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Random-field Ising model on isometric lattices: Ground states and non-Porod scattering
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We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field
Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic
(FCC) lattices. We determine the critical disorder strength �c at zero temperature with high accuracy. For the
SC lattice, our estimate (�c = 2.278 ± 0.002) is consistent with earlier reports. For the BCC and FCC lattices,
�c = 3.316 ± 0.002 and 5.160 ± 0.002, respectively, which are the most accurate estimates in the literature to
date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α

signifying fractal interfaces. In the paramagnetic phase, α = 0.5 ± 0.01 for all three lattices. In the ferromagnetic
phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy
Ei(L) for an interface of size L is significantly different for the three lattices. This has important implications for
nonequilibrium properties.
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I. INTRODUCTION

Materials contain intrinsic disorder due to defects, im-
purities, and strained structures. On the other hand, many
important systems, such as alloys, spin glasses, and relaxor
ferroelectrics, have materialized due to the introduction of
disorder. It plays an important role in the behavior of phases
and phase transitions in these systems, and introduces a
multitude of time scales leading to slow domain growth,
anomalous relaxation, and aging even on macroscopic time
scales [1–7]. The random-field Ising model (RFIM) is one of
the simplest models that captures the effect of disorder [8,9].
It comprises N Ising spins on a d-dimensional lattice with the
Hamiltonian given by

H({σi}) = −J
∑
〈ij〉

σiσj −
∑

i

hiσi, σi = ±1. (1)

Here, J > 0 is the strength of the interaction between the
nearest-neighbor (nn) spins and promotes ferromagnetic order.
The random fields hi introduce disorder and are generally
drawn from a Gaussian distribution:

P (hi) = 1√
2π�2

e−h2
i /(2�2). (2)

The standard deviation � is a measure of the strength
of disorder. The competition between order and disorder
introduces a complex free-energy landscape with deep valleys
separated by barriers that grow exponentially with the system
size. The system then gets trapped in local minima and is
often unable to approach the global minimum (or the ground
state) over observation time scales. Consequently, many issues
related to the equilibrium and nonequilibrium behavior of
the RFIM still remain unanswered even after four decades
of intense investigations.

One of the earliest questions about the RFIM was regarding
the lower critical dimension dl above which there exists
a stable ferromagnetic phase. Imry and Ma, using simple
arguments based on domain-wall stability, predicted dl = 2
[10]. Perturbative renormalization group arguments by Young
predicted dl = 3 [11]. However, rigorous proofs by Imbrie

[12], Bricmont and Kupiainen [13], and Aizenman and Wehr
[14] showed that for low disorder and temperature there
exists long-range order in the d = 3 RFIM, thus establishing
dl = 2. There has also been much debate about the nature
of the phase transition in RFIM. The earliest Monte Carlo
(MC) simulations due to Young and Nauenberg reported
a first-order transition [15], while latter studies involving
ground-state calculations reported a second-order transition
[16–20]. Further, using the technique of replica symmetry
breaking, Mezard et al. predicted an intermediate glassy phase
separating the ferromagnetic and paramagnetic phases [21,22].
But Middleton and Fisher, via a detailed numerical study,
showed that the transition is continuous and that there is no
intermediate glassy phase [23].

Queries about universality have also been topical and inter-
esting in the context of RFIM. A large number of numerical
works suggested universality violations [24–28]. But recently,
Fytas and Martin-Mayor have shown from high-statistics
simulations that the universality class of the d = 3 RFIM
is independent of the form of the implemented random-field
distribution and the discrepancies observed earlier are due to
scaling corrections [29]. Much work has also been done on
finding critical exponents and the scaling relations obeyed
by them. Malakis and Fytas [30] used novel MC methods to
estimate the specific heat exponent at nonzero temperatures.
Their study also revealed violation of self-averaging for the
specific heat in the RFIM. The comprehensive numerical stud-
ies by Fytas-Martin-Mayor and Picco-Sourlas have yielded the
most accurate estimates of critical exponents till date [29,31].
Another significant contribution has been the scaling theory of
phase transitions in the RFIM [32–34].

At T = 0, all the information about the system is contained
in the ground state (GS). According to the zero-temperature
fixed-point hypothesis, transitions at T = 0 and T �= 0 are
in the same universality class. Thus, the low-temperature
phase of the RFIM is controlled by the T = 0 fixed point.
It is therefore of great interest to obtain ground states of the
RFIM. Fortunately, the max-flow and min-cut techniques or
the graph-cut methods (GCM) provide the global minimum
of the energy function specified by Eq. (1), thereby yielding
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exact ground states [35]. Recently, Shrivastav et al. analyzed
these morphologies, which revealed compact domains of
up and down spins separated by rough fractal interfaces
[36,37]. Consequently, the structure factor, obtained in small-
angle neutron scattering experiments, exhibited a crossover
from a Porod regime [38,39] at intermediate-k values as a
consequence of the smooth domains to a non-Porod tail due to
the fractal interfaces. These observations are a significant step
toward understanding the ubiquity of multiple length scales,
plethora of relaxation times, and slow relaxation in systems
with quenched disorder [36,37].

The RFIM has been fascinating for experimentalists as well.
It is realized by a large number of physical systems.

(i) In 1979, Fishman and Aharony showed that randomly
diluted antiferromagnets (DAFFs) in a uniform field H applied
colinearly with the direction of spontaneous ordering maps
directly into the RFIM [40]. Since then, DAFFs have been
extensively investigated and ensuing observations interpreted
using the RFIM [41–45]. The most commonly studied DAFFs
have been the insulating, uniaxial antiferromagnets FeF2,
CoF2, and MnF2 diluted with nonmagnetic compounds such
as ZnF2 [41–43]. Stable structures are formed because both
sets of compounds have a body-centered tetragonal (bct) rutile
structure.

(ii) Recently the diluted dipolar insulating magnet
LiHoxY1−xF4 in the presence of a transverse magnetic field
has been proven to be a ferromagnetic realization of the RFIM
[46,47]. It has a bct structure and exhibits a rich phase diagram
due to the interplay of dilution and the field and has the
distinction of exhibiting a classical as well as a quantum phase
transition. The RFIM is providing a starting point for their
understanding.

(iii) A class of technologically important materials are fer-
roelectric single crystals of AxBa1−xNb2O6 (A = Sr, Pb) with
tetragonal tungsten-bronze structure and A(B1B2)O3 (B1 =
Mg,Zr; B2 = Nb,Ti) compositions of lead-based perovskite
structures [48–50]. They exhibit a transition from ferroelectric
to relaxor behavior characterized by slow relaxation and aging
and have been identified as examples of the ferroic RFIM.

(iv) Molecular magnet Mn12-acetate [51,52], the hexag-
onal mixed Ising-XY antiferromagnets FexCo1−xTiO3 and
FexCo1−xCl2 [53,54], the kagome staircase lattice ferromagnet
(Co1−xMgx)3V2O8 [55], and sintered needles of Nd2Fe14B in
a transverse field with a hexagonal structure [56,57] are other
examples of the RFIM, but have received less attention.

Besides the above examples, diverse systems such as
colloid-polymer mixtures, colossal magnetoresistance oxides,
and nonequilibrium phenomena such as the Barkhausen noise
in magnetic hysteresis have been studied within the purview
of the RFIM.

Although the experimental realizations of the RFIM come
on a variety of lattice structures, theoretical studies have
generally concentrated on simple cubic (SC) lattices. The
major distinction between different lattice types is in the
number of nn and their distance from the reference site. How
consequential are these factors for the static and dynamic
properties of experimental systems? A few authors have
addressed this question. Very recently Akinci et al. used
effective mean-field theory to obtain phase diagrams for
the RFIM with different random-field distributions on SC,

body-centered cubic (BCC), and face-centered cubic (FCC)
lattices [58]. They also provided estimates of the critical
disorder �c for these lattices. In another work, Koiller
et al. studied interface properties in the d = 2 RFIM on
square, triangular, and honeycomb lattices [59]. An important
consequence of quenched disorder is pinning and roughening
of interfaces. These are characterized by a roughness exponent
α and are self-affine with a fractal dimension df = d − α.
Koiller et al. observed a transition from faceted to fractal
interfaces with increasing disorder. This transition was first
order for the honeycomb lattice but second order for the square
and triangular lattices.

Interfacial properties are significant in the context of
many nonequilibrium phenomena. Let us consider the d = 3
RFIM, which exhibits a transition from the ferromagnetic
phase (� < �c) to the paramagnetic phase (� > �c). The
ferromagnetic phase comprises macroscopic domains of up
(down) spins containing impurities of down (up) spins. Most
nonequilibrium properties involve the motion of interfaces or
domain walls. However, in the RFIM and other disordered
systems, this motion is impeded by the presence of impurity
barriers. The characteristic time to surmount a barrier of
energy EB is given by τ (T ) = τ0 exp (EB/T ). For the RFIM,
Villain argued that EB ∼ Rm, where R is the characteristic
domain size [32]. He estimated the barrier exponent m =
2 − α. The power-law behavior demonstrates the nontrivial
dependence of EB (and thereby τ ) on the roughness exponent.
A closely related topic of current interest is that of domain
wall dynamics on the application of an external driving field.
This is important for spintronic devices such as magnetic logic
gates, racetrack memories, random-access memories, etc. The
much-studied creep motion of the driven domain wall prior
to the depinning transition is greatly affected by interfacial
roughness. Universality classes of materials in experiments are
now being identified by evaluating the creep exponent [60].

In this paper, we use an efficient graph-cut algorithm due
to Boykov and Kolmogorov (BK) [61] to obtain exact ground
states (T = 0) of SC, BCC, and FCC lattices. Its polynomial
complexity of O(N ) allowed us to obtain comprehensive
numerical results from large scale simulations. We investigated
these morphologies and obtained the following results:

(i) By evaluating the Binder cumulant, the critical point
(�c) at T = 0 has been estimated for each of the three lattice
types. For the SC lattice, �c = 2.278 ± 0.002 and is consistent
with earlier reports. For the BCC and FCC lattices, �c =
3.316 ± 0.002 and 5.160 ± 0.002, respectively. These are the
most accurate estimates in the literature thus far.

(ii) In the paramagnetic phase, the correlation length
ξ (�) ∼ (� − �c)−ν as � → �+

c with ν = 1.28 ± 0.01 for
all the three lattice types.

(iii) In the paramagnetic phase, C(r,�) is characterized by a
universal scaling function for different disorder amplitudes and
lattice types. It shows a cusp singularity at short distances: 1 −
C(r,�) ∼ rα , where the universal exponent α = 0.5 ± 0.01.
The corresponding interfaces are fractal with dimension df =
d − α.

(iv) In the ferromagnetic phase, C(r,�) is again charac-
terized by a universal scaling function for different disorder
amplitudes. However, the scaling functions show small vari-
ations in the short-distance cusps for the three lattice types.
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The interfaces in the ferromagnetic phase are also fractal. The
roughness exponents vary between α = 0.68 ± 0.01 for SC
and α = 0.64 ± 0.01 for FCC.

(v) The large-k behavior of the structure factor S(k,�)
exhibits a non-Porod regime if the scattering is by fractal
interfaces: S(k,�) ∼ k−(d+α). We identify this regime in
several experimental realizations of the RFIM by analyzing
the structure factor obtained by small-angle neutron scattering
experiments.

(vi) Finally, we find that the interfacial energy in the
ferromagnetic phase is significantly different in the three
lattices despite the small variations in the interfacial roughness.
Consequently, growth and relaxation are significantly affected
by the lattice structure.

This paper is organized as follows. In Sec. II, we briefly
describe the Boykov-Kolmogorov (BK) graph-cut method
(GCM) to obtain exact ground states of the RFIM. The tools
for morphology characterization, viz., the correlation function
and the structure factor, are also described in this section.
Section III A presents the evaluation of the critical points and
exponents associated with the SC, BCC, and FCC lattices.
The ground states of the RFIM on these isometric lattices and
their morphological properties are discussed in Sec. III B. The
implications of the morphologies in the context of domain
growth and relaxation are discussed Sec. III C. Experimental
evidences of the distinct non-Porod regimes in the two phases
are presented in Sec. III D. Finally, in Sec. IV, we conclude
this paper with a summary and discussion.

II. METHODOLOGY

A. Graph-cut method

We describe the graph-cut method (GCM) in brief as the
details have been described in our earlier papers [37,62].
Consider a set of sites S, each of which is assigned a label
si ∈ L. The energy function defining such an assignment is

E({si}) =
∑

{ij}∈N
Vij (si,sj ) +

∑
i∈S

Di(si). (3)

The function Di is the cost of assigning the label si to site i,
and Vij (si,sj ) is the penalty of assigning labels si and sj to
neighboring sites i and j . For the application of the GCM, the
energy function to be minimized is represented as a graph G,
which is an ordered pair of disjoint sets (V,E), where V is the
set of vertices and E is the set of edges. An edge ij connecting
vertices i and j is given a weight Vij . A partitioning of the
verticesV into two setsQ andR is called a cutC. Any edge ij ∈
E with i ∈ Q and j ∈ R (or vice versa) is a cut edge. The cost
of the cut is the sum of the weights of the cut edges. The
problem is to find the cut with the smallest cost or the min-cut.
The resulting labeling also minimizes the energy function.

In the case of binary labels, i.e., L = {0,1}, the energy
function is graph representable if it satisfies the regularity
condition [35]:

Vij (0,0) + Vij (1,1) � Vij (0,1) + Vij (1,0). (4)

Additionally, if the energy function is quadratic, then the
graph-cut is guaranteed to give the global minimum of
the energy. It can be immediately seen that by defining

si = (1 + σi)/2, the Hamiltonian of Eq. (1) satisfies regularity.
Hence, by mapping the RFIM to a min-cut problem, exact
ground states can be obtained in polynomial time. There
are many algorithms for finding the min-cut with different
polynomial time complexities [63,64]. We have made use of
the BK method, which is known to be faster than others due
to its polynomial time complexity of O(N ) [61].

B. Correlation function and structure factor

A powerful probe for quantifying domain morphologies is
the correlation function [65],

C(	r,�) = 〈σiσj 〉 − 〈σi〉〈σj 〉, (5)

where 	r = 	rj − 	ri and the angular brackets denote an ensemble
averaging. Scattering experiments measure the structure factor,
which is the Fourier transform of the correlation function:

S(	k,�) =
∫

d	rei	k.	rC(	r,�), (6)

where 	k is the wave vector of the scattered beam. In the
isotropic case, C(	r,�) and S(	k,�) depend on the vector
magnitudes r = |	r| and k = |	k|, respectively. If the system
is characterized by a single length scale, the morphology of
the domains does not change with �, apart from a scale factor.
In this case, the correlation function and the structure factor
exhibit a scaling property: C(r,�) = g(r/ξ ) and S(k,�) =
ξdf (kξ ). The characteristic length scale ξ (�) is defined from
the correlation function as the distance over which it decays to
(say) half its maximum value.

A typical GS morphology for the RFIM comprises corre-
lated regions or domains of up and down spins separated by
rough interfaces. Consider a domain of size ξ with interfacial
width w, which will be defined below. (There is also the
microscopic length a denoting the underlying lattice spacing.)
For such a morphology, the correlation function is well
approximated as [36,37,62]

C̄(r) ≡ 1 − C(r) � Arα + Br + · · ·. (7)

The first term conveys information about the interfacial texture,
which can be probed by length scales a � r � w. In this
regime, C(r) exhibits a cusp singularity characterized by
the roughness exponent α and is a consequence of rough
interfaces separating phases. They are generally described as
self-affine fractals with a dimension df = d − α. The linear
decay in Eq. (7) dominates at w � r � ξ . It is characteristic
of scattering from smooth morphologies in inhomogeneous
systems and is termed the Porod law [39,66].

Often, the surface roughness is described using the solid-
on-solid model [67,68]. In this model, the surface is described
by a single-valued function h(	r), which represents the height
of the surface at a position vector 	r on a (d − 1)-dimensional
substrate. The interface width is the root mean square fluctua-
tion in the height:

w2 = 1

A

∫
d	r[h(	r) − h̄]2 = 1

A

∫
d	rδh(	r)2, (8)

where A = Ld−1 is the substrate area and h̄ is the average
height. For a translationally invariant system, we can also write

w2 = 〈h(	r)2〉 − 〈h(	r)〉2, (9)
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where the angular brackets denote an ensemble average:
〈h(	r)〉 = h̄. We expect w2 ∼ L2α , where α is the roughness
exponent of the interface [67]. Once again, for a self-affine
surface, df = d − α. We stress that the correlation-function
data yields a more accurate measure of α, as it is obtained by
averaging over all interfaces in the system.

The short-distance cusp singularity has important implica-
tions for the structure factor S(k). It decays with an asymptotic
power-law form [69–72]:

S(k) ∼ Ã(ξk)−(d+α) + B̃(ξk)−(d+1). (10)

The dominant large-k behavior in Eq. (10) is the cusp regime
S(k) ∼ (ξk)−(d+α), with crossover to the Porod decay charac-
terized by S(k) ∼ (ξk)−(d+1) at intermediate wave-vectors.

III. NUMERICAL RESULTS

The ground states of the RFIM on SC, BCC, and FCC
lattices were obtained using the BK GCM on lattices of size L3

(L � 160), with periodic boundary conditions in all directions.
We have chosen J = 1, so all energies are in units of J . Unless
specified otherwise, the data presented here is for a system of
size L = 160. Note that the SC lattice has only one spin per
unit cell, whereas the BCC and FCC lattices have two and four
spins per unit cell, respectively. Thus, for a system of size L,
the SC lattice has L3 spins, BCC lattice has 2L3 spins and
FCC lattice has 4L3 spins. The initial condition was chosen to
be a random mix of σ = ±1. Our studies indicate that the BK
GCM yields states with a 99% overlap with the GS in the first
iteration itself, provided the disorder strength is not too close
to the critical value �c. All the results have been averaged over
at least 100 sets of {hi} for each value of � and sometimes
even more to improve the quality of our numerical data. For
calculating the correlation function C(r,�) of the BCC and
FCC lattices, extra sites with σi = 0 have been introduced,
thereby converting them to SC lattices with lattice spacing
a/2. With this, the structure factor S(k,�) could be obtained
with ease using standard fast Fourier transform routines. These
data have been spherically averaged only over those vector
lengths, which are physically relevant for the particular lattice
in consideration.

A. Critical points and exponents

First, we determine the the critical disorder strength �c,
below which the cubic lattices exhibit ferromagnetic long-
range order. These values are expected to depend on the
number of nn, which are 6, 8, and 12 for the SC, BCC, and
FCC lattices, respectively. One of the most efficient procedures
to determine the critical point uses the fourth-order Binder
cumulant, defined as [73–75]

U4 = 1 − 〈m4〉
3〈m2〉2

, (11)

where m is the average magnetization of the system. A plot of
U4 versus � for different lattice sizes L intersects at the critical
point. For the SC lattice, we had estimated �c = 2.278 ±
0.002 in an earlier paper and refrain from reproducing the
corresponding plot of U4 vs. � here [62]. In Fig. 1 we show
the evaluation of U4 versus � for (a) + (c) BCC lattice with
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FIG. 1. Binder cumulant U4 plotted as a function of � for (a)+(c)
BCC lattice and (b)+(d) FCC lattice for different lattice sizes L.
�c = 3.316 ± 0.002 for the BCC lattice and �c = 5.160 ± 0.002
for the FCC lattice. The lower frames show a zoomed-in view of the
data.

L = 20, 24, 28, and 32; and (b) + (d) FCC lattice with L = 16,
20, 24, and 28. The data have been averaged over as many as
a million realizations in some cases to obtain the point of
intersection of lines corresponding to U4 versus �. We have
provided the statistics in Table I. We obtain (a) �c = 3.316 ±
0.002 for the BCC lattice and (b) �c = 5.160 ± 0.002 for the
FCC lattice. To the best of our knowledge, these values are the
most accurate in the literature thus far. Recently, Akinci et al.
obtained �c to be 3.8501 (SC), 5.450 (BCC), and 8.601 (FCC)
using an effective-field approximation [58]. These values are
grossly different from our evaluations made using exact GS
morphologies.

As the disorder strength is decreased from � = ∞, corre-
lated regions or domains of size ξ rich in either up or down
spins start forming. Defining δ = (� − �c)/�c, we depict
typical GS morphologies of the three lattices in Fig. 2. The
upper frames correspond to δ = 0.08 (paramagnetic state),
and the lower frames correspond to δ = −0.01 (ferromagnetic
state). Green and blue regions represent up and down spins,
respectively. The unit cell in each case is depicted in the
corner of the upper frames for reference. As can be observed,
the correlation length ξ → ∞ as δ → 0+, the divergence

TABLE I. Simulation parameters for the evaluation of Binder
cumulants. L is the lattice size and Nr is the number of disorder
realizations.

BCC FCC

L Nr L Nr

20 6 × 106 16 4 × 106

24 2 × 106 20 1 × 106

28 1 × 106 24 6 × 105

32 6 × 105 28 4 × 105
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FIG. 2. Ground-state morphologies of the RFIM on cubic lattices
of size 1603. (a), (b), and (c) are typical ground-state configurations
of the SC, BCC, and FCC lattices for δ = (� − �c)/�c = 0.08.
Green (gray) and blue (black) regions represent up and down spins,
respectively. The corresponding unit cells are shown in the insets. (d),
(e), and (f) represent typical ground-state configurations of the SC,
BCC, and FCC lattices for δ = −0.01.

limited by lattice size L. To investigate finite-size effects, we
plot ξ (δ,L) versus δ for the paramagnetic phase in Fig. 3(a)
for system sizes L ranging from 64 to 160 obtained for
SC, BCC, and FCC lattices. The finite-size scaling ansatz
ξ (�) = δ−νF (Lδν) for ν = 1.28 ± 0.01 yield the master
curves depicted in Fig. 3(b). The same value of ν for all
the three lattice structures suggests that the nn environment
is inconsequential in the paramagnetic phase. We believe that
this result is generic, and that the correlation length exponent
ν is universal for all lattice types in the paramagnetic phase.
This is consistent with our expectation that the microscopic
details of the lattice are not relevant near criticality.

B. Morphological properties

Next, we do a detailed investigation of the GS morphologies
of the RFIM on the three lattices in the paramagnetic phase.

(a)

(b)

FIG. 3. Log-log plot of ξ (δ,L) vs. δ in the paramagnetic phase
(with δ > 0) for different system sizes L. The denoted symbols
represent SC, BCC, and FCC lattices respectively, and the different
colors (shades) denote different L. The direct plot is shown in (a),
whereas (b) shows data collapse resulting from the finite-size scaling
ansatz ξ (�) = δ−νF (Lδν) with ν = 1.28 ± 0.01 for all the three
lattices.

The top row in Fig. 4 shows typical slices [in the (xy) plane]
of the GS morphologies of the (a) SC, (b) BCC, and (c) FCC
lattices, respectively, for δ = 0.08. The enclosed portion in the
square is magnified to clearly identify the arrangement of sites
in each lattice type. It should be noted that the nn are at a
distance a for SC,

√
3a/2 for BCC, and a/

√
2 for FCC. While

the nn for the SC and FCC slice lie in the same plane, those
for the BCC slice lie in adjacent planes at a distance a/2.

We quantify the textures of domains and interfaces by
evaluating the correlation function C(r,�) and the structure
factor S(k,�). For each lattice, the scaled correlation functions
for different disorder amplitudes with δ > 0 are numerically
indistinguishable (not shown here). Figure 4(d) depicts the
scaled correlation function, C(r,�) versus r/ξ , for disorder
strength δ = 0.08 for SC, BCC, and FCC lattices. The collapse
is excellent, indicating that in the paramagnetic phase the
correlation function is scale-invariant with respect to disorder
and the lattice type as well. Figure 4(e) shows the log-log
plot of 1 − C(r,�) versus r/ξ yielding a cusp exponent
α = 0.5 ± 0.01. This implies that the interfaces separating the
up-spin and down-spin regions in the paramagnetic phase have
a fractal dimension of df � 2.5. The corresponding scaled
structure factor, 〈k〉3S(k,�) versus k/〈k〉 on a log-log scale, is
plotted in Fig. 4(f). The solid line denotes a non-Porod regime
with slope −3.5. We believe that in the paramagnetic phase,
the cusp exponent α = 0.5 is universal and does not depend
on the details of the lattice structure.

Let us next look at the ferromagnetic phase for � < �c.
The corresponding morphology consists of a macroscopic up
(down) phase with impurity islands of down (up) spins—see
lower frames of Fig. 2. To set up interfaces, we consider a d =
3 cubic lattice of size L3 (with L = 128). A single interface is
set up perpendicular to the z direction by fixing the spin values
at z = 1,L:

σ (x,y,z = 1) = −1,
(12)

σ (x,y,z = L) = +1.

Periodic boundary conditions are deployed in the (x,y) direc-
tions. For a particular field realization {hi}, the GCM is then
implemented to obtain the ground state subject to the above
boundary condition. The top row in Fig. 5 shows vertical cross-
sections of the 3-d snapshots at x = L/2 for (a) SC lattice,
(b) BCC lattice, and (c) FCC lattice. These morphologies
have been obtained for δ = −0.01. Figures 5(d)–5(f) show
the corresponding (xy) cross-sections at z = h̄, the average
height of the interface.

To study morphological differences in the ferromagnetic
phase, we calculate the correlation functions C(r,�) for
different values of � < �c. The correlation function is
evaluated only in the (xy) plane at z = h̄ since the system
is not translationally invariant in the z direction. For a given
lattice, the scaled correlation functions for different disorder
amplitudes are numerically indistinguishable. For brevity, we
do not show these results here. Figure 5(g) depicts the scaled
correlation function, C(r,�) versus r/ξ , for disorder strength
δ = −0.1. The three data sets correspond to the different
lattices. The scaling for small values of r/ξ is not as clean
as in Fig. 4(d) corresponding to the paramagnetic phase. To
probe the interfacial properties, we plot 1 − C(r,�) versus r/ξ
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FIG. 4. Typical slices (at z = L/2) of the ground-state morphologies of the RFIM in the paramagnetic phase (δ = 0.08) on (a) SC, (b)
BCC, and (c) FCC lattices. Green (gray) and blue (black) regions represent up and down spins, respectively. The region enclosed by the small
black square is shown magnified in the inset. The black line in the inset represents the length of one unit cell a. The scaled correlation function,
C(r,�) vs. r/ξ , for disorder strength δ = 0.08 is shown in (d). The specified symbols denote SC, BCC, and FCC lattices, respectively. The
log-log plot of 1 − C(r,�) vs. r/ξ is shown in (e). The cusp exponent α = 0.5 ± 0.01 for all three lattices. The corresponding log-log plot of
the scaled structure factor, 〈k〉3S(k,�) vs. k/〈k〉, is shown in (f). The solid line in (f) denotes a non-Porod regime with slope −3.5.

in Fig. 5(h). The data reveals a cusp regime for all three lattices
with cusp exponents in the range α ≈ 0.64–0.68. These minor
differences may be attributed to the different structures of the
underlying lattices.

C. Energy barriers to relaxation

Under what circumstances can the cusp exponents be
consequential? These exponents play an important role in
a range of nonequilibrium applications, e.g., the domain
growth of the RFIM after a quench from the disordered phase
(� > �c) to the ordered phase (� < �c) [7,76]. Recall that
rough fractal interfaces are a result of pinning or trapping
due to the quenched disorder. They introduce energy barriers
and the domain growth then proceeds by thermally activated
barrier-hopping, which is characterized by logarithmic (rather
than power-law) growth. It is relevant to ask how these
barriers are related to the interfacial properties, e.g., the fractal
dimension determined by the cusp exponent in Eq. (7). An
important study of nonconserved domain growth in the RFIM
is due to Villain [32]. Suppose R is the characteristic size
of a domain. The growth of this correlated region is via
activation over the energy barriers separating the local minima
of the complex energy landscape. These activation energies
depend on R. Villain argued that the barriers have a power-law
dependence on the domain size, EB ∼ Rm. He estimated the
barrier exponent to be m = 2 − α with α = (5 − d)/3.

Systems undergoing domain growth have been classified
by Lai et al. (LMV) [78] on the basis of how free-energy
barriers to coarsening depend on R. The LMV scheme in

nonconserved systems is based on the equation for curvature-
driven growth:

dR

dt
= c(R,t)

R
. (13)

The basis of classification is the R-dependence of the kinetic
coefficient c(R,t). Class 1 systems, for which c(R,t) is
independent of R and remains nonzero as T → 0, do not have
energy barriers to coarsening. In general, R ∼ t1/2 for these
systems. Class 2 consists of systems whose energy barriers
are independent of R but have a single barrier height EB , so
that c(R,t) = c0 exp (−EB/T ). As a result, R(t) = (c0t/τ )1/2,
where τ (T ) = τ0 exp (EB/T ) is the characteristic time to
surmount the barriers. In systems with quenched disorder in
the Hamiltonian, e.g., RFIM, spin glasses, etc., the barriers
grow as Rm. In this case c(R,t) = c0 exp (−εBRm/T ), where
εB is the energy barrier per unit length. The short-time
growth is governed by R(t) ∼ t1/2, which crosses over to a
logarithmic growth: R(t) ∼ (T ε−1

B )1/m(ln t)1/m. The particular
case of m = 1 corresponds to Class 3 systems, while m �= 1
corresponds to Class 4 systems. The roughness exponent
therefore plays a major role in domain growth and the small
variations introduced by the lattice structure may result in
vastly different relaxation time scales.

Motivated by the above arguments, we calculate the
interfacial energy Ei for the three lattice types. We expect
Ei to be closely related to the barrier energy EB discussed
above. We choose � < �c since the interfacial textures are
distinct in this regime. As before, the interfaces are set up by
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FIG. 5. Vertical slices (at x = L/2) of the interfaces in the ferromagnetic phase (δ = −0.01) for (a) SC, (b) BCC, and (c) FCC lattices.
Green (gray) and blue (black) regions represent up and down spins, respectively. The corresponding horizontal slices (at z = h̄) are shown in
(d), (e), and (f). The region enclosed by the small black square is shown magnified in the inset. The black line in the inset represents the length
of one unit cell a. The scaled correlation function, C(r,�) vs. r/ξ , for disorder strength δ = −0.1 is shown in (g). The specified symbols denote
SC, BCC, and FCC lattices, respectively. The log-log plot of 1 − C(r,�) vs. r/ξ is shown in (h). The cusp exponent α = 0.68 ± 0.01 for SC.
The cusp exponents for BCC (α = 0.66 ± 0.01) and FCC (α = 0.64 ± 0.01) show minor differences. The corresponding interfaces are fractal
with dimension df = d − α.

imposing antiparallel boundary conditions in the z direction,
and periodic boundaries in the x and y directions. On applying
the GCM, the resulting interface of lateral size L separates
two large domains of up and down spins containing a few
small impurities with spins of the opposite kind (see top row
of Fig. 5). The latter are removed by making their spin values
equal to that of the larger domain enclosing them, thereby
creating just a single interface. The interfacial energy Ei(L) is
calculated as the difference in energy of this configuration and
an all up (down) configuration with the same set of random
fields [23,77]. For a given value of L, the results are averaged
over 256 field realizations.

In Fig. 6, we plot Ei(L) versus L for SC, BCC, and
FCC lattices on a log-log scale. Here, L is in units of the
corresponding nn distance and was varied from 8 to 100, and
δ = −0.1. Notice that the data for the three lattices are distinct
even though the roughness exponents differ only slightly.
There is an overall scale factor due to the difference in the
coordination numbers of different lattices. However, there is
also a slope difference in the small-L regime where the
interfacial roughness is relevant. The precise values of the
slopes at small-L are difficult to estimate due to the quality of
the data. At large-L, there is a crossover to Ei ∼ L2, implying
that the interfacial roughness is inconsequential on these length
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FIG. 6. Plot of the interfacial energy Ei(L) vs. L for δ = −0.1
for the isometric lattices: SC, BCC, and FCC. The solid line with
slope 2 mimics the large-L behavior in all the three cases.

scales. To emphasize the significant variation in interfacial
energy despite the small variations in the roughness exponents,
we provide in Table II the estimates of Ei(L) for δ = −0.1
obtained from our computation.

D. Experimental evidences

The important paper by Fishman and Aharony demon-
strated the equivalence of the RFIM and the randomly diluted
antiferromagnets (DAFFs) in a uniform field [40]. These
systems show novel phenomena due to the presence of
multicomponent phases, critical and multicritical points, spin
waves, and slow relaxation. Some of the most well-studied
DAFFs are FexZn1−xF2 and CoxZn1−xF2 compounds with a
body-centered rutile structure (a = b �= c; α = β = γ = 90).
We analyze their small-angle neutron-scattering data and
compare it with our numerical observations in Sec. III B. In
Fig. 7 we plot the following data sets on a log-log scale.
The critical temperature, the experimental temperature, and
the value of the applied magnetic field are also provided
in the parentheses for reference:

(1) Fe0.46Zn0.64F2 (32.11 K, 32.34 K, 3.0 T) [79];
(2) Fe0.46Zn0.64F2 (32.11 K, 31.6 K, 3.0 T) [79];
(3) Co0.35Zn0.65F2 (13.25 K, 7 K, 3.5 T) [42];
(4) Co0.35Zn0.65F2 (13.25 K, 2 K, 5.0 T) [42];
(5) Fe0.6Zn0.4F2 (46.13 K, 46.3 K, 2.0 T) [2];
(6) Fe0.76Zn0.24F2 (58.6 K, 20 K, 6.0 T) [80].

The solid line with slope −4 corresponds to the Porod law,
which arises from scattering off smooth interfaces. Clearly all
data sets are non-Porod with slopes greater than −4, signifying
fractal interfaces.

TABLE II. Variation of the interfacial energy Ei(L) with system
size L in the ferromagnetic phase for SC, BCC, and FCC lattices at
disorder strength δ = −0.1.

Ei(L)

L SC BCC FCC

8 44.54 86.11 162.98
16 178.17 321.40 608.27
24 400.89 694.41 1314.20
32 712.70 1199.50 2270.10
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FIG. 7. Log-log plot of neutron scattering data of DAFFs:
(1) Fe0.46Zn0.64F2 (Tc = 32.11K, T = 32.34 K, H = 3.0 T) [79];
(2) Fe0.46Zn0.64F2 (Tc = 32.11K, T = 31.6 K, H = 3.0 T) [79];
(3) Co0.35Zn0.65F2 (Tc = 13.25 K, T = 7 K, H = 3.5 T) [42];
(4) Co0.35Zn0.65F2 (Tc = 13.25 K, T = 2 K, H = 5.0 T) [42]; (5)
Fe0.6Zn0.4F2 (Tc = 46.13 K, T = 46.3 K, H = 2.0 T) [80]; (6)
Fe0.76Zn0.24F2 (Tc = 58.6 K, T = 20 K, H = 6.0 T) [80]. The data
sets have been shifted vertically for clarity. The solid line of slope
−4 corresponds to Porod scattering from smooth interfaces. It can
be clearly seen that the data sets are less steep than the Porod law,
signifying fractal interfaces.

We do not expect to detect the small variations in the
slopes in the paramagnetic and ferromagnetic phases observed
in simulations. They are hard to discern as the accuracy
of the scattering data is limited by the resolution function
of the detector. Nevertheless, all data sets clearly reveal a
non-Porod tail, indicating that the interfaces separating phases
in DAFFs are fractal. Although the experimental realizations
of the RFIM appear to have varied lattice forms, corresponding
small-angle scattering data has not been recorded. We are
therefore unable to interpret the corresponding morphological
information in these systems.

IV. SUMMARY AND DISCUSSION

We conclude this paper with a summary of our results. The
RFIM is representative of many physical systems with disor-
der. Such systems possess a complex free-energy landscape
with many local minima, which impede the approach to the
ground state. They exhibit slow relaxation and a multitude
of relaxation times, which are influenced by the underlying
lattice structure. In this paper, we have obtained the exact
GS of the RFIM on three isometric lattices: SC, BCC, and
FCC. Our aim was to understand the role played by the
distinct environments created by the position and the number
of nn on GS morphologies. We have characterized them
using correlation functions C(r) and structure factors S(k),
which contain information averaged over all domains and
interfaces. Therefore, our numerical results have a high degree
of precision. The main results of our paper are as follows.

(a) The critical disorder strengths for the isometric lattices
are (i) �c = 2.278 ± 0.002 for SC, (ii) �c = 3.316 ± 0.002
for BCC, and (ii) �c = 5.160 ± 0.002 for FCC. We believe
these to be the most accurate estimates in the literature so far.
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(b) In the paramagnetic phase, the correlation length
ξ (�) ∼ (� − �c)−ν as � → �+

c with ν = 1.28 ± 0.01, ir-
respective of the lattice structure.

(c) Interfaces separating domains of up and down spins
are fractal in nature. They are characterized by a fractal
dimension df = d − α, where α is the roughness exponent.
In the ferromagnetic phase, α = 0.68 ± 0.01 for the SC lattice
with small variations for the BCC and FCC lattices. In the
paramagnetic phase, α = 0.5 ± 0.01 for all three lattice types.

(d) We compute the interfacial energy Ei(L), which is
closely related to the energy barriers for interface motion.
These interfacial energies are vastly different for the three
lattice structures, although the variation in the roughness
exponent is small.

(e) We identify the signature of fractal interfaces in
several experimental realizations of the RFIM by analyz-
ing the structure factor obtained from neutron scattering
experiments.

The Lai, Mazenko, and Valls formulation emphasizes the
role played by α on growth and relaxation in complex systems.
Because of the power-law dependence in the RFIM, significant
variations in relaxation time scales are introduced by a small
change in α. The latter, as we have observed, critically depends
on the lattice structure and the strength of disorder. This impor-
tant issue has been overlooked in RFIM studies, and our work
is one of the first to address it. We hope that the methodologies
used and results obtained in this work may be beneficial from
both theoretical and experimental points of view.
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