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The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2D directed percolative
landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various
types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in
the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that
these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These
geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of
corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite
cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to
support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many
other transitions with nonlocal order parameters.
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I. INTRODUCTION

The cornerstones of modern civilization are various types
of networks: telecommunications, electric power supply, In-
ternet, and warehouse logistics, to name a few. Their proper
functioning is of great importance and many studies have been
devoted to their robustness against various kinds of damage
[1,2]. Yet there are other aspects of the network quality—their
abilities for restoration, repairing, renovation, and upgrades.
To assess these abilities, we should know the details of the
network structure which are responsible for these features.
Also these details should be implemented in the construction
of new networks. A useful property of a network can be the
existence in it of some connected subset spreading through
the whole network. We will call this subset the percolative
backbone.

For example, a conceivable way to modernize the trans-
portation or communication networks could be by placing
more powerful transmitters on the backbone nodes and
discarding the obsolete ones on the rest of the nodes. Also,
in the process of damaged network restoration one can link
the remnant backbone nodes to quickly restore the supply
on a large territory. In the case when the network is a planar
percolation cluster on a lattice, the percolative backbone can be
comprised of the cluster nodes belonging to a certain sublattice.
Another conceivable method of the network upgrade is to
merge groups of several nearby nodes into a single hub.
These hubs can comprise the backbone made out of the
“coarse-grained” original network. Percolative properties of
clustered and coarse-grained networks have been intensively
studied in the recent literature [2–5].

In this paper we define the percolative backbone as a subset
of the original percolation cluster made out of its nodes or hubs,
such that the subset itself forms a percolative cluster. The per-
colation in the backbone is defined with respect to the bonds be-
tween, e.g., nearest or next-nearest, etc., neighbors of the back-
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bone cluster. In general, these new bonds do not correspond
to their counterparts in the original network. This quite formal
definition becomes more transparent after we apply it to several
models analyzed in the subsequent sections of the paper.

The majority of the real networks emerge as a result of
some stochastic process spreading in space according to its
landscape, population, resources distribution, etc. Whether the
networks are renewable or reparable in the sense discussed
above is not known a priori and can be addressed by studying
putative percolative backbones defined in those networks. For
the model networks these properties can be established via
analysis of the Monte Carlo (MC) simulations of the kinetic
processes. In this paper we use the MC technique to explore
the 2D (space-time) percolation patterns (networks) emerging
in the directed percolation (DP), contact process (CP) [6,7],
and the replication process introduced in Ref. [8]. We show
that under variations of control parameters the percolation
patterns of these processes undergo a series of geometrical
phase transitions signaling emergence of various percolative
backbones. We present arguments that such cascades are a
generic feature of percolation as well as of other transitions
with nonlocal order parameters.

The paper is organized as follows: In Sec. II the MC
simulations of the directed percolation are presented. The
results reveal a set of the backbone transitions in the directed
percolation clusters. There we give the formal analytic def-
inition of the backbone order parameter and the recurrence
scheme of its calculation from the MC data. In Secs. III
and IV the analogous results for the lattice version of the
contact process and for the replication process defined in
Ref. [8] are presented. In Sec. V we discuss the generalization
of the present results for other types of percolation models.
Finally, Sec. VI is devoted to conclusions and discussion of
the relation between the geometrical transitions we found and
the transitions in other models with nonlocal order parameters.

II. DIRECTED PERCOLATION

The directed percolation on a 2D (space-time) lattice shown
in Fig. 1 can be considered as a kinetic process. Setting the
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FIG. 1. Examples of coarse-grained lattices (backbones) for the BDP process. The original tilted square lattice for the BDP process with
spacing a = √

2 is shown by solid lines on both panels. (a) The tilted square sublattice with the spacing 2a and the sites denoted by red (grey)
circles. Those circles also indicate the leftmost nodes of plaquettes [magenta (light-grey) squares] discussed in the text. (b) Division of the
original lattice into four-site cells (dashed lines) and into two-site cells (dashed and dot-dashed lines). Colored arrows show the bonds for
percolation on resulting coarse-grained lattices.

steps in the temporal or spatial directions equal to unity, the
spacing of the DP lattice in Fig. 1 is a = √

2. Each site can
be in one of two states—wet or dry (filled-empty, infected-
healthy, etc., in other contexts). In the DP variant called “bond
DP” (BDP) at each time step the percolative bonds are placed
randomly with probability p between nearest-neighbor sites
in the columns t and t + 1. If such bond connects a wet site
at column t with its neighbor at column t + 1 then the last
also becomes wet; otherwise it stays dry. There can be two
outcomes of this time evolution starting from some initial
configuration of wet sites at t = 0—either the wet sites become
extinct or they persist for infinite times. The first scenario
takes place for p < pBDP ≈ 0.6447 and it corresponds to the
absorbing phase, while the infinite proliferation of wet sites
appears for p > pBDP resulting in the active or percolating
phase [6,7].

The main tool for the studies of the DP-type kinetic
processes is the Monte Carlo simulations. They numerically
mimic stochastic evolution based on the model’s transfer
probabilities defined as the probability of possible configu-
rations at time t + 1 given the configuration at time t . We
denote it as P (ni,t+1|ni−1,t ,ni+1,t ). Here all sites are endowed
with occupation numbers (a.k.a. lattice gas parameters) ni, t =
0, 1, where 1 corresponds to wet (filled) sites and 0 is
ascribed to dry (empty) ones. For the BDP the transfer
probabilities are

P (1|0,1) = P (1|1,0) = p, P (1|1,1) = p(2 − p),

P (1|0,0) = 0, P (0|a,b) = 1 − P (1|a,b).

Note that the probability of the site to become wet when
it has two wet ancestors is the probability to have at least
one bond attached to the site, i.e., 1 − (1 − p)2 = p(2 − p).
In this work we implement the Monte Carlo simulations with
parallel update, in which the configurations of all sites are
updated simultaneously in one time step. This very simple
numerical procedure results in raw data whence various (BDP)

percolating patterns (networks of wet sites with ni, t = 1)
can be revealed. Note that the ordinary absorbing-active
transition can be formally described with the local order
parameter ρ(t) = 〈∑i ni,t 〉/N = 〈ni,t 〉 such that ρ(∞) = 0 for
p < pBDP and ρ(∞) > 0 for p > pBDP. In spite of the local
form of ρ(t) it also describes the nonlocal ordering in active
phase giving simultaneously the probability of the existence of
connected path of active sites in the [0,t] time interval. This is
the consequence of the fact that every filled site has at least one
ancestor in the preceding time step as it follows from transfer
probabilities of the model.

For every trial with p > pBDP we get chaotic-looking
percolative patterns which appear to have only two features
in common: Wet sites always spread to infinite time and the
number of wet sites at large times is approximately the same at
all trials for a given value of p. In other respects these patterns
are seemingly disordered and devoid of any structure for all
p > pBDP. Yet, motivated by the problems of repairing and
modernizing of percolative networks, one can ask if appearing
percolative patterns possess inner coarse-grained structures
over which some sort of percolation is still possible and at
what p > pBDP they exist.

However, it is well known for transitions with local
order parameters that various possible coarse graining imple-
mented in the sense of the Kadanoff-Wilson renormalization
group cannot yield new critical points. In other words, the
coarse-grained versions of the local order parameter should
appear simultaneously with the original one. Yet it is not
quite evident that the same is true for nonlocal ordering.
Implementing various coarse-grained backbone schemes for
nonlocal order parameters, we can find if they appear si-
multaneously with the local order ρ(∞) at p = pBDP or
if this takes place at some larger p. The surprising result,
which we intend to prove in the following, is that some
backbone schemes engendered cascades of phase transitions
at p > pBDP. This means that the percolation patterns in
the BDP model possess actually many types of the intrinsic
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FIG. 2. BDP on the 2a sublattice. (a) MC simulations of relaxation of the BDP sublattice percolation capacity P(t) for series of p

near pc ≈ 0.6635, from top to bottom:p = 0.6665, 0.665, 0.664, 0.6635, 0.663, 0.662, 0.661. The dashed line corresponds to the power
law 0.8/tα , with α = 0.16. (b) Collapse of the curves from (a) onto a single scaling function. Fitting gives the values of ν|| ≈ 1.731 and
pc = 0.6635.

geometrical structures that emerge subsequently with variation
of p.

To reveal various percolative backbones let us first check
whether the conventional percolative phase on the original
tilted square BDP lattice with spacing a (cf. Fig. 1) also
contains a percolative cluster of the wet sites on the sublattice
with spacing 2a shown in Fig. 1(a) with red circles. We
consider sets of the sublattice sites belonging to the original
pattern of directed percolation to determine whether there are
paths connecting the nearest neighbors in this set, such that
these paths traverse the whole sample in the time direction thus
forming the sublattice backbone of this particular percolation
pattern. For such paths one can easily calculate the number of
sites in the backbone at arbitrary t via a recursive numerical
procedure. First we need to find connected backbone sites
(CBS) at t = 2, i.e., those having nearest neighbors from the
set at t = 0; then we search for CBS at t = 4 having nearest
neighbors in CBS at t = 2, and so on. In doing so over many
trials we can obtain at every even time step t the average
number NCBS(t) of sites in the backbone connected by the
nearest-neighbor paths to t = 0.

Analytical representation of NCBS(t) is readily given as an
average of the order parameter operator

2NCBS(t)/N = 〈Pi,t 〉 ≡ P (t), Pi,t =
∑

σ

Oi,t (σ ), (1)

Oi,t (σ ) = n2i,2t

t−1∏
τ=1

n2(i+∑t−1
k=τ σk),2τ . (2)

Here all auxiliary parameters σ can admit two values σk =
±1 and the angular brackets denote the averaging with the
distribution function,

WBDP =
∏
i,t

P (ni,t+1|ni−1,t ,ni+1,t ) ≡ e−HBDP/Z,

HBDP =
∑
i,t

Hi,t ,

Hi,t =ni,t+1

[
ln

p

2 − p
ni+1,t ni−1,t +ln

1 − p

p
(ni+1,t +ni−1,t )

+ iψ(1 − ni+1,t )(1 − ni−1,t )

]
− 2 ln(1 − p)ni,t . (3)

Here the auxiliary variable of integration ψ is introduced
to enforce the model rule (0,0) → 0. For more details on this
formalism, see [8].

WBDP gives the probability of every configuration in the
BDP process for given initial values of ni,0. Each set of σ

defines the nearest-neighbors path on the sublattice connecting
the site with coordinates (2i,2t) to some sublattice site at t =
0. Operator Oi,t (σ ) is equal to 1 if the path belongs to the
percolation cluster of BDP process and zero otherwise. Thus
its average in Eq. (1) is the probability that site (2i,2t) belongs
to the sublattice backbone. For periodic boundary conditions
in the space direction the order parameter P(t) in Eq. (1) does
not depend on the site index 2i.

It follows from Eq. (2),

Oi,t+1(σ ) = n2i,2t+2[Oi−1,t (σ
′)δσt ,−1 + Oi+1,t (σ

′)δσt ,1],

(4)

where σ ′ is σ without σ t . Summing this equation over σ we
get

Pi,t+1 = n2i,2t+2(Pi−1,t + Pi+1,t ). (5)

Thus for any given configuration of ni,t , operator Pi,t

can be calculated iteratively starting from Pi,0 = n2i,0. This
procedure is implemented in our MC calculations while the
average 〈Pi,t 〉 = P (t) is obtained via the averaging over MC
trials. We used chains with N = 20 000 sites with T = 2000
time steps and averaged raw data over 200 trials. The cyclic
boundary conditions are imposed and the initial state is fully
occupied. The results are presented in Fig. 2. To determine
the approximate transition point we find first at which p

the P(t) relaxation curve in Fig. 2(a) is better described by
the power law c/tα shown as a dashed straight line in this
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TABLE I. Critical points of geometric phase transitions where different backbones appear. The parameter h designates the presence (h = 1)
or absence (h = 0) of horizontal bonds in the percolative backbone.

Subla�ces
2-site 
hubs 

Plaque�es 4-site hubs

Spacing pc f  h  pc f f h  pc

2a 0.663(5) 1 1 pBDP=0.6447 1 pBDP=0.6447 2 1 pBDP=0.6447 

4a 0.677(6) 1 0 0.646(7) 2 0.646(5) 2 0 0.646(4) 

2 1 0.656(2) 3 0.671(2) 3 1 0.657(4) 

2 0 0.696(3) 4 0.742(5) 3 0 0.682(7) 

4 1 0.710(2) 

4 0 0.759(5) 

figure. Thus we find the approximate α and pc such that
curves with p > pc tend upward in Fig. 2(a) indicating the
onset of long-range order P (∞) 
= 0. Then we use variational
procedure to collapse all P(t) curves in Fig. 2(a) into a
single scaling function tαP (t) = R[t |p − pc|ν‖] to find the
indices and more precise pc starting with previously found
α,pc, and trying various initial values of ν‖. The resulting
scaling function with pc = 0.6635, α = 0.16, and ν‖ = 1.73
is shown in Fig. 2(b). Thus we can conclude that the stable
BDP percolation patterns undergo the second order phase
transition at pc in which they acquire the infinite “sublattice
backbone.” The scaling indices that we found for this transition
are those of the DP universality class. This is just what can be
expected from the Janssen-Grassberger conjecture on kinetic
transitions in models with Ising-like variables and without
conservation laws [6]. However, the original conjecture was
made for absorbing-active phase transitions and our results
show that it can be expanded to the active-active transitions in
such models; see Secs. III and IV.

A similar analysis can be carried out for other types of
backbones. In particular, we can easily modify the previous
procedure to deal with the backbone formed by a sublattice
with spacing 4a and sites located at the points (4i,4t). We just
need to substitute 2 → 4 in the subscripts entering Eq. (2) to
obtain the string operator, and then, the order parameter (1) for
such a sublattice. To treat the backbones obtained by coarse
graining of the original lattice [cf. two-site and four-site cells
shown in Fig. 1(b)], we introduce the new occupation number
of the cells νj,τ = 0,1 as

νj,τ = ϑ

⎛
⎝ ∑

i,t∈cj,τ

ni,t − f

⎞
⎠, (6)

where ϑ is the Heaviside step function defined such that
ϑ(x � 0) = 1 and the summation runs over all sites in the
cell cj,τ .

This “renormalized” occupation number on the coarse-
grained lattice depends on the overall cell filling f , and
different choices of parameter f correspond to different types
of backbones. We can as well choose different bonds for the
cell percolation. For instance, as one can see from Fig. 1(b),
we can allow percolation from three ancestors (nearest and
next-nearest) or ban percolation from the nearest ancestor thus
eliminating the horizontal bond. So we obtain different types of
backbones. Note that in the case of percolation over a sublattice
or via plaquettes, only two nearest ancestors are present on the
renormalized lattice [cf. Fig. 1(a)] so the above comments do
not apply for the latter cases.

We ran simulations and scaling analyses explicitly for
several backbones appearing in the percolative patterns for
this model using N = 20 000, T = 2000. The results are
summarized in Table I. The appearance of a percolative
backbone at the specific critical value pc constitutes a genuine
second order phase transition with specific nonlocal order
parameter (capacity of corresponding backbone) similar to
the one defined by Eqs. (2) and (3). The critical indices we
obtained from the collapse of the appropriate scaling curves
for the critical points presented in Table I indicate that all
these geometric phase transitions belong to the DP universality
class. This can be expected for the transitions with scalar site
variables and without conservation laws [6,7].

Note that our schemes for the construction of backbones
resemble the first steps of the Kadanoff-Wilson renormaliza-
tion group approach devised for elimination of the short-range
fluctuations of local order parameter (the density of active
sites, ρ = 〈ni,t 〉|t→∞ in our case). Actually only some of
those order parameters are the coarse-grained versions of
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ρ with transitions at the same critical point pBDP; see the
values of pc for the plaquette, and two-site and four-site hubs
backbones with f = 1 and h = 1 in the first line of Table I.
This implies that the order parameters of those backbones are
not independent and the differences in their definitions amount
to the coarse graining (rescaling) of ρ in the sense of Kadanoff,
and thus do not result in shifts of the critical point.

The most remarkable feature of the model stemming from
the nonlocal nature of its ordering is that the other coarse-
grained definitions of (nonlocal) order parameters give the

percolation thresholds distinct from the critical value pBDP,
so we are dealing with a genuine cascade of phase transitions.
The distinct critical points are not finite-size artifacts: We have
explicitly checked by doing simulations in larger samples and
with longer times such that only the last digits of the values of
pc given in Table I are affected. For example, the simulations
of the chain with N = 60 000 sites and T = 6000 time steps
and with averaging over 200 trials yield for the 2a sublattice
backbone the critical value pc = 0.6632(2) instead of pc =
0.663(5) for the case N = 20 000 sites and T = 2000; cf.

(a) (b)

(c) (d)

(e) (f)

p=0.7

p=0.68

p=0.67 p=0.69

p=0.76

p=0.75

FIG. 3. BDP patterns. The fragments of steady patterns of BDP process [green (light gray) squares] with backbones [red (gray) squares]
and empty sites [blue (black) squares]. (a) p = 0.67, 2a sublattice backbone; (b) p = 0.68, 4a sublattice backbone; (c) p = 0.68, two-site cell
backbone with next-nearest bonds; (d) p = 0.76, four-site cell backbone with next-nearest bonds; (e) p = 0.68, plaquette backbone, f = 3,
red squares are centers of percolative plaquettes; (f) p = 0.75, plaquette backbone, f = 4.
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FIG. 4. Phase diagram of contact process. The bold black curve
(8) is the boundary of the absorbing-active phase transition. The
boundaries for appearance of backbones with h = 0 are also shown.
The sublattice backbone exists above dashed line, two-site hub
backbone above dotted line, and four-site hub backbone with f = 4
above dashed-dotted line.

Table I and Fig. 2. Therefore in larger samples transition points
differ insignificantly from those presented in Table I.

We should also note that the backbones with the two-site
and four-site hubs and f = 1, h = 0 appear simultaneously
(within our precision) with the f = 2 plaquette percolative
backbone at pc ≈ 0.646. For a more visual presentation of
our results, several percolative patterns obtained by direct MC
simulations along with corresponding schematic pictures of
their backbones are shown in Fig. 3.

It should be obvious at this point that one can construct
in this way many other percolative backbones by varying
sublattices, coarse-grained cells, and/or percolative bonds. We
conjecture that in the BDP model there is an infinite cascade
of geometric phase transitions where various percolative
backbones emerge.

III. CONTACT PROCESS

Now we address another popular and well-studied kinetic
model, namely, the contact process (CP). This model is
used, e.g., to describe spreading of plant infections or plant
population via dissemination of seeds [6,7]. The model has
two parameters p and q; p is the probability for an infected
site to stay infected while the probability of a healthy one
to become infected is proportional to q and to the number
of infected nearest neighbors. Similarly to the above analysis

of the DP model we consider here the 2D contact process
on a chain with discrete time steps and parallel update using
occupation numbers ni,t . For a change we assume now that
ni,t = 1 corresponds to an infected site. The CP model’s
transfer probabilities are

P (1|0,0,1) = P (1|1,0,0) = q/2, P (1|1,0,1) = q,

P (1|∗,1,∗) = p, P (1|0,0,0) = 0; (7)

P (0|a,b,c) = 1 − P (1|a,b,c).

The process undergoes absorbing-active phase transition of
DP class [6,7] at

pCP(q) ≈ 1 − aq − bq3, a = 0.3, b = 0.17, (8)

with the order parameter ρ(t) = 〈ni,t 〉 such that ρ(∞) = 0 at
p < pCP(q) and ρ(∞) 
= 0 at p > pCP(q). The critical line
(8) shown in Fig. 4 is our fit of the MC simulation data.
The CP patterns on the square time-space lattice represent 2D
percolative clusters in the temporal direction since all infected
(survived) sites have at least one ancestor at the preceding time
step similarly to the BDP process.

We perform MC simulations to reveal various backbones in
the percolative patterns. We consider sublattices with (2i,2t)
sites, two-site cells of (2i,t),(2i + 1,t) sites, and four-site
cells of (2i,2t),(2i + 1,2t),(2i,2t + 1),(2i + 1,2t + 1) sites.
We used the chains with N = 20 000 sites, T = 2000 time
steps and averaged over 200 trials. The cyclic boundary
conditions are imposed and the initial state is fully occupied.

Similarly to the previously analyzed BDP model, the
corresponding backbones also appear as a result of continuous
geometric phase transitions. The critical lines for some of those
transitions on the p-q plane are shown in Fig. 4. The critical
values of parameter p at the ends of these lines (q = 1) are
listed in Table II.

The CP distribution function and analytical expressions for
the order parameters of various backbones can be obtained
similarly to those of the BDP; cf. Eqs. (2)–(5). Direct MC
simulations of the temporal relaxation of backbone capacities
demonstrate the validity of scaling at all geometrical phase
transitions. The values of the critical indices α = 0.16 and
ν|| ≈ 1.735 imply that the transitions are of the DP universality
class; see Fig. 5. The percolative patterns of CP with different
backbones are shown in Fig. 6. Similarly to our previous
conjecture about the BDP model, we infer that the various
backbones we explicitly found and analyzed for the contact
process are in fact only a small set of the infinite cascade of

TABLE II. The transition points of contact process at q = 1 for several backbones.

Sublattice Two-site hubs, f = 2 Four-site hubs

h pc(q = 1) h pc(q = 1) f h pc(q = 1)

1 0.603(5) 1 0.732(7) 2 1 0.528(3) = pCP(1)
0 0.727(7) 0 0.840(3) 2 0 0.581(3)

3 1 0.636(5)
3 0 0.722(3)
4 1 0.856(4)
4 02 0.916(5)
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FIG. 5. (a) MC simulations of relaxation of the CP sublattice percolation capacity P(t) with h = 0 for q = 1 and series of p near pc ≈ 0.73;
from top to bottom: p = 0.735, 0.732, 0.73, 0.7277, 0.725, 0.723, 0.72. Dashed line corresponds to power law 0.75/tα , with α = 0.16.
(b) Collapse of the curves from (a) onto a single scaling function. Fitting gives the values of ν|| = 1.735 and pc = 0.7277.

geometric phase transitions associated with the emergence of
more and more percolative backbones.

IV. REPLICATION PROCESS

A variant of the kinetic replication process was introduced
in [8]. Its transfer probabilities depend on the two parameters
p and q. In the limiting cases p → 0 and p → 1 this process
becomes BDP or CP, respectively. It was shown in [8] that
besides standard absorbing-active transition there is another
phase transition between two active phases. The unusual
second active phase possesses a subtle percolative order.
The backbone of that percolation pattern is made out of
the active-dead nearest-neighbor spatial pairs unified in a
connected network. Due to the analogy of that short-range
spatial order to antiferromagnetic dipoles, we called it the
antiferromagnetic percolative phase. In view of the relation
of the model to the BDP and CP models, it is no surprise
that other geometrical transitions considered above are also
present in this case. In particular, our MC simulations revealed
geometrical phase transitions inside the conventional active
phase of the model associated with appearance of percolation
via sublattices and/or coarse-grained lattices made out of
various hubs. We will not give the technical details on these
phases of the replication model, since they hardly give us more
conceptual insights with respect to what has been presented so
far. The key point is that the active phase of the model is not
plain, and it also contains a cascade of geometric transitions
due to the emergence of various percolative backbones.

V. GENERALIZATIONS

We should note that many more percolative backbones
could be considered in addition to those we have analyzed
above. For instance, one can change the sum

∑
ni,t in Eq. (6)

into a linear combination of ni,t . This will define some intrinsic
order in the hubs, such as, e.g., the antiferromagnetic order in
the two-site hubs [8]. Generally, one can choose an arbitrary
polynomial of the occupation numbers of the sites belonging
to the hub as the argument of the Heaviside function in (6),
thus defining arbitrary patterns inside the hubs.

We conjecture that the multiple transitions we report here
are ubiquitous and can be found in other percolation models
[9–11]. For instance, one can easily show the existence
of cascades of transitions in the ordinary site-percolation
problem. Let us take, for example, a square lattice with the
probability p of each site to be filled, and coarse-grain it by
introducing square hubs with s nodes and the hub fillings
νs,f = ϑ(

∑
i∈hub ni − f ). The probability of νs,f = 1 can be

readily calculated as

P
(
νs,f = 1

) =
s∑

k=f

(
s

k

)
pk(1 − p)s−k.

Thus we obtain the coarse-grained square lattice built on
the hubs with the probability of a site to be filled, P (νs,f = 1).
For the critical points of the hub percolation ps,f we get the
equation

s∑
k=f

(
s

k

)
pk

s,f (1 − ps,f )s−k = pc,

where pc = 0.593 is the percolation threshold for a square
lattice. In particular, we obtain ps,s = p

1/s
c and ps,1 = 1 −

(1 − pc)1/s . Note that ps,s > pc while ps,1 < pc; the latter
case we can interpret as appearance of precursor percolation.

In a similar manner, one can show the appearance of inner
structures in many other percolation models [9–11]. Therefore,
the transitions in which various percolative backbones emerge
can be seen as a generic feature of percolation.

VI. DISCUSSION AND CONCLUSION

The main result we report in this paper is the (presumably)
infinite cascades of geometric phase transitions inside the
percolative phases of three kinetic models. Note that a cascade
of multiple transitions is something which we know can
happen in several systems. Multiple continuous and discon-
tinuous percolation phase transitions were reported recently in
several complex network models [2,12–16]. We should note
that multiple transitions found in the networks differ from the
transitions found in the present study, as the former are related
to the singularities of a single order parameter, while emerging
of the backbones is described by distinct order parameters.
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(a) (b)

(c) (d)

(e) (f)

p=0.61 p=0.74

p=0.64 p=0.76

p=0.86 p=0.92

FIG. 6. Percolative patterns of contact process. The fragments of steady patterns of contact process at q = 1 [green (light gray) squares]
with backbones [red (gray) squares] and empty sites [blue (black) squares]. (a) p = 0.61, 2a sublattice backbone; (b) p = 0.74, two-site cell
backbone with nearest and next-nearest bonds, f = 2; (c) p = 0.64, four-site cell backbone with nearest and next-nearest bonds, f = 3;
(d) p = 0.76, four-site cell backbone with next-nearest bonds, f = 3; (e) p = 0.86, four-site cell backbone with nearest and next-nearest
bonds, f = 4; (f) p = 0.92, four-site cell backbone with next-nearest bonds, f = 4.

The paradigmatic quantum Hall effect provides a well-
known example of a cascade of quantum phase transitions
[17,18]. The devil’s staircase of the thermal commensurate-
incommensurate transitions occurs in the three-dimensional
(3D) ANNNI model [19] or in its more complicated version
with the competitive in-plane interactions [20]. The experi-
mental observations of such staircase are reported for the latter
case [21].

The majority of the known multiple transitions have local
variables (or their Fourier transforms) as the order parameters
(OPs), which are easily identified. The percolation transitions

we studied belong to the other class having essentially nonlocal
OPs. The singularities related to these geometric transitions
have no effect on all (or almost all) local variables. This
explains why we found the cascades of transitions in the
models which have been studied for at least a few decades.
The previous studies were mainly concentrated on the local
OP for absorbing-active transition, i.e., the average site filling
and its correlation functions [6,7]. However, the study of such
nonlocal variable as the survival probability in the DP model
[22] revealed the signatures of multiple transitions. Numerical
data of the distribution of its complex zeros show that they form
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a multitude of curves the ends of which tend to the real axis
p with the growth of a sample. This indicates the appearance
of real singularities in the thermodynamic limit. The results
presented in [22] are insufficient to decide to which points
these curves tend exactly. However, it is quite possible that
some of these limiting points are the critical points of the
geometrical transitions considered here.

The situation when the system with a local transition has
also the nonlocal ones is not new. The notorious example is
the geometric site-percolation transition of the same-sign spins
in the configuration patterns of the Ising model [23,24] which
have no effect on the local thermodynamic variables. A similar
situation occurs for the Coniglio-Klein percolation order in the
Ising model [25] with clusters formed by the Fortuin-Kastelein
random bonds [26] on the aligned spin configurations. These
clusters are designed to have the bond-percolation transition
with the Ising singularities at h = 0 [25,24] but in addition they
manifest a percolation transition along the so-called Kertesz
line in h-T plane [27,24]. The latter has no manifestation
in the thermodynamic properties of the Ising model, which
has an analytical free energy at h 
= 0 [28]. However, the
Kertesz line manifests itself in the global properties of the Ising
model. According to the results [29,30] the series expansions
of the partition function of the Ising model demonstrate
different convergence radii on two sides of the Kertesz
line.

The system of the independent Ising spins in a magnetic
field gives a simple illustration of the percolation transition
completely decoupled from the local variables. When placed
on some lattice with a specific set of bonds between sites,
this system exhibits the site-percolation transition for the
clusters of, say, up spins, while its thermodynamic (i.e.,
local) properties are analytic in entire h-T plane. Indeed,
by introducing the occupation numbers nr = (1 + Sr )/2 the
featureless Gibbs distribution function of the spins can be
written as the site-percolation distribution function:

eβH
∑

r Sr

(2 cosh βH )N
= p

∑
r nr

+ (1 − p+)N−∑
r nr , p+ ≡ eβH

2 cosh βH
.

The distribution function on the right-hand side of the above
equation is the probability of a configuration where each site
is filled independently with the probability p+. It predicts a
divergent connected cluster of up spins (percolation) at p+ >

pc, where the critical value pc is determined by the type of the
lattice considered [9].

Some recent studies show that simple spin models with
analytic thermodynamic parameters can exhibit other types of
hidden nonlocal transitions. For example, the antiferromag-
netic Ising chain in a field undergoes the transition between
phases with different asymptotes of the string correlation
functions [31].

These examples show that local properties of the model
encoded in the partition function may not feel the presence

of nonlocal transition. However, in the case of the nontrivial
distribution function whether the nonlocal percolation tran-
sition decouples completely from the local variables is a
subtle question. In more complex systems with interaction the
percolative geometric transitions can manifest themselves via
crossovers of some local observables. For example, at small h

the Kertesz line coincides with the line where the maximum of
Ising magnetic susceptibility occurs [25]. Another example of
such crossover was found in [8] in the growth of the average
length of the “antiferromagnetic” clusters near the critical line
where the hidden nonlocal order parameter, similar to the one
given by Eq. (2), appears. Note that in the context of quantum
condensed matter physics there were recent studies relating
crossovers to specific critical points where nonlocal OPs
(quantized topological phases and/or topological numbers)
change. This was reported for the BEC-BCS crossover [32]
and for several models of quantum chains and ladders [33–35].
Hence, it is natural to suggest that some crossovers of local
variables are the indicators of nonlocal transitions.

Quantum phase transitions with nonlocal (hidden) topo-
logical orders can be characterized in terms of string OPs
introduced first by den Nijs and Rommelse [36]. Such
order parameters are found in many low-dimensional and/or
frustrated systems, topological insulators and superconductors
exhibiting various exotic quantum liquid states and transitions
between them [17,18]. In view of certain similarity between the
quantum string OPs and those defined for the DP (2) we expect
that cascades of topological transitions can be also found in
many quantum systems using approaches similar to those we
have employed.

In some cases it is possible to translate the hidden order into
the local Landau framework, like, e.g., for the Kitaev model
via transformations from spins to Majorana fermions and then
to new dual spins which can manifest conventional long-range
order [37]. However, there is no general recipe for how to do
it. The present results show that the local Landau paradigm is
implicitly preserved, since the scaling form of singularities (of
DP universality class) implies strongly the existence of map-
pings of nonlocal theory exemplified by Eqs. (1)–(3) onto local
Landau-Ginzburg actions near corresponding transition points.
However, now it is not clear how these mappings can be actu-
ally realized. This is an important direction for future work.

ACKNOWLEDGMENTS

We thank M. Herman for careful reading of the manuscript
and helpful comments. We acknowledge support from the
Laurentian University Research Fund (LURF) (G.Y.C.) and
from the Southern Federal University, Grant No. 213.01-
2014/011-B� (P.N.T.). The Shared Hierarchical Academic
Research Computing Network (SHARCNET) and Com-
pute/Calcul Canada generously provided facilities for carrying
out numerical calculations.

[1] S. Bocaletti, V. Latora, Y. Moreno, M. Chavez, and D-U. Hwang,
Phys. Rep. 424, 175 (2006).

[2] M. E. J. Newman, Networks: An Introduction (Oxford University
Press, Oxford, 2010).

[3] S. Havlin, H. E. Stanley, A. Bashan, J. Gao, and D. Y. Kenett,
Chaos, Soliton Fractals 72, 4 (2015).

[4] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, Nat. Phys.
8, 40 (2012).

012102-9

http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.chaos.2014.09.006
http://dx.doi.org/10.1016/j.chaos.2014.09.006
http://dx.doi.org/10.1016/j.chaos.2014.09.006
http://dx.doi.org/10.1016/j.chaos.2014.09.006
http://dx.doi.org/10.1038/nphys2180
http://dx.doi.org/10.1038/nphys2180
http://dx.doi.org/10.1038/nphys2180
http://dx.doi.org/10.1038/nphys2180


P. N. TIMONIN AND GENNADY Y. CHITOV PHYSICAL REVIEW E 93, 012102 (2016)

[5] J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Phys. Rev.
E 85, 066134 (2012).

[6] H. Hinrichsen, Physica A 369, 1 (2006).
[7] H. Hinrichsen, Adv. Phys. 49, 815 (2000).
[8] P. N. Timonin and G. Y. Chitov, J. Phys. A: Math. Theor. 48,

135003 (2015).
[9] D. Stauffer and A. Aharony, Introduction to Percolation Theory,

2nd rev. ed. (Taylor & Francis, London, 2003).
[10] N. A. M. Araujo, P. Grassberger, B. Kahng, K. J. Schrenk, and

R. M. Ziff, Eur. Phys. J.: Spec. Top. 223, 2307 (2014).
[11] A. A. Saberi, Phys. Rep. 578, 1 (2015).
[12] P. Colomer-de-Simon and M. Boguna, Phys. Rev. X 4, 041020

(2014).
[13] G. Bianconi and S. N. Dorogovtsev, Phys. Rev. E 89, 062814

(2014).
[14] W. Chen, X. Cheng, Z. Zheng, N. N. Chung, R. M. D’Souza,

and J. Nagler, Phys. Rev. E 88, 042152 (2013).
[15] W. Chen, J. Nagler, X. Cheng, X. Jin, H. Shen, Z. Zheng, and

R. M. D’Souza, Phys. Rev. E 87, 052130 (2013).
[16] J. Nagler, T. Tiessen, and H. W. Gutch, Phys. Rev. X 2, 031009

(2012).
[17] X-G. Wen, Quantum Field Theory of Many-Body Systems

(Oxford University Press, New York, 2004).
[18] E. Fradkin, Field Theories of Condensed Matter Physics, 2nd

ed. (Cambridge University Press, New York, 2013).
[19] W. Selke, Phys. Rep. 170, 213 (1988).
[20] G. Y. Chitov and C. Gros, J. Phys.: Condens. Matter 16, L415

(2004).

[21] K. Ohwada, Y. Fujii, N. Takesue, M. Isobe, Y. Ueda, H. Nakao,
Y. Wakabayashi, Y. Murakami, K. Ito, Y. Amemiya, H. Fujihisa,
K. Aoki, T. Shobu, Y. Noda, and N. Ikeda, Phys. Rev. Lett. 87,
086402 (2001).

[22] S. M. Dammer, S. R. Dahmen, and H. Hinrichsen, J. Phys. A:
Math. Gen. 35, 4527 (2002).

[23] A. Coniglio, C. R. Nappi, F. Peruggi, and L. Russo, J. Phys. A:
Math. Gen. 10, 205 (1977).

[24] G. Delfino, Nucl. Phys. B 818, 196 (2009).
[25] A. Coniglio and W. Klein, J. Phys. A: Math. Gen. 13, 2775

(1980).
[26] C. M. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972).
[27] J. Kertesz, Physica A 161, 58 (1989).
[28] T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).
[29] J. Adler and D. Stauffer, Physica A 175, 222 (1991).
[30] W. Janke, D. A. Johnston, and M. Stathakopoulos, J. Phys. A:

Math. Gen. 35, 7575 (2002).
[31] D. A. Ivanov and A. G. Abanov, Phys. Rev. E 87, 022114 (2013).
[32] M. Arikawa, I. Maruyama, and Y. Hatsugai, Phys. Rev. B 82,

073105 (2010).
[33] I. Maruyama, T. Hirano, and Y. Hatsugai, Phys. Rev. B 79,

115107 (2009).
[34] N. Chepiga, F. Michaud, and F. Mila, Phys. Rev. B 88, 184418

(2013).
[35] M. Ezawa, Y. Tanaka, and N. Nagaosa, Sci. Rep. 3, 2790 (2013).
[36] M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989).
[37] X-Y. Feng, G-M. Zhang, and T. Xiang, Phys. Rev. Lett. 98,

087204 (2007).

012102-10

http://dx.doi.org/10.1103/PhysRevE.85.066134
http://dx.doi.org/10.1103/PhysRevE.85.066134
http://dx.doi.org/10.1103/PhysRevE.85.066134
http://dx.doi.org/10.1103/PhysRevE.85.066134
http://dx.doi.org/10.1016/j.physa.2006.04.007
http://dx.doi.org/10.1016/j.physa.2006.04.007
http://dx.doi.org/10.1016/j.physa.2006.04.007
http://dx.doi.org/10.1016/j.physa.2006.04.007
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1088/1751-8113/48/13/135003
http://dx.doi.org/10.1088/1751-8113/48/13/135003
http://dx.doi.org/10.1088/1751-8113/48/13/135003
http://dx.doi.org/10.1088/1751-8113/48/13/135003
http://dx.doi.org/10.1140/epjst/e2014-02266-y
http://dx.doi.org/10.1140/epjst/e2014-02266-y
http://dx.doi.org/10.1140/epjst/e2014-02266-y
http://dx.doi.org/10.1140/epjst/e2014-02266-y
http://dx.doi.org/10.1016/j.physrep.2015.03.003
http://dx.doi.org/10.1016/j.physrep.2015.03.003
http://dx.doi.org/10.1016/j.physrep.2015.03.003
http://dx.doi.org/10.1016/j.physrep.2015.03.003
http://dx.doi.org/10.1103/PhysRevX.4.041020
http://dx.doi.org/10.1103/PhysRevX.4.041020
http://dx.doi.org/10.1103/PhysRevX.4.041020
http://dx.doi.org/10.1103/PhysRevX.4.041020
http://dx.doi.org/10.1103/PhysRevE.89.062814
http://dx.doi.org/10.1103/PhysRevE.89.062814
http://dx.doi.org/10.1103/PhysRevE.89.062814
http://dx.doi.org/10.1103/PhysRevE.89.062814
http://dx.doi.org/10.1103/PhysRevE.88.042152
http://dx.doi.org/10.1103/PhysRevE.88.042152
http://dx.doi.org/10.1103/PhysRevE.88.042152
http://dx.doi.org/10.1103/PhysRevE.88.042152
http://dx.doi.org/10.1103/PhysRevE.87.052130
http://dx.doi.org/10.1103/PhysRevE.87.052130
http://dx.doi.org/10.1103/PhysRevE.87.052130
http://dx.doi.org/10.1103/PhysRevE.87.052130
http://dx.doi.org/10.1103/PhysRevX.2.031009
http://dx.doi.org/10.1103/PhysRevX.2.031009
http://dx.doi.org/10.1103/PhysRevX.2.031009
http://dx.doi.org/10.1103/PhysRevX.2.031009
http://dx.doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1088/0953-8984/16/37/L01
http://dx.doi.org/10.1088/0953-8984/16/37/L01
http://dx.doi.org/10.1088/0953-8984/16/37/L01
http://dx.doi.org/10.1088/0953-8984/16/37/L01
http://dx.doi.org/10.1103/PhysRevLett.87.086402
http://dx.doi.org/10.1103/PhysRevLett.87.086402
http://dx.doi.org/10.1103/PhysRevLett.87.086402
http://dx.doi.org/10.1103/PhysRevLett.87.086402
http://dx.doi.org/10.1088/0305-4470/35/21/303
http://dx.doi.org/10.1088/0305-4470/35/21/303
http://dx.doi.org/10.1088/0305-4470/35/21/303
http://dx.doi.org/10.1088/0305-4470/35/21/303
http://dx.doi.org/10.1088/0305-4470/10/2/010
http://dx.doi.org/10.1088/0305-4470/10/2/010
http://dx.doi.org/10.1088/0305-4470/10/2/010
http://dx.doi.org/10.1088/0305-4470/10/2/010
http://dx.doi.org/10.1016/j.nuclphysb.2009.04.002
http://dx.doi.org/10.1016/j.nuclphysb.2009.04.002
http://dx.doi.org/10.1016/j.nuclphysb.2009.04.002
http://dx.doi.org/10.1016/j.nuclphysb.2009.04.002
http://dx.doi.org/10.1088/0305-4470/13/8/025
http://dx.doi.org/10.1088/0305-4470/13/8/025
http://dx.doi.org/10.1088/0305-4470/13/8/025
http://dx.doi.org/10.1088/0305-4470/13/8/025
http://dx.doi.org/10.1016/0031-8914(72)90045-6
http://dx.doi.org/10.1016/0031-8914(72)90045-6
http://dx.doi.org/10.1016/0031-8914(72)90045-6
http://dx.doi.org/10.1016/0031-8914(72)90045-6
http://dx.doi.org/10.1016/0378-4371(89)90390-7
http://dx.doi.org/10.1016/0378-4371(89)90390-7
http://dx.doi.org/10.1016/0378-4371(89)90390-7
http://dx.doi.org/10.1016/0378-4371(89)90390-7
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1016/0378-4371(91)90400-7
http://dx.doi.org/10.1016/0378-4371(91)90400-7
http://dx.doi.org/10.1016/0378-4371(91)90400-7
http://dx.doi.org/10.1016/0378-4371(91)90400-7
http://dx.doi.org/10.1088/0305-4470/35/35/302
http://dx.doi.org/10.1088/0305-4470/35/35/302
http://dx.doi.org/10.1088/0305-4470/35/35/302
http://dx.doi.org/10.1088/0305-4470/35/35/302
http://dx.doi.org/10.1103/PhysRevE.87.022114
http://dx.doi.org/10.1103/PhysRevE.87.022114
http://dx.doi.org/10.1103/PhysRevE.87.022114
http://dx.doi.org/10.1103/PhysRevE.87.022114
http://dx.doi.org/10.1103/PhysRevB.82.073105
http://dx.doi.org/10.1103/PhysRevB.82.073105
http://dx.doi.org/10.1103/PhysRevB.82.073105
http://dx.doi.org/10.1103/PhysRevB.82.073105
http://dx.doi.org/10.1103/PhysRevB.79.115107
http://dx.doi.org/10.1103/PhysRevB.79.115107
http://dx.doi.org/10.1103/PhysRevB.79.115107
http://dx.doi.org/10.1103/PhysRevB.79.115107
http://dx.doi.org/10.1103/PhysRevB.88.184418
http://dx.doi.org/10.1103/PhysRevB.88.184418
http://dx.doi.org/10.1103/PhysRevB.88.184418
http://dx.doi.org/10.1103/PhysRevB.88.184418
http://dx.doi.org/10.1038/srep02790
http://dx.doi.org/10.1038/srep02790
http://dx.doi.org/10.1038/srep02790
http://dx.doi.org/10.1038/srep02790
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1103/PhysRevLett.98.087204



