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Nonlinear plastic modes in disordered solids
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We propose a theoretical framework within which a robust micromechanical definition of precursors to plastic
instabilities, often termed soft spots, naturally emerges. They are shown to be collective displacements (modes) ẑ

that correspond to local minima of a barrier function b(ẑ), which depends solely on inherent structure information.
We demonstrate how some heuristic searches for local minima of b(ẑ) can a priori detect the locus and geometry
of imminent plastic instabilities with remarkable accuracy, at strains as large as γc − γ ∼ 10−2 away from the
instability strain γc. Our findings suggest that the a priori detection of the entire field of soft spots can be
effectively carried out by a systematic investigation of the landscape of b(ẑ).
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Plastic flow of disordered solids subjected to external
loading is known to occur via localized rearrangements of
small sets of particles, coined shear transformations [1].
Such rearrangements have been identified in experiments on
bubble rafts [2], foams [3], emulsions [4,5], and colloidal
glasses [5,6], as well as in atomistic computer simulations
of model glasses [7,8]. An example of such a shear trans-
formation, observed in a model glass in two dimensions
deformed under athermal quasistatic shear [9], is displayed
in Fig. 1(b). Shear transformations are known to self-organize
in spatially correlated patterns [10–16] in solids subjected to
large stresses and low deformation rates. Their densities and
other statistical properties, and mechanical consequences, are a
subject of much recent debate [17–26]. Two questions, central
to theoretical descriptions of elastoplasticity, that we address in
this work are whether shear transformations can be predicted
a priori and if so, how.

The micromechanical process in which an athermal dis-
ordered solid destabilizes under quasistatic deformation is
understood asymptotically close to an instability strain γc as a
saddle-node bifurcation of the potential energy U [12,27,28].
The immediate precursors to shear transformations at strains
γ → γc are identified as destabilizing eigenfunctions �̂c (i.e.,
their associated eigenvalues vanish at γc) of the dynamical
matrix Mij = ∂2U

∂ �xi∂ �xj
, where �xi denotes the coordinate vector

of the ith particle. Such an eigenfunction is presented in
Fig. 1(a) [9]. In the following we refer to such eigenfunctions
as destabilizing modes to distinguish them from the postin-
stability displacements of particles (agglomerations of shear
transformations) that can be spatially extended. In Fig. 1(b) we
demonstrate that, when the postinstability displacements are
not spatially extended, but rather form an isolated elementary
shear transformation, their spatial structure is very similar to
that of the destabilizing mode. In contrast with the postinsta-
bility displacements that depend in general on a specific choice
of dynamics [14] and on external control parameters such as
temperature [15], strain [11], and strain rate [16], the spatial
structure of destabilizing modes is an intrinsic characteristic of
the multidimensional potential energy function and is therefore
the focus of the present study.
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FIG. 1. Plastic instability in a sheared two-dimensional model
glass. (a) Destabilizing eigenfunction �̂c. (b) Elementary shear
transformation: the postinstability displacements that followed the
instability of (a). (c) Nonaffine displacements �v calculated at δγ ≡
γc − γ = 0.007. This delocalized field is used as the initial conditions
ẑini for the minimization of b(ẑ) (see the main text), the result of which
is the plastic mode π̂ displayed in (f). (d) and (e) Intermediate states
along the minimization of b(ẑ).

A robust mechanical definition of the precursors of plastic
instabilities away from instability strains has not yet been put
forward. Much effort has been dedicated recently to studying
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the role played by low-frequency normal modes in determining
these precursors [29–34]. One key difficulty encountered in
such studies is that low-frequency plane waves, which have no
appreciable effect on plasticity [17], dominate the lower parts
of the spectra of conventional model glasses, thus hindering
attempts to use low-frequency modes to define flow-defect
densities and correlate them with rates of plastic flow.

Another difficulty, which has been largely overlooked in the
context of elastoplasticity, is that mere frequencies of normal
modes are not indicative of their relevance to plastic processes.
In fact, modes that lead to mechanical instabilities (i.e., take
the system over energy barriers and into neighboring inherent
states) appear as eigenfunctions of the dynamical matrix only
very close to plastic instabilities, giving rise to difficulties in
their detection and statistical quantification. Here we show
that the effective detection of such modes away from plastic
instabilities is made possible by accounting for the relevant
nonlinearities of the potential energy landscape. We provide a
theoretical framework that naturally embeds a micromechani-
cal definition of the precursors to plastic instabilities and that
effectively accounts for the said nonlinearities.

We begin the discussion by considering an athermal elastic
solid, of N particles in d dimensions, and let ẑ denote an
Nd-dimensional unit vector, i.e., ẑi · ẑi = 1. Here and in what
follows repeated indices, labeling particles, are understood to
be summed over unless indicated otherwise. The coordinates �x
are displaced in the direction defined by ẑ according to δ�x = sẑ

and we expand the potential energy U as
δUẑ(s) ≡ U (s) − U0 � 1

2κẑs
2 + 1

6τẑs
3, (1)

where U0 is the energy of the minimum in which the system
resides, κẑ ≡ Mij : ẑi ẑj is the stiffness associated with ẑ, and
τẑ ≡ ∂3U

∂ �xi∂ �xj ∂ �xk

.
: ẑi ẑj ẑk is referred to in the following as the

asymmetry associated with ẑ. Within this cubic expansion,
stationary points occur at s = 0 and s	 = −2 κẑ

τẑ
; s = 0 corre-

sponds to the minimum in which the system resides, while s	

represents the saddle point (energy barrier) that separates this
minimum and a neighboring inherent state. We thus define the
energy difference between these stationary points, within the
cubic expansion, as our barrier function

b(ẑ) ≡ 1
2κẑs

2
	 + 1

6τẑs
3
	 = 2κ3

ẑ

3τ 2
ẑ

. (2)

We emphasize that b(ẑ) is defined for a particular inherent
state of an elastic solid in mechanical equilibrium and is
a function of the multidimensional direction ẑ. It has a
rough landscape;1 in this work we focus on directions π̂

that correspond to local minima of b(ẑ), i.e., they satisfy
∂b
∂�zi

|�z=π̂ = 0, and ∂2b
∂�zi∂�zj

|�z=π̂ is positive semidefinite. We refer
to these directions in what follows as plastic modes. From the
definition of b(ẑ) it is clear that plastic modes π̂ are associated
with small stiffnesses κπ̂ and large asymmetries τπ̂ ; they can
be found numerically by minimizing b(ẑ) over directions ẑ,
starting from some initial direction ẑini, as demonstrated in
Figs. 1(c)–1(f). Small b(ẑ)’s should appropriately describe

1Finding its global minimum is desirable, but is currently a
formidable task; we leave the design of algorithms that can find
the global minimum of b(ẑ) for future studies.
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FIG. 2. (a) Variations δUπ̂ (s) of the potential energy upon
displacing the particles a distance s along plastic modes π̂ , obtained as
described in the text. The curves correspond to δγ = 10−5,10−4,3 ×
10−4,8 × 10−4,2 × 10−3,7 × 10−3. (b) Stiffnesses κẑ = Mij : ẑi ẑj

associated with the plastic modes π̂ used to calculate the variations
plotted in (a) (circles) and with the destabilizing eigenfunction �̂c vs
δγ (squares). Inset: overlaps �̂c|γc

· π̂ |γ vs δγ .

low saddle points (barriers) that separate the system from
neighboring inherent states. We therefore expect modes π̂ that
correspond to low-lying minima of b(ẑ) (which are found by
cleverly choosing an appropriate ẑini for the minimization) to
encode information about imminent plastic instabilities.

This approach is demonstrated in Fig. 1; in Fig. 1(a)
we display a destabilizing mode �̂c calculated at the first-
encountered plastic instability in an athermally sheared model
glass, here at a strain γc = 0.011 521. Prior to this instability,
at strains γ = γc − δγ , the nonaffine displacement field �vi ≡
−M−1

ij · ∂2U
∂ �xj ∂γ

is calculated [27]. An example of �v, calculated
at δγ = 0.007, is shown in Fig. 1(c). At this distance (in strain)
from the instability, the nonaffine displacements �v are largely
delocalized. We use the normalized v̂ = �v/‖�v‖ as the initial
conditions ẑini for the minimization of b(ẑ); snapshots along
the minimization are displayed in Figs. 1(d) and 1(e). Upon
convergence, we find a local minimum in the direction π̂ ,
which is displayed in Fig. 1(f). The resemblance between π̂

and the destabilizing mode �̂c is striking: Both the geometry
and the core location appear to agree perfectly. This remarkable
agreement is quantified in the inset of Fig. 2(b), where we plot
the overlaps �̂c|γc

· π̂ |γ as a function of the distance to the
instability strain.

The protocol described above is carried out over a broad
range of intervals δγ , as specified in the caption of Fig. 2. For
each δγ , after finding π̂ as described above, we calculated its
associated energy variation δUπ̂ (s) and stiffness κπ̂ , which are
displayed in Figs. 2(a) and 2(b), respectively. In this example,
already at a distance of the order δγ ≈ 10−3 to the instability
strain, following the plastic mode π̂ would carry the system
above an energy barrier and into a neighboring minimum.

The resolution of the plastic mode as shown in Fig. 1 uses
the nonaffine displacements �v as the heuristic guess for ẑini; this
choice is made to demonstrate the usefulness of the framework:
Despite the extended character of �v, it has a large overlap with
the plastic mode π̂ and thus resides in the basin of π̂ on the
landscape of b(ẑ). Obtaining the full field of plastic modes,
however, requires using other heuristic ẑini’s, which reside
in basins that belong to other plastic modes. We leave the
investigation of the optimal heuristics for the detection of the
full field of plastic modes for future work.
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We also plot in Fig. 2(b) the stiffness κ�̂c
associated with

the destabilizing mode �̂c. We find that only very close to
the instability (δγ � 10−5), the scaling κ�̂c

∼ √
δγ holds,2

whereas the stiffness associated with π̂ follows κπ̂ ∼ √
δγ up

to strains of order 1% away from the instability. This finding
supports the robustness of our definition of plastic modes and
the usefulness of our framework. It also supports the picture
proposed by a number of recent studies [19–24] that assumes
that the (reversible) destabilization process of a soft spot in
a deformed glass is predominantly coupled to the external
load and not to other coexisting (reversible) destabilization
processes.

The scaling κπ̂ ∼ √
δγ can be derived as follows. Modes π̂

pertain to local minima of b(ẑ) and therefore satisfy ∂b
∂�z |�z=π̂ =

0, which implies that (see [9])

∂3U

∂ �xi∂ �xj∂ �xk

.
: π̂j π̂k = τπ̂

κπ̂

Mij · π̂j . (3)

Using this relation, we calculate the leading-order variation of
the stiffness κπ̂ with strain as

dκπ̂

dγ
� dMij

dγ
: π̂i π̂j � ∂3U

∂ �xi∂ �xj∂ �xk

.
: π̂i π̂j �vk

= − τπ̂

κπ̂

π̂i · Mij · M−1
jk · ∂2U

∂ �xk∂γ
= − τπ̂

κπ̂

π̂i · ∂2U

∂ �xi∂γ
.

(4)

As γ → γc, κπ̂ → 0, but τπ̂ π̂i · ∂2U
∂ �xi∂γ

goes to a constant,

yielding the differential scaling relation dκπ̂

dγ
∼ − 1

κπ̂
and thus

the observed scaling κπ̂ ∼ √
δγ .

Comparison to normal modes. How indicative are normal
modes of imminent plastic instabilities, compared to plastic
modes? In Fig. 3(a) we present a scatter plot of the barrier
function evaluated at normal modes �̂ω vs the square of their
associated frequencies ω2, calculated for a few tens of un-
deformed (isotropic) solid realizations. A clear trend appears:
Smaller values of b(�̂ω) are found for lower-frequency modes.
The circled data point represents the mode �̂min associated
with the lowest value of b(�̂ω) among all modes calculated;
it is displayed in Fig. 3(d). Remarkably, this normal mode
displays the same spatial features as observed for destabilizing
modes, reinforcing that b(ẑ) is indeed sensitive to plasticlike
modes. The variation δU�̂min

(s) is plotted in Fig. 3(b) (solid
line). Despite possessing the smallest b among our entire
ensemble of modes, δU�̂min

(s) displays only a slight asymmetry
between positive and negative displacements s and the energy
monotonically increases with |s|. Using �̂min as the initial
condition ẑini for the minimization of b(ẑ), we find the plastic
mode π̂ displayed in Fig. 3(e). On the face of it, �̂min and
π̂ appear to be very similar in their spatial structure and
geometry. However, examining the corresponding variation
δUπ̂ (s), represented by the dashed line in Fig. 3(b), reveals
a dramatic difference between them: Following π̂ takes the
system over a energy barrier to a neighboring minimum.

2In a system of linear size L, the scaling law κ�̂ ∼ √
δγ is only

expected to hold below δγ ∼ L−4 due to hybridizations with low-
frequency plane waves.
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FIG. 3. (a) Scatter plot of the barrier function (2) evaluated for
eigenfunctions �̂ω of M vs their eigenvalues ω2. The eigenfunction
�̂min represented by the circled data point is plotted in (d) and is
used as the initial conditions ẑini for the minimization of the barrier
function b(ẑ); the resulting plastic mode π̂ is displayed in (e). (b)
Variations δUẑ(s), calculated by displacing the particles according to
δ�x = s�̂min (solid curve) and by δ�x = sπ̂ (dashed curve). (c) Products
N |τ�̂ |, averaged over bins of the participation ratio; see the text for
definitions.

We further utilize our ensemble of normal modes to study
the relation between the degree of localization of modes and
their associated asymmetries τ�̂ . A similar analysis was carried
out in [33] in the context of the unjamming point [35–37].
We quantify the degree of localization of a mode �̂ via its
participation ratio e = [N

∑
i(�̂i · �̂i)2]−1; localized modes

have e ∼ N−1, whereas maximally delocalized modes have
e ∼ 1. In Fig. 3(c) we plot the means |τ�̂ |,3 averaged over
modes �̂ with similar participation ratios, for systems of
N = 1024 and 4096. We find that for participation ratios
e < 10−1, the asymmetries follow |τ�̂ | ∼ (eN )−1. This can
be explained with the following simple model: If there
are effectively Nα nonzero components in a normal mode
(0 < α < 1), normalization then requires that a characteristic
nonzero component is of magnitude ‖�̂i‖ ∼ N−α/2. The
participation ratio is then expected to follow e ∼ Nα−1 (due
to summing over positive terms). Since the pairwise potential
is short ranged and the tensor elements ∂3U

∂ �xi∂ �xj ∂ �xk
are of either

sign, then τ�̂ consist of a sum over Nα terms, each of order
‖�̂i‖3 ∼ N−3α/2, of random signs and we therefore expect
τ�̂ ∼ N−α ∼ (eN )−1, in consistency with our measurement.
For participation ratios e > 10−1, this relation breaks down and
asymmetries are much smaller than what is predicted by this
simple model, which assumes that normal modes are random
objects. Nevertheless, the same trend remains unchanged:
Delocalized modes are associated, on average, with more

3We consider the absolute magnitudes |τ�̂ | since normal modes �̂,
and therefore also their associated asymmetries τ�̂ , are defined up to
a sign.
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FIG. 4. (a) Spatial decay of plastic modes; see the text for
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mode found by choosing a random ẑini. (c) Plastic mode calculated in
a disordered network of relaxed Hookean springs. (d) Plastic mode
found in a Lennard-Jones glass under isotropic tension.

symmetric variations of the energy. These observations explain
the localized nature of plastic instabilities found in deformed
glasses, as can be seen, e.g., in Fig. 1(a).

Structure of plastic modes. To characterize the spatial
structure of plastic modes, we define z̃2(r) as the median of the
squared magnitude of the components ẑi · ẑi (no summation
implied), taken over a shell of thickness on the order of the
nearest-neighbor distance, and of radius r away from the core
of the plastic mode (detecting the locus of the core is explained
in [9]). In Fig. 4(a) we compare the spatial decay of two plastic
modes, one obtained by setting ẑini to be the direction of the
nonaffine displacements (see the definition above and Fig. 1)
and the other by setting ẑini to be a random direction. These
decay profiles are also compared to that of a destabilizing mode
�̂c. We also show the decay profile of a plastic mode calculated
in a three-dimensional solid. We find that at distances r away
from the core, plastic modes decay as r1−d . Remarkably,
this is the same decay law found for the linear responses of
displacements to dipolar point forces [25,38].

In Fig. 4(b) we present a plastic mode obtained with a
random ẑini. We find that this mode shares the same geometric
features as the destabilizing modes �̂c upon shear-induced
plastic instabilities: a disordered core and a long-ranged
affine quadrupolar shearlike displacement field away from
the core [12,25,27]. We thus conclude that plastic modes π̂

associated with different local minima of b(ẑ) share similar
structural features that do not depend on the particular minima
to which they correspond.

We finally examine how the geometry of plastic modes
depends on the loading conditions imposed on the solid. In
Figs. 4(c) and 4(d) two additional examples of plastic modes
π̂ obtained from a random ẑini are displayed; π̂ of Fig. 4(c)
was calculated in a disordered network of relaxed Hookian

springs (all springs are neither stretched nor compressed) with
an average of 4.1 springs connected to each node. It displays
a similar spatial structure as that of plastic modes found in
model glasses that are prestressed, i.e., in which finite forces
are exerted between the constituent particles [39]. Our findings
indicate that proximity to prestress-induced micromechanical
buckling instabilities [40] is not the origin of the generic
structure of plastic modes.

The plastic mode π̂ of Fig. 4(d) was calculated in a Lennard-
Jones glass (with a pairwise potential that includes an attractive
term; see [9] for details) under isotropic tension, just before
macroscopic failure (here −p/B ≈ 10−2 is at least 80% of
the yield strain, where p is the pressure and B is the bulk
modulus). We find in this case that in addition to the clear
shearlike displacements that are typically seen in plastic modes
found in glasses under compressive stresses, the dilatant part
of the displacements due to the tensile loading conditions is
apparent. We conclude that the loading conditions imposed on
a solid can be reflected in the geometric features of its plastic
modes; we leave the systematic study of this dependence for
future work.

Discussion. In this work we demonstrated that modes
π̂ corresponding to local minima of the barrier function
b(ẑ), coined plastic modes, are indicative of directions in
configuration space that lead to plastic instabilities and more
so compared to the most localized low-frequency normal
modes. As such, our framework can serve as a solid basis for
instability-detection algorithms. Such algorithms are highly
desirable, as they can put to test theoretical frameworks of
elastoplasticity that involve the dynamics of a population of
soft spots. These algorithms need not be restricted to the
investigation of plastic flow in disordered solids; the generality
of our framework would render them suitable for studying a
diverse set of systems, including dislocated crystalline solids,
deeply supercooled liquids, and proteins.

Furthermore, our theoretical framework explains the origin
of the localized nature of plastic instabilities. Building on
our framework, we predict that the stiffness associated with
plastic modes follows κ ∼ √

γc − γ and show numerically
that this scaling holds over a large range of strains away
from an instability strain γc. This adds relevance to recently
proposed models that assume that reversible destabilization
processes of soft spots are decoupled from each other. Finally,
we have investigated the spatial features of plastic modes and
provided evidence that the detailed geometry of plastic modes
is sensitive to the loading conditions imposed on the solid.

Our approach demonstrates the usefulness of the concept
of exploring the direction space associated with an inherent
state of a solid as a means of extracting micromechanical
information that is highly relevant to nonlinear flow processes.
Similar approaches could likely be applied towards studying
mechanical instabilities in, e.g., granular solids [41] and
towards studying other classes of low-energy excitations in
glassy solids, e.g., two-level systems [42,43].
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discussions. This research was funded by the Amsterdam
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and the Vrije Universiteit Amsterdam.
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