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From measurements to inferences of physical quantities in numerical simulations
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We propose a change of style for numerical estimations of physical quantities from measurements to inferences.
We estimate the most probable quantities for all the parameter region simultaneously by using the raw data
cooperatively. Estimations with higher precisions are made possible. We can obtain a physical quantity as a
continuous function, which is processed to obtain another quantity. We applied the method to the Heisenberg
spin-glass model in three dimensions. A dynamic correlation-length scaling analysis suggests that the spin-glass
and the chiral-glass transitions occur at the same temperature with a common exponent ν. The value is consistent
with the experimental results. We explained a spin-chirality separation problem by a size-crossover effect.
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Introduction. Estimations of physical quantities in numer-
ical simulations are based on equilibrium statistical physics
[1]. We virtualize a model system in a computer and perform
independent measurements on the system using a definition of
a physical quantity. When an evaluation process is complex,
both systematic and statistical errors are accumulated in the
obtained data. We sometimes encounter numerical instabili-
ties. Then, further analyses become difficult. In what follows,
we explain the situation using a correlation-length estimation.

An estimation formula for a correlation length, ξ , is given
by the second-moment method: ξ = √

χ0/χk − 1/k [2]. Here,
χ0 denotes the susceptibility and χk its Fourier transform with
k as the lowest wave number of the system. This expression
itself is problematic. Both the numerator and the denominator
of this expression approach zero as the system size increases
(k → 0), where this formula becomes exact. We encounter
the numerical instability caused by the expression 0/0. In
order to avoid this problem, Belletti et al. [3] proposed the
reduction of this instability by estimating ξ by I2/I1 with
the integrals Ik = ∫

0 dr rkf (r) [r denotes distance and f (r)
the correlation functions]. Suwa and Todo [4] proposed a
generalized moment method for gap (� ∼ 1/ξ ) estimation in
quantum systems. Systematic errors and ambiguity caused by
small-size data are eliminated.

Recently, big-data handling has become possible due to
a rapid increase in computational power. One estimates
unknown quantities, checks modeling assumptions, and makes
a prediction for future events out of observed data. This proce-
dure is called an inference in statistics. Probabilistic numerics
[5] have been developed in order to improve performance of the
inference. Since we follow the same procedure in numerical
studies of statistical physics, applications of probabilistic
numerics are considered promising. Therefore, the topic of
Bayesian inference has been attracting considerable interest
[6,7]. In this context, Harada [8] introduced Bayesian inference
into a parameter estimation of the finite-size scaling analysis.

In this Rapid Communication, we extend its application
to estimations of physical quantities. The correlation length
is estimated directly from the correlation-function data with a
much-improved accuracy. We can obtain a continuous function
for an energy out of the discrete raw data. It is analytically
differentiated to obtain the specific-heat function. Since raw
data are cooperatively utilized in this inference procedure, we
can reduce numerical errors and avoid numerical instabilities.

We also explain in this Rapid Communication contradictory
arguments on a spin-glass transition by a size-crossover effect.
Hukushima and Campbell [9] reported in the Ising spin-glass
model that there exists a crossover size, L ∼ 24, where the
finite-size effect of the correlation-length ratio, ξ/L, changes
its trend from increasing to decreasing. In the ±J Heisenberg
spin-glass model [10], the chiral-glass susceptibility of sizes
smaller than L = 39 increases with the system size but that of
larger sizes decreases. A similar size-crossover effect was also
observed in a random quantum spin chain [11,12]. Short-range
spin correlations suggest that the energy gap is finite, whereas
the long-range ones exhibit behaviors that the energy gap is
zero. The size-crossover effect may influence a final physical
conclusion.

Method. Let us first explain a method in a tutorial model.
We performed equilibrium simulations in a two-dimensional
Ising ferromagnetic model, and obtained an energy, Ei , and a
magnetization, Mi , at each temperature, Ti , where i is the data
index. The linear system size is 999, and it is set to 1999 in the
vicinity of a transition temperature. These data are depicted in
Fig. 1 by circle symbols. Now, our purpose is to obtain E(T )
and M(T ) as continuous functions. We apply the Gaussian
kernel regression [8,13] using three variables, xi , yi , and εi ,
defined as

xi = ln |Ti − Tc|,
yi = ln(−Ei) (yi = ln |Mi | for M),

εi = (δEi/Ei)
2 [εi = (δMi/Mi)

2 for M].

Here, δEi and δMi denote errors for Ei and Mi , and Tc

denotes a critical temperature that is to be estimated in the
following analysis. We defined a Gaussian kernel function as

K(xi,xj ) = θ2
0 exp[− (xi−xj )2

2θ2
1

] + θ2
2 , where θ0, θ1, and θ2 are

hyperparameters. A generalized covariance matrix is 	ij =
εiδij + K(xi,xj ). Then, the following log-likelihood function
is to be maximized: lnL = − 1

2 ln |2π	| − 1
2yi	

−1
ij yj . This

function is defined independently for both Ti > Tc and Ti <

Tc, and we take a summation of them. The hyperparameters,
{θ0,θ1,θ2}, are also defined independently for two regions. We
obtained seven parameters, one Tc and two sets of {θ0,θ1,θ2},
that maximize lnL by the downhill simplex method [14]. We
tried this search for 400 times by changing the initial values
of the parameters. We estimated averages and error bars for
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FIG. 1. Temperature dependencies of energy(E), magnetization
(M), the specific heat (C), and the effective critical exponent βeff

in the two-dimensional Ising ferromagnetic model. Error bars are
smaller than the symbols and line widths.

parameters over them. The critical temperature is obtained as
a parameter that separates the data into two regions, where the
data are fitted most smoothly. It was Tc = 2.269 14(4) for the
E inference and Tc = 2.269 19(4) for the M inference. They
agree with the exact value: Tc = 2.269 185 3 . . . . Using the
obtained parameter set, we write an inference function for E

as

E(T ) = − exp
[
K(x,xi)	

−1
ij yj

]
, x = ln |T − Tc|, (1)

where the summations over i and j are taken. We can
differentiate this function analytically, and we obtain the
specific heat, C(T ) = dE

dx
dx
dT

, as a continuous function. The
inference results for E(T ) and C(T ) are depicted by lines in
Fig. 1. We confirmed that the C(T ) function is consistent with
the exact results. We obtained a function for M in the same
manner. Since M ∼ (Tc − T )β , the effective β is given by
βeff = dy

dx
with y = ln |M(T )|. A critical exponent β = 1/8 is

a value at T = Tc. A critical region, where βeff approximately
equals to 1/8, was very narrow in this figure.

The nonequilibrium relaxation method [15–18] was pro-
posed to treat large systems in a simple and easy manner.
This approach has been applied successfully in random sys-
tems [10–12,18–21]. The dynamic correlation-length scaling
method [22] was proposed as a variation of this method. We
use this method together with the inference method to clarify
the spin-chirality problem in the Heisenberg spin-glass model
in three dimensions.

Model. A spin glass is a disordered magnet characterized by
frustration and randomness [23,24]. One of the most important
and unsolved problems in spin-glass studies is the coupling
or separation of the spin-glass (SG) degrees of freedom and
chiral-glass (CG) degrees of freedom [19,25–42]. Kawamura
[26,27] introduced the chirality scenario, wherein the CG order
exists without the SG order. There is another scenario, in
which the SG and CG transitions occur simultaneously. In
2009, two studies [39–41] on this topic drew two opposite
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FIG. 2. Correlation function data for selected time steps for L =
39 (circles) and L = 159 (lines). Arrows depict crossover distances
between short-range correlations and long-range correlations (rc = 9
for SG and rc = 3 for CG). Inset: Scaled correlation functions for
data with T = 0.200,L = 159 depicted with the same line color.

conclusions even though the authors in each case performed
similar amounts of simulations, but treated the finite-size
effects differently. The present situation suggests that we need
considerably larger system sizes to address this problem.

Our model Hamiltonian is H = −∑
〈i,j〉 JijSiSj . The

summation runs over all the nearest-neighbor spin pairs.
The interactions Jij take on two values, ±J , with the same
probability. The temperature T is scaled by J . The model
is defined on a simple cubic lattice of the form N = L ×
L × (L + 1) with L = 159. The skewed periodic boundary
conditions were applied. We calculated the SG and CG
susceptibility, χSG and χCG; SG and CG correlation functions,
fSG and fCG; and SG and CG correlation length, ξSG and
ξCG. One Monte Carlo (MC) step consists of one heat-bath
update, 1/20 Metropolis updates (once every 20 steps), and 124
over-relaxation updates. All the random bond configurations
are different at each temperature. A typical sample number at
one temperature is 20. More samples are treated near and above
the transition temperature. In the study, we ran simulations at
42 sets of temperatures, and the total sample numbers were
1168. We evaluated the order parameters using 435 overlaps
among 30 real replicas. At some lower temperatures, we
evaluated them using 1128 overlaps among 48 real replicas
and checked for consistency regarding the replica number.
In the nonequilibrium relaxation study on the spin glasses,
the thermal average is replaced by the replica average [22].
The replica number needs to be larger than the value in the
equilibrium simulations. Numerical error bars were estimated
in regard to the sample average.

Results. We prepared the relaxation data of correlation
functions, f (r,t) [t denotes the measuring time step], obtained
in the conventional measurement scheme. Figure 2 shows the
SG and CG correlation functions for typical time steps in the
range from t = 316 to 79 433. The temperature, T = 0.200, is
close to the transition temperature. We also plot the small-L
(L = 39) data at T = 0.210 as shown by circles. The inverse
of the slope of the curve in this figure corresponds to the
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FIG. 3. The correlation length data estimated by the inference and
that by the measurements (the second-moment method). Error bars
for the inference data are smaller than linewidths. Inset: Temperature
dependencies of the effective exponent ηeff . The critical exponent η

obtained by the scaling analysis is also plotted.

correlation length. Here, we found the crossover distance, rc,
dividing the short-range correlation region and the long-range
correlation region. Short-range correlations do not depend
on t , T , and L. Meaningful information is not included in
this region. The growth of the correlation length is only
reflected in the long-range correlations. The SG crossover
distance (rc � 9) is roughly three times greater than the CG
one (rc � 3). The effects of the periodic boundary conditions
appear as the distance approaches L/2. We use only the data
in the distance range of 2rc < r < L/3 to exclude influences
of short-range correlations and the boundary effects.

The correlation lengths are related to the correlation
functions via the following scaling ansatz:

f (r,t)/[ξ (t)]−1−ηeff = F[r/ξ (t)], (2)

where F denotes the scaling function and ηeff is the effective
scaling exponent. We estimate ξ (t) and ηeff so that all the
f (r,t) data fall onto a single scaling function F . In a
Gaussian kernel regression procedure, we set xi = r/ξ (t),
yi = f (r,t)/[ξ (t)]−1−ηeff , and εi = (δyi)2, with i denoting an
index number for all the combinations of (r,t). Dozens of ξ (t)
data sets are obtained simultaneously from thousands of f (r,t)
data sets.

An inset of Fig. 2 shows the result of scaling. We rescaled
ξ (t) so that the slope of this plot becomes unity as F[r/ξ (t)] ∼
exp[−r/ξ (t)]. This rescaling defines the unit of the length
scale. Figure 3 shows the obtained ξ (t). We compared our
inference results with those obtained in the measurement
scheme (the second-moment method). The SG data obtained
with both methods show a close consistency. On the other hand,
numerical instabilities are observed in the CG estimations by
the measurement method. In contrast, the inference method
solves this instability problem. The effective exponent, ηeff ,
depends on the temperature reflecting a correction to scaling.
We plot the ηeff values in an inset of this figure. It coincides
with the critical exponent at the transition temperature, which
will be obtained by the scaling analysis.

TABLE I. Comparisons of our results with previous estimates.
Reference [36] is a result of equilibrium simulations, whereas
Refs. [10,19] are those of nonequilibrium simulations. References
[44,45] are experimental results of AgMn.

TSG TCG νSG νCG ηSG ηCG

This work 0.203(1) 0.201(1) 1.49(3) 1.53(3) 0.28(1) 0.66(1)

Ref. [19] 0.21(1) 0.22(1) 1.1(2) 0.27
Ref. [36] 0 0.19(1) 1.3(2) 0.8(2)
Ref. [10] 0.203(1) 0.200(1) 1.79(2) 1.57(3) 0.19(1) 0.83(2)
Ref. [44] 1.40(16) 0.46(10)
Ref. [45] 1.30(15) 0.4(1)

We apply the dynamic correlation-length scaling analysis
[22] using the obtained [ξ (t),χ (t)] data sets. Figure 4 shows
the scaling plot of the SG and CG transitions. We applied the β-
scaling method proposed by Campbell et al. [43]. We estimated
the scaling parameters by the Bayesian inference introduced
by Harada [8]. There are 1187 data sets in this figure, and
we chose 800 data sets randomly and estimated the scaling
parameters for 100 times. We determined the average and the
error bar over them. We also show in the inset the same scaling
plot using ξ obtained by the measurement method. While it is
impossible to perform scaling analysis on the CG data in the
measurement method, our inference method made it possible.
Estimated transition temperatures and critical exponents are
summarized in Table I. The critical temperatures are consistent
with previous results. Our values of νSG and ηSG are also
consistent with those of the canonical SG materials [44–46].
This evidence suggests that the Heisenberg spin-glass model
explains the experiments. On the other hand, results of critical
exponents differ from previous simulational results. Reference
[10] performed the same scaling analysis as the present work,
but obtained physical quantities by a window measurement.
The total sample number was almost a half the present work
(520 samples at 26 sets of temperatures). The values of critical
exponents are very sensitive to the quality of data.

Discussion and summary. The evaluations of physical
quantities in numerical studies are generalized to an inference
scheme. This is a change of style in numerical investigations
on statistical physics. We obtain the most-probable expression
for a physical quantity from the discrete raw data. Then, we
differentiate or integrate it analytically or numerically to obtain
various quantities. We can improve accuracies of physical
quantities because they are the product of consistency among
many raw data sets. This method has potential applications
not only to numerical studies on theoretical models but also
to analyses on experimental data. A control of uncertainty
in inferred data [5] and validations or extensions of a use of
the Gaussian kernel are left for future studies. Gaussian kernel
function was chosen in this Rapid Communication based on an
assumption that the errors of observed quantities may follow
the Gaussian process. This assumption is not always valid
and another kernel function needs to be considered in some
cases.

In our study on a Heisenberg SG model, we observed a
simultaneous SG and CG transition with a common value of
exponent ν. Here, one may ask why the SG and CG transitions
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FIG. 4. A scaling plot of (a) the SG transition and (b) the CG transition. Data of 42 sets of temperature ranging from 0.170 to 0.220 are
depicted with different color lines. Insets depict the same scaling plot using the correlation length data obtained by the measurements.

have been observed sometimes differently and sometimes
simultaneously. In what follows, we clarify this point. There
are two important length scales when we discuss the finite-size
effect. One is the correlation length and the other one is the
crossover length. In the ferromagnetic Heisenberg model,
the crossover length is only two to three lattice spacings.
Thus, finite-size scaling analysis is possible using data with
the minimum size L = 6 [47] or 8 [48]. As shown in Fig. 2,
the SG crossover length is nine to ten lattice spacings in the
Heisenberg spin-glass model. This value is comparable with
the correlation length in the present simulation. The necessary
length scale should be doubled or tripled under the periodic
boundary conditions. This corresponds to a minimum lattice

size L = 20–30. However, these sizes have been mostly the
maximum sizes in the equilibrium simulations. On the other
hand, the CG crossover length (rc = 2–3) is almost same
as that in the ferromagnetic model. The necessary size may
be L = 6–8, which has been considered in the equilibrium
simulations. This crossover-length issue is the reason why the
SG transition was not detected in early simulations, while the
CG transition was easily detected.
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