equations (15) and (16) provide general solutions of
the non-Markovian dissipative dynamics for the system of
two coupled atoms in three-dimensional photonic crystal
structures. It shows that the atoms dynamics in photonic
crystal always contains two parts: a localized photon mode
(the first term) and nonlocalized mode (the other terms except
the first term) photon damping. The localized mode is a
long-lived non-Markovian effect (dissipationless), induced by
the PBG structure in photonic crystal. The corresponding
frequency-energy spectrum always exists within the PBG. This
nonlocalized mode damping is a short-time non-Markovian
memory effect, and it will become an exponential (Markovian)
decay in the photonic band (PB) region, as we will show later.

The contributions of both the localized and the nonlocalized
mode damping strongly rely on the detunings �a and �b.

In Fig. 2(b), we plot the localized exciton mode eigen-
spectras Ej given by Eq. (31) as a function of the detuning.
In this case, the values of the localized mode eigenspectras
correspond to three different detunings from the edge of
photonic band of photonic crystal. The importance of the
localized photon mode is determined by the localized exciton
mode amplitude,

∑
j

m(−iEj )
G′(−iEj ) (m = m1,m3) given in Eqs. (17)

and (18), which is plotted in Fig. 2(d) as a function of the
detuning �a for three different detunings �b. The results
presented in Figs. 2(b) and 2(d) provide indeed the full
steady-state information of the exciton dynamics. This is
because the nonlocalized mode photon damping [i.e., the
second and third terms in Eqs. (15) and (16)] will decay to
zero so only the localized photon mode contributes to the
steady-state exciton probability amplitudes. In other words,
the steady state exciton amplitude quantifies the contribution
of the localized photon mode as a dissipationless effect.

With the help of the probability amplitudes in Eq. (A2) with
Eqs. (15) and (16), we can now express the reduced density
matrix ρ(t) of the two-qubit as

ρ(t) = TrRa+Rb
|ψ(t)〉〈ψ(t)|

=

⎛
⎜⎜⎜⎝

0 0 0 0

0 |Aa(t)|2 A∗
a(t)Ab(t) 0

0 Aa(t)A∗
b(t) |Ab(t)|2 0

0 0 0 A(t)

⎞
⎟⎟⎟⎠, (33)

where A(t) = 1 − |Aa(t)|2 − |Ab(t)|2 and TrRa+Rb
denote a

trace over the two environments.
We now investigate the time evolution of quantum correla-

tions of a two-qubit state. For X states described by Eq. (33),
the concurrence [59,60] and discord [61] can be described
by [62,63]

C = 2|Aa(t)Ab(t)|,
(34)

D = min{Q1,Q2},
where Qj = h(ρ11 + ρ33) + ∑4

k=1 λklog2λk + μj ,h(x) =
−xlog2x − (1 − x)log2(1 − x) is the binary
entropy. Here μ1 = h(τ ), where τ = 1

2 {1 +√
[1 − 2(ρ33 + ρ44)]2 + 4(|ρ14| + |ρ23|)2} and μ2 =

−∑4
k=1 ρkklog2ρkk − h(ρ11 + ρ33).

(I) Complete decay of population and correlation (phase-
GS-NRR). We discuss in detail the features of three different
phases in Fig. 4, since the range of the phases is given exactly
by Eqs. (29) and (30). First, in the PB region (phase-GS-NRR
in Fig. 4), where the localized mode vanishes due to there
being no real root in PB, the exciton dynamics undergoes a
full dissipation process, see Fig. 8, and can be approximately
characterized as a nonlocalized mode, which contains two
parts: One is the second term in Eqs. (15) and (16), which
is the oscillating damping process due to the complex roots
in L(s) = 0 in the regime of [Re(s) < 0 and Im(s) < −ωe].
The other is the integral part, i.e., the nonexponential parts
will oscillate rapidly in time. This rapidly oscillating damping
originates from the terms containing eiωet in Eq. (16). This
has no physical consequence because the photon dissipation
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I: Complete decay

FIG. 8. The time evolution of the population and quantum
correlation. The blue dashed and red solid lines denote the population
Pa(t) = |Am(t)|2 for atom a and atom b, respectively. The black
dashed and green solid lines correspond to concurrence and quantum
discord, respectively. The initial state takes Aa(0) = 1,Ab(0) = 0.
This case corresponds to the phase-GS-NRR for the regime I in Fig. 4.
The parameters chosen are ωe = 100ce, �b = 10ce, and J = 4ce,
�a = 10ce for (a) and (b) and �a = 50ce for (c) and (d).

is almost completed after this point of time. In addition, we
can find that the monotonicity of the quantum discord and
concurrence is similar on the whole, and the former is larger
than the latter. They always rapidly approach to zero after a
long time.

(II) No population inversion of population and correlation
(phase-BS-ORR). The nonlocalized mode parts will rapidly
approach zero within the PBG (phase-GS-NRR in Fig. 4)
according to the Lebesgue-Riemann lemma. In phase-BS-
ORR, there is only one real energy spectrum, therefore the
population (17) and (18) and correlations can be obtained (see
Fig. 9) after a long time,

Pa(∞) = m1(−iE1)

G′(−iE1)
,

Pb(∞) = m3(−iE1)

G′(−iE1)
, (35)

C(∞) = 2
m1(−iE1)

G′(−iE1)

m3(−iE1)

G′(−iE1)
,

where quantum discord is too cumbersome and is not presented
here. E1 is a real root in Eq. (31). We find that population and
correlation hold a nonzero steady value after a long time. This
is also understandable based on the fact that the bound state, as
a stationary state of the whole system, has a vanishing decay
rate and the coherence contained in it would be preserved
during the time evolution.

(III) Periodic oscillation of population and correlation
(phase-BS-TRR). Interestingly, in regime of phase-BS-TRR,
the quantum interference effects between the two localized
modes after large time t lead to periodic oscillation behaviors
of the dynamics. The amplitudes of periodic oscillations do
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FIG. 9. Same as Fig. 8. In this case, the atom frequency tuned
into the phase-BS-ORR for the regime II in Fig. 4. The parameters
chosen are ωe = 100ce, J = 4ce. �a = −30ce for (a) and (b) and
�a = 0 for (b) and (d).

not decrease in time. From Eqs. (17) and (18), we obtain the
populations in the long-time regime:

Pa(t → ∞) = ε2
1ε

2
2 + ε1ε2 cos[(E2 − E3)t],

Pb(t → ∞) = ε2
3ε

2
4 + ε3ε4 cos[(E2 − E3)t],

(36)

whose periodic is T = 2π/(E2 − E3). Here Ej (j = 2,3)
is the real root in Eq. (31), these coefficients take ε1 =
m1(−iE2)
G′(−iE2) ,ε2 = m1(−iE3)

G′(−iE3) ,ε3 = m3(−iE2)
G′(−iE2) ,ε4 = m3(−iE3)

G′(−iE3) . The dy-
namics reaches periodic oscillation behaviors. In other words,
the nonlocalized mode will approach zero after some time due
to the localized exciton dynamics. The short-time dynamics is
given by Fig. 10, which falls into the regime of phase-BS-TRR
in Fig. 4. For long-time dynamics behavior, we present the
variations of population and correlations given by Eqs. (34)
and (36) in Fig. 11. In Figs. 11(a) and 11(b), we find that
phase transition only occurs between phase-BS-ORR and
phase-BS-TRR with fixed �a , which corresponds to the phase
diagram in Fig. 4. However, in Figs. 11(c) and 11(d), we find
there are three phases continuously over through the phase
transition point, i.e., concurrence and discord vary from zero
to a time-independent steady value and, further, to periodic
oscillation, which corresponds to regimes I, II, and III of the
phase diagram in Fig. 6, respectively.

VII. GROUND-STATE FIDELITY AND ENTANGLEMENT
ENTROPY

With the help of ground-state fidelity and entanglement
entropy, we can further confirm that a quantum phase transition
exists in the system of atoms and the photonic crystals.
The ground-state fidelity is defined as the overlap of two
ground states corresponding to two slightly different control
parameters F = 〈φEj

(�b)|φEj
(�b + δ�b)〉 [64]. The entan-

glement entropy ε = −ρlog2ρ = −∑
k λklog2λk [65,66] can

be obtained by calculating the entropy of the reduced density
matrix (33) of the two atoms after tracing out the reservoir’s
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III: Periodic oscillation

FIG. 10. Same as Fig. 8. In this case, the atom frequency tuned
into the phase-BS-TRR for the regime III in Fig. 4. The two
localized modes reach steady values with the time oscillation, whose
period is T = 2π/|E2 − E3|, where E2 and E3 are the two real
roots in Eq. (31). The parameters chosen are ωe = 100ce, J = 4ce.
�b = −10ce, �a = −50ce for (a) and (b) and �a = −2ce for (b)
and (d).

degrees of freedom. In order to further verify the existence of
the quantum phase transition in this system, we plot F near the
critical points in Figs. 12(a) and 12(b). The singularity in the
plot clearly shows the existence of quantum phase transition in
this model. Because of the totally orthogonal property of the
ground state, the fidelity completely drops to zero at the critical
point. In Figs. 12(c) and 12(d), we plot ε of the ground state,
which only corresponds to the eigenspectra E2 in Eq. (31).
This shows the phase transitions between phase-GS-NRR and
phase-BS-ORR. Near the critical point, we find a sudden birth

FIG. 11. The long-time concurrence [(a) and (c)] and discord [(b)
and (d)] as a function of different parameters. Parameters chosen are
ωe = 100ce, �a = −5ce, J = 4ce for (a) and (b) and �a = �b =
10ωe, J = 4ωe, for (c) and (d). Panels (a) and (b) correspond to the
regime II, and III in Fig. 4, while panels (c) and (d) fall into the
regimes I, II, and III in Fig. 6.

FIG. 12. Ground-state fidelity in (a) and (b) and entanglement
entropy in (c), (d), (e), and (f) as functions of the coupling and
detuning. Parameters chosen are �a = 10ωe, J = 4ωe for (a), (c),
and (e); ce = 7ωe for (b) and (d); and ce = 17ωe for (f). Here (c)
and (d) only correspond to the eigenspectra E2 in Eq. (31), while (e)
and (f) only correspond to the eigenspectra E3. This case falls into
regimes I, II, and III in Fig 6.

of the ground-state entanglement, which can be seen as a result
of the changing ground-state structure. This discontinuity in
the ground-state entanglement entropy also evidently shows
the existence of the quantum phase transition. Furthermore,
Figs. 12(e) and 12(f) are plotted by eigenspectra E3, which
corresponds to the phase transitions between phase-BS-ORR
and phase-BS-TRR. This case corresponds to the phase
diagram in Fig. 6. This dynamical behavior in turn confirms the
existence of the bound-state-induced QPT in the system. The
sudden transition from complete decoherence to decoherence
suppression and then to periodic oscillation results from the
occurrence of QPT in the model itself. It is the abrupt change
of the ground-state structure near the critical point of the QPT
that induces the qualitative difference in the system dynamics.

VIII. THE QUANTUM PHASE TRANSITION WITHOUT
THE RWA

In this section, we study influence of the nonrotating wave
terms on the QPT in the coupled spin-boson models. We
first recover the delocalized-localized QPT. Then, using the
perturbation approach based on unitary transform [22–24], we
study the properties of the ground state for the total system in
the delocalized regime.

In order to take into account the correlation between spin
and bosons, we present a treatment based on the unitary
transform to Ĥ ′ = eSĤ e−S , where the generator of the
transform is S = ∑

m,k
Vm,kξk,m

2ωm
(b̂†m,k − b̂m,k)σx

m. A k-dependent
function ξk,m introduced in the transform corresponds to the
displacement of each boson mode due to the coupling to the
two-state system [23,24,67]. Its form will be determined later
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by the perturbation theory. The transform can be done and the
result is Ĥ ′ = ∑

m=a,b Ĥ ′
0,m + Ĥ ′

1,m + Ĥab with

Ĥ ′
0,m = ηmωmσ+

m σ−
m +

∑
k

�ωm,kb̂
†
m,kb̂m,k + Cm,

Ĥ ′
1,m =

∑
k

Vm,k(1 − ξk,m)

2
(b̂†m,k + b̂m,k)σx

m

− i
ωm

2
σy

m sinh ϕ̂m + ωm

2
σ z

m(cosh ϕ̂m − ηm),

(37)

where Cm = ∑
k

V 2
m,k

4ωm
ξk,m(ξk,m − 2), ϕ̂m = ∑

k
Vm,kξk,m

ωm,k
(b̂†m,k −

b̂m,k), and defined renormalized factor

ηm = 〈{0k}| cosh ϕ̂m|{0k}〉 = exp

[
−

∑
k

V 2
m,kξ

2
k,m

2ω2
m

]
. (38)

Following the variational method [22,23,26], the transformed
parameters

ξk,m = ωm,k

ωm,k + ηmωm

, (39)

can be determined by minimizing the Bogoliubov-Peierls free
energy. The renormalized factor ηm in Eq. (38) has been
used successfully to characterize the delocalized-localized
QPT [22,23]. If the tunneling amplitude is renormalized to
zero, then the system is in the localized phase and the dynamics
is trivial. In contrast, if the renormalized tunneling amplitude
is nonzero, then the system is in the delocalized phase,
which displays some interesting dynamical behaviors such as
damped coherent oscillation and incoherent relaxation [14].
Solving Eqs. (38) and (39) with Eqs. (3) and (4), we obtain
transcendental equation to renormalized factor ηm,

ηm = exp

{
−ce[2ωe + ωmηm − 2

√
ωe(ωe + ωmηm)]

4ω2
mη2

m

√
ωe + ωmηm

}
.

(40)

In Fig. 13, we plot the numerical results on this QPT
characterized by the renormalized factor η, which can be
calculated by Eq. (40), where ηa = ηb ≡ η has been assumed
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FIG. 13. The delocalized-localized QPT characterized by the
renormalized factor η as a function of the the band edge of the
photonic crystal ωe.

due to ωa = ωb. We can see that the system is in the delocalized
phase regime when ωe is large, where η takes a finite value.
With the decrease of ωe, η drops suddenly to zero and the
system enters the localized phase regime, which is coincident
with the results under the quantum Monte Carlo method and
the numerical diagonalization method [12,26].

Focusing on the delocalized phase regime, which occurs
in the weak-coupling limit, we further separate the first-order
perturbation term from Ĥ ′

1,m = ∑
m=a,b Ĥ ′

2,m + Ĥ ′
3,m with

Ĥ ′
2,m =

∑
k

λm,k(b̂m,kσ
+
m + H.c.),

Ĥ ′
3,m = ωm

2
σ z

m(cosh ϕ̂m − ηm) − i
ωm

2
σy

m(sinh ϕ̂m − ηmϕ̂m),

(41)
where λm,k = ηmωmVm,kξk,m/ωm,k . Combining with
Eq. (37), we transformed our model as Ĥ ′ =∑

m=a,b Ĥ ′
0,m + Ĥ ′

2,m + Ĥ ′
3,m, where Ĥ ′

0,m collects all
the renormalized noninteracting terms, Ĥ ′

2,m collects all
the first-order perturbation terms, and Ĥ ′

3,m collects all the
higher-order ones. It has been proved that in zero-temperature
and weak-coupling regimes, the higher-order perturbation
terms Ĥ ′

3,m can be neglected [23,24] due to the fact
〈φr |Ĥ ′

3,m|φr〉 = 0,r = g,E1,E2, and E3 in zero and
single-exciton eigenspaces. Thus the Hamiltonian takes the
form of Ĥ ′ ≈ ∑

m=a,b Ĥ ′
0,m + Ĥ ′

2,m ≡ Ĥeff ,

Ĥeff = Ĥ NRWA
a + Ĥ NRWA

b + Ĥ RWA
ab , (42)

with

Ĥ NRWA
m = �ηmωmσ+

m σ−
m +

∑
k

[�λm,kb̂m,kσ
+
m + H.c.]

+
∑

k

�ωm,kb̂
†
m,kb̂m,k + Cm,

Ĥ RWA
ab =�Jσ+

a σ−
b + �Jσ−

a σ+
b ,

(43)

which is similar to the RWA Hamiltonian (5) except the
renormalized factor ηm and the coupling strength λm,k . By
means of the similar method with Sec. IIB, we plot the
energy spectrum in Fig. 14. In the delocalized phase regime
we worked, where ηm takes a finite value, we now verify
the QPT by studying the ground-state energy of the total
system including the environments in Fig. 14. We find that
the ground-state energy E is discontinuous at the critical point
where the bound state is formed. It manifests clearly that there
is a QPT existing in the delocalized phase regime.

The system described by the coupled spin-boson models
under a perturbation approach in the delocalized phase occur-
ing in the weak-coupling limit at zero temperature has been
investigated analytically. We can see that the QPT induced by
the formation of the bound state has a profound impact on the
system dynamics of the TLS in the delocalized phase regime.
It induces a dynamical transition from complete decoherence
to decoherence suppression with only the single-excitation
subspace.

We now discuss the realizability of our model in realistic
materials. A N-period one dimensional lattice reproduces a
band gap via appropriate sequences of dielectric unit cells
and an arbitrarily shaped density of frequency modes can be
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FIG. 14. Ground-state energy E of the total Hamiltonian includ-
ing system and environment given by Eq. (31). (a) Corresponding to
Fig. 6 with �b = 10ωe in delocalized regime ηa = ηb ≡ η �= 0.

modeled through the sequence of the transmission coefficients
of each unit cell [68]. The corresponding environment may
be realized via diffractive grating and photonic crystals
engineered 1D PBG microcavities [69,70]. Therefore, the
present theoretical approach provides a way to model the
environment light-matter systems, suitable to protect coher-
ence [71–73]. As a result, the present analytical result has
a highly advantageous means of maintaining high fidelity of
quantum states and quantum-logic operations in the presence
of decay and decoherence in the realistic materials.

IX. DISCUSSION

In this paper, QPTs through two two-level atoms embedded
in a three-dimensional anisotropic photonic crystal have been
investigated both with and without RWA. When the RWA
is applied to this model in weak-coupling limit, we derive
the exact time evolution dynamics of the system by Laplace
transform. By applying Green function approach to the ground
state of the whole Hamiltonian, we obtain the phase diagram
by analytically giving two exact critical equations. Two QPTs
occur in our system, and different ground states are associated
with three phases with two critical equations, which cor-
respond to zero-exciton eigenstate, single-exciton eigenstate
with a real eigenvalue, and single-exciton eigenstates with two
real eigenvalues, which we label (I)–(III), respectively. The
first QPT occurs between phases I and II, where the first QPT,
i.e., from phase I to phase II, occurs when we control the
detuning over the critical points. The existence of the second
QPT originated from the transition of two bound states in
single-exciton subspace. This novel bound state shows the
period oscillation behavior for the system, which arises from
the quantum interference of two localized modes.

When the RWA breaks down, making use of the pertur-
bation approach to neglect the high-order interaction terms
in a unitarily transformed Hamiltonian, we have shown that
the QPT still exists in the delocalized phase regime. The
approximation is valid in the weak-coupling regime under zero
temperature, where the high-order excitations are negligible.

We also further confirmed that the neglected terms give no
contribution to the QPT, which validates our approximations.
Our purely analytical treatment provides a unified microscopic
description of the QPTs and renders a helpful understanding
of the rich physics in the TLS. This simple proposal provides
an effective means that has potential application in quantum
devices and quantum statistics.
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APPENDIX A: THE DERIVATION OF THE DYSON
EQUATION (13)

It is easy to verify that the exciton number operator

N̂ =
∑

m=a,b

σ+
m σ−

m + b̂
†
m,kb̂m,k (A1)

is a conserved quantity due to the fact that commutation
relation [Ĥ RWA,N̂ ] = 0. Taking the initial state (7), the time-
evolved state |ψ(t)〉 can be written as

|ψ(t)〉 =
[
Aa(t)|e,0〉a +

∑
k

Ck(t)|g,1k〉a
]

⊗ |g,0〉b

+ |g,0〉a ⊗
[
Ab(t)|e,0〉b +

∑
k

Dk(t)|g,1k〉b
]

+A0|g,0〉a|g,0〉b, (A2)

in which the amplitude A0 is constant since
Ĥ RWA|g,0〉a|g,0〉b = 0, while Am, Ck , and Dk are
time-dependent quantities, where |0〉m = ∏

k |0k〉m, |1k〉 =
|00〉 ⊗ · · · |0k−1〉 ⊗ |1k〉 ⊗ |0k+1〉 · · · . By substituting |ψ(t)〉
into the Schrödinger equation i ∂

∂t
|ψ(t)〉 = Ĥ RWA|ψ(t)〉

(hereafter, � = 1), we obtain

dAa(t)

dt
= − iωaAa(t) − iJAb(t) − i

∑
k

Va,kCk(t),

dAb(t)

dt
= − iωbAb(t) − iJAa(t) − i

∑
k

Vb,kDk(t),

dCk(t)

dt
= − iAa(t)V ∗

a,k − iωa,kCk(t),

dDk(t)

dt
= − iAb(t)V ∗

b,k − iωb,kDk(t).

(A3)

By formally integrating the last two equations in Eq. (A3) and
substituting the result into the first two equations in Eq. (A3),
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FIG. 15. The integration contours for Eq. (C2).

we arrive at

Ȧa(t) = − iωaAa(t) − iJAb(t) −
∫ t

0
Aa(τ )fa(t − τ )dτ ,

Ȧb(t) = − iωbAb(t) − iJAa(t) −
∫ t

0
Ab(τ )fb(t − τ )dτ ,

(A4)
where the fluctuation dissipation relation

fm(t) =
∑

k

|Vm,k|2e−iωm,k t . (A5)

Therefore Eq. (10) can be obtained by substituting Eq. (A4)
into Eq. (9).

APPENDIX B: THE CALCULATION OF fm(s)

With Eq. (3), we can calculate fm(s) in Eq. (11) as follows:

fm(s) =
∑
m

|Vm,k|2
s + iωm,k

= (ωmdm)2

2ε0�V

∑
k

(�ek · �ud )(�ek · �ud )

ωm,k[s + iωm,k]

= (ωmdm)2

2ε0�V

∑
k

1 − (�k · �ud )
2
/k2

ωm,k[s + iωm,k]

= (ωmdm)2

16π3ε0�

∫
[1 − (�k · �ud )

2
/k2]d3�k

ωm,k[s + iωm,k]
, (B1)

where we have replaced the sum by an integral
via

∑
k → V

(2π)3

∫
d3�k and (�ek · �ud )(�ek · �ud ) = 1 − (�k · �ud )(�k ·

�ud )/k2. Near the band edge, the dispersion relation may be

expressed approximately by ωm,k = ωe + Bm|�k − �kj

0 |2. The
angle between the dipole vector of the atom and the j -th �kj

0

is θj . The angle between the dipole and �k near �kj

0 is replaced
approximately by θj . We calculate fm,k as follows:

fm(s) = (ωmdm)2

16π3ε0�

∫
[1 − (�k · �ud )

2
/k2]d3�k

ωm,k[s + iωm,k]

= (ωmdm)2

16π3ε0�

⎛
⎝∑

j1

sin2θj1

⎞
⎠ ∫

d3 �q
(ωe + Bm|�q|2)[s + i(ωe + Bm|�q|2)]

= (ωmdm)2

4π2ε0�

⎛
⎝∑

j1

sin2θj1

⎞
⎠ ∫ ∞

0

q2dq

(ωe + Bmq2)[s + i(ωe + Bmq2)]
. (B2)

Consequently, integrating the last line in above equation, we obtain Eq. (13).

APPENDIX C: THE CALCULATION OF THE AMPLITUDES Aa(t) AND Ab(t)

The amplitude Aa(t) can be obtained by means of the inverse Laplace transform [51–54],

Aa(t) = 1

2πi

∫ σ+i∞

σ−i∞
Aa(s)estds = 1

2πi

∫ σ+i∞

σ−i∞
dsest

−iAb(0)J + Aa(0)
[
s + iωb − icm√

ωe+
√−is+ωe

]
J 2 + [

s + iωa − icm√
ωe+

√−is+ωe

][
s + iωb − icm√

ωe+
√−is+ωe

] . (C1)

With the integration contours as shown in Fig. 15(a), we have

Aa(t) =
∑

j

m1
(
x

(1)
j

)
ex

(1)
j t

G′(x(1)
j

) − 1

2πi

[∫ −iωe+0

−iωe−∞
+

∫ −i∞+0

−iωe+0
dsest

−iAb(0)J + Aa(0)
[
s + iωb − icm√−is+ωe

]
J 2 + [

s + iωa − icm√−is+ωe

][
s + iωb − icm√−is+ωe

]
]
, (C2)

where the function

m1(s) = − iAb(0)J + Aa(0)[s + iωb + α(s)],

G(s) = J 2 + [s + iωa + α(s)][s + iωb + α(s)],
(C3)

where α(s) = − icm√
ωe+

√−ix+ωe
, and x

(1)
k is the root of the equation G(s) = 0 in the region [Re(s) > 0 or Im(s) > −ωe], the real

number σ , and the real number s = σ lies to the right of all the singularities x
(1)
j . The last term can be calculated with the
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integration contours as shown in Fig. 15(b):

1

2πi

∫ −i∞+0

−iωe+0
dsest −iAb(0)J + Aa(0)[s + iωb + α(s)]

J 2 + [s + iωa + α(s)][s + iωb + α(s)]

= 1

2πi

∫ −i∞

−iωe

dsest −iAb(0)J + Aa(0)[s + iωb + β(s)]

J 2 + [s + iωa + β(s)][s + iωb + β(s)]

= −
∑

j

m2
(
x

(2)
j

)
ex

(2)
j t

L′(x(2)
j

) − 1

2πi

[∫ −iωe+0

−iωe−∞
dsest −iAb(0)J + Aa(0)[s + iωb + β(s)]

J 2 + [s + iωa + β(s)][s + iωbβ(s)]

]
, (C4)

where

L(s) = J 2 + [s + iωa + β(s)][s + iωb + β(s)], (C5)

where β(s) = − icm√
ωe−i

√
is−ωe

, and x
(2)
k is the root of the

equation L(s) = 0 in the region [Re(s) < 0 and Im(s) < −ωe].
From Eqs. (C1), (C2), and (C4), we can obtain

the amplitudes (15) and (16) by setting s = −y −
iωe, where m2(s) = −iAb(0)J + Aa(0)[s + iωb + β(s)],
m3(s) = −iAa(0)J + Ab(0)[s + iωa + α(s)] and m4(s) =
−iAa(0)J + Ab(0)[s + iωa + β(s)].

APPENDIX D: THE SOLUTION TO THE CUBIC
EQUATION

The quantity p satisfies a cubic equation

p3 + bp2 + cp + d = 0, (D1)

with b = −2
√

ωe, c = r , d = −ce. Its solutions can be found
in any mathematics manual. If B2 − 4AC < 0 with A = b2 −
3c, B = bc − 9d, C = c2 − 3bd. There are three different real
roots,

p1 = −b − 2
√

A cos θ

3
,

p2 = −b + √
A[cos θ − √

3 sin θ ]

3
,

p3 = −b + √
A[cos θ + √

3 sin θ ]

3
,

(D2)

where θ = 1
3 arccos ( 2Ab−3B

2
√

A3
).
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