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Control and generation of drifting patterns by asymmetrical Fourier filtering
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We report the theoretical and experimental demonstration of one-dimensional drifting patterns generated
by asymmetrical Fourier filtering in the transverse plane of an optical feedback system with a Kerr type
nonlinearity. We show, with good agreement between our theoretical (analytics and numerics) calculations
and experimental observations that at the primary instability threshold the group velocity is always different from
zero. Consequently, the system is convective at this threshold, then exhibits drifting patterns.
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Nonlinear pattern-forming systems are known to exist
in nature in a large variety of physical contexts, such as
hydrodynamics, optics, granular matter, plasma waves, soft
matter, biology, and atom physics [1–4]. Controlling pattern
formation is one of the most attractive topics in this framework,
particularly in optics, where the ability to select and manage
the spatial and temporal frequencies leading to the buildup of
the optical field can have important consequences, not only
for the fundamental point of view but also for practical appli-
cations. In this context drifting patterns have been reported for
different nonlinear optical systems and based on various mech-
anisms. For instance, drifting mode instabilities have been
observed by introducing nonlocality in the optical feedback
loop [5] or by imposing an external parameter gradient [6],
traveling waves have been obtained by frequency detuning in
a nonlinear cavity [7], and advection of localized structures has
been produced by a mirror tilt in the feedback loop [8]. Drifting
rolls have also been reported in thermally driven convection
in an inclined layer [9] and in electroconvection due to a slow
lateral drift of charges in nematic liquid crystals [10]. Whatever
the way to generate the patterns, their control requires one
to handle their spatial frequency spectrum. For this purpose,
Fourier filtering is a well-known technique. Indeed, spatial
frequencies can easily be handled in optics since the Fourier
transform of an input beam coincides with its field distribution
in the focal plane of a lens [11]. Such a method has been used,
for example, to achieve the control of spatiotemporal patterns
in a nonlinear optical system [12], for optical pattern stabiliza-
tion [13,14], control of turbulence [15], and spectrometry [16].

In this Rapid Communication, we propose asymmetrical
Fourier filtering as a novel method to generate and control
drifting patterns in an optical Kerr-like feedback system. From
the point of view of linear systems, Fourier filtering is a
well-known technique that finds multiple applications, such
as FM radio selection [17], audio Digital Signal Processor
(DSP)/equalizer [18], and noise reduction on images [19],
to mention a few. To do so, selected temporal or spatial
frequencies are removed or diminished symmetrically with
respect to the zero frequency (dc). The question that arises
is what happens if the filtering applies asymmetrically with
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respect to this later dc component, that is, to either only positive
or negative frequencies, and how this kind of filtering in the
spatial frequency spectrum can affect the patterns emerging in
a nonlinear system. Here, we address the concept of positive
and negative frequencies in spatial optics and show that
asymmetrical Fourier filtering can be implemented leading to
drifting patterns. Experimentally, we achieve the asymmetrical
Fourier filtering on a one-dimensional liquid crystal Kerr-like
nonlinear medium submitted to optical feedback. We show
that the addition of the asymmetrical Fourier filtering turns the
pattern-forming system into a convective one, that is, a system
where transverse patterns are propagative [20,21]. We demon-
strate that depending on the spatial frequency cutoff and on
the value of the optical pump intensity, it is possible to control
the phase velocity of the drifting pattern while keeping its
wavelength almost constant. Analytical expressions of group
and phase velocities at primary threshold of instability are
derived for the ideal uniform extended system. Experimental
phase velocities and instability thresholds measured for the
one-dimensional system agree well with the analytical and
numerical predictions. It is worth noting that, by making
appropriate analogies, similar methods could be applied in
other pattern-forming systems, opening the possibility to use
the same mechanism for controlling spatiotemporal structures
in different contexts.

The studied system is the well-known Kerr medium with
optical feedback, as originally introduced by Akhmanov et al.
[22] and later adapted by Firth and d’ Alessandro [23,24]
for pattern generation. Here, the Kerr medium is a liquid
crystal cell and the model is slightly modified to add a Fourier
filtering in the feedback loop [Fig. 1(a)]. The Kerr equation
that captures most of the relevant dynamics of the liquid crystal
refractive index n reads

τ
∂n

∂t
− l2

d

∂2n

∂x2
+ n = |F |2 + |B|2 + √

εξ (x,t), (1)

where n(x,t) stands for the refractive index of the nonlinear
nematic LC layer, and t and x are the time and space
variables scaled with respect to the relaxation time τ and
the diffusion length ld . ξ (x,t) describes a Gaussian stochas-
tic process of zero mean and correlation 〈ξ (x,t)ξ (x ′,t ′)〉 =
〈δ(x − x ′)δ(t − t ′)〉. The level of noise is controlled by
the parameter ε, which is purely phenomenological. The
small thickness of the Kerr medium allows neglecting light
diffraction along the sample. F and B are the dimensionless
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FIG. 1. (a) Schematic representation of the Kerr feedback system
with asymmetric Fourier filtering. (b) Experimental setup. OI, optical
isolator; C1 and C2 are cylindrical lenses; LC, liquid crystal slice; L

lenses of focal length f ; BS, beam splitter; M are the mirrors; FE,
filtering element in the Fourier space. F and B are, respectively, the
forward and the backward fields. M is the feedback mirror and M ′ its
image through the two L lenses (4f arrangement). d is the equivalent
optical feedback distance between M ′ and LC.

forward and backward fields, respectively [24]. Equation (1)
must be completed by the two following equations describing
the propagation through the sample and over the feedback
loop, respectively:

∂F

∂z
= iχnF and

∂F

∂z
= −i

2k0
∇2

⊥F, (2)

where χ parametrizes the Kerr effect (positive for a focusing
medium, d > 0) and k0 is the optical wave number. The length
of the optical feedback loop is 2d [Fig. 1(a)]. The transverse
profile of the forward field is accounted for by the expression
F (x) = F0g(x), with g(x) = e−(x/w)2

describing a Gaussian
pump of radius w and g(x) = 1 corresponding to the uniform
(plane wave) case.

In order to simplify mathematics, but without loss of
generality, we have considered the plane wave approximation
in our calculations g[(x) = 1] and assume that our system
is deterministic (ε = 0). Next, the asymmetrical filtering is
applied in the Fourier space during the propagation of the
backward field B by introducing a Heaviside function. Then,
after the propagation inside the feedback loop the backward
field is obtained as follows:

B = F
√

R eid∂2/k0∂x2
(eiχn) ⊗

∫ +∞

−∞
H̃ (k − kd )eikxdk, (3)

where R stands for the intensity reflection coefficient, kd

the value of the filtering wave-number cutoff in the Fourier
plane, H̃ the Heaviside function, and ⊗ the convolution
product. Setting ∂

∂t
= 0 and ∂2

∂x2 = 0 in Eq. (1), we found
that the homogeneous steady state (HSS) of the refractive
index can be written as nSH = I0[1 + RH 2(−kd )] [24], where
I0 = |F |2. The linear stability analysis of this HSS with
respect to perturbations of the form δn ∼ exp (i�t − ikx),

with � = �r + i�i and k = kr + iki , leads to the following
equations:

�r = μH̃ (−kd )

τ
cos

(
dk2

k0

)
[H̃+ − H̃−],

(4)

�i = −μH̃ (−kd )

τ
sin

(
dk2

k0

)
[H̃+ + H̃−] + l2

dk
2 + 1

τ
,

which correspond to the real and imaginary parts of the
dispersion relations, respectively. Here we have set H̃+ =
H̃ (k − kd ), H̃− = H̃ (−k − kd ), and μ = RI0|χ |. Next, the
onset of the instability Ic and the associated wave number kc

are calculated by means of the following system of equations
[25]:

�i(kc,μc) = 0, ∂�i/∂kr |kc
= 0, and ki = 0. (5)

Solving this system, we have obtained

Ic = 1 + k2
c l

2
d

χRH̃ (−kd ) sin
( dk2

c

k0

)
(H̃+

c + H̃−
c )

(6)

with H̃+
c = H̃ (kc − kd ), H̃−

c = H̃ (−kc − kd ). Notice that this
expression of the instability threshold has to be in contrast to
those obtained without any filtering, given by [26]:

Ic0 = 1 + k2
c0
l2
d

2χR sin
( dk2

c0
k0

) , (7)

kc0 being the corresponding wave number. As for the instability
threshold, we have obtained that the filtering impacts also the
group and phase velocity. Indeed, considering vg = ∂�r/∂kr

and vϕ = �r/kr the group velocity and phase velocity,
respectively, from (4) we have

vg = −2μcH̃ (−kd ) sin

(
dk2

c

k0

)
[H̃+

c − H̃−
c ]

+μcH̃ (−kd ) cos

(
dk2

c

k0

)
[δ(kc − kd ) + δ(kc + kd )], (8)

and

vϕ = μcH̃ (−kd )

kc

cos

(
dk2

c

k0

)
[H̃+

c − H̃−
c ]. (9)

Equation (8) demonstrates that, depending on the cutoff wave
number kd , the group velocity vg have always a nonzero value
at the primary instability threshold when the filtering really af-
fects initial wave numbers, that is, if kd � kc0 . This implies that
the filtered system displays convective instabilities (vg �= 0) at
the primary instability threshold, coupled with the emergence
of drifting patterns (vϕ �= 0) [27]. Indeed, convective systems
depict propagative patterns [20,21,26]. Thus, drifting patterns
are always generated in the asymmetrical filtered system,
except for very particular values of the parameters that cancel
the phase velocity, but never the group velocity. Numerical
simulations in the deterministic uniform case (g = 1, ε = 0)
confirm these analytical predictions. Table I shows the results
obtained by taking into account the experimental features,
namely, a large aspect ratio Gaussian profile for the pump
beam, g(x) = e−(x/w)2

, and noise, ε �= 0. It can be noted that
including the noise and the Gaussian profile practically does
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TABLE I. Comparison of the values of phase velocity (vϕ),
pump intensity I c, and wave number kc at the primary instability
threshold for analytical predictions, and three different numerical
simulations. Namely, a uniform deterministic system, a uniform
stochastic system, and a Gaussian stochastic system (experimental
one). Parameters for simulations are kd = 0.11kc0 , d = 8 mm, Req =
68%, vg = 33.4 μm s−1.

vϕ (μm/s) Ic kc (mm−1)

Analytical predictions and −1.40 1.79 46.26
(g = 1, ε = 0) simulations
(g = 1, ε �= 0) simulations −1.46 1.76 45.99
(g = e−(x/w)2

, ε �= 0) simulations −1.46 1.76 46.17

not affect the values of the phase velocity vϕ , the primary
instability threshold μc, and the associated wave number
kc. Therefore, the predicted dynamics survives even in the
experimental conditions. However, the presence of noise does
not allow the measurement of the group velocity because noise
acts as a continuous microscopic source of perturbations and
the velocity of a single local perturbation cannot be accessed.
From the dynamical point of view, noise transforms convective
patterns into noise-sustained structures [26,28].

Departing from above the primary threshold, patterns are
always found propagative, that is, vϕ �= 0, except for very
specific values of kd that cancel vϕ but not vg , indicating that
the system is always convective away from the convective
threshold. Indeed, we have checked that vg �= 0. A typical
evolution of the phase velocity with increasing pump intensity
is depicted in Fig. 2(a) for kd = 0.94kc0 (for this particular
value of the cutoff the phase velocity is null at convective
threshold). The phase velocity vϕ continuously changes from
negative to positive values [Fig. 2(a)]. In the same time, the
wavelength of the associated propagative pattern does not vary
significantly. For a range of pump intensities up to two times
the primary threshold, the relative change of the pattern wave
number remains well below 5% [Fig. 2(b)]. Thus, the drifting
velocity of the transverse pattern can be continuously tuned
with an “almost” constant wavelength. Corresponding simu-
lations are displayed in Figs. 3(d)–3(f). The spatiotemporal
diagrams demonstrate that the drift velocity of the pattern
is driven from negative, zero, and then positive values by
increasing the pump intensity I . This evidence opens the
possibility to control the drift velocity of a spatial structure
in pattern-forming systems.

Corresponding experiments are carried out on the setup
shown in Fig. 1(b). It essentially consists of a nematic liquid
crystal (LC) layer submitted to an optical feedback. The main
difference with previous experiments is that the feedback loop
is not achieved by using a single mirror but with a “ring”
configuration consisting of three aligned mirrors. The reason
for the choice of the ring geometry is that the 4f lens imaging
system inserted in the feedback loop [29–31] only allows for
symmetrical Fourier filtering when using the single mirror
configuration [Fig. 1(a)]. Using a ring configuration allows us
to perform asymmetrical Fourier filtering in the focal plane
of the first lens of the feedback loop. A resulting effect is to
introduce a small angle α between the feedback beam B and
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FIG. 2. Influence of the input pump intensity on the evolutions
of (a) the phase velocity and (b) the wave number above the
primary instability threshold for kd (num) = 0.94kc0 and kd (exp) =
0.95kc0 . �, stochastic numerical simulations; �, experimental results.
Parameters are Ic = 98 W/cm2, ε = 0.1, w = 2200 μm, d = 8 mm,
Req = 68%. The dashed lines are empirical fits only drawn for a better
reading of the experimental data tendency.
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FIG. 3. (a)–(c) Experimental and (d)–(f) numerical dynamical
evolutions of the transverse cross section of the near-field transverse
pattern versus pumping intensity. (a), (d) I = 1.36 Ic; (b), (e) I =
1.55 Ic; (c), (f) I = 1.90 Ic, Ic = 98 W/cm2. kd (num) = 0.94kc0 ,
kd (exp) = 0.95 ± 0.06kc0 . d = 8 mm, w = 2200 μm, Req = 68%,
χ = 1, ε = 0.1.
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the incoming beam F . In our case, α = 15◦. This angle corre-
sponds to optical interference fringes (∼2 μm) that are erased
by the nematic liquid crystal diffusion whose characteristic
length is ld = 10 μm. The equivalent optical feedback distance
is d = 8 mm [Fig. 1(a)] [32,33]. The nonlinear medium is
a 50-μm-thick layer of E7 LC homeotropically anchored.
The beam is delivered by a monomode frequency doubled
Nd3+:YVO4 laser (λ0 = 532 nm) which is shaped by means
of two cylindrical telescopes, C1 and C2, in order to achieve
a transverse quasi-one-dimensional (1D) pumping following
the x axis (beam waist wx × wy ≈ 2200 μm × 350 μm). The
backward beam Bout [Fig. 1(b)] is monitored after its second
passage through the LC layer.

Without any spatial filtering in the Fourier space, we
observe a regular and stationary pattern at the primary
threshold for the transverse instability Ic0 = 78 W/cm2. The
pattern wave number is kc0 = 48.3 mm−1 [34]. Then, we apply
the filtering element by translating a half-cutting edge in the
focal plane of the first lens of the 4f lens arrangement in the
feedback loop [FE in Fig. 1(a)]. In order to check the ability
of the asymmetrical Fourier filtering in generating and con-
trolling the drifting patterns, we performed our experiments
by using the same cutoff as for the numerical simulations,
kd = (0.95 ± 0.06)kc0 . For this cutoff the drift velocity can be
tuned continuously with an almost constant wavelength. We
record the pattern near-field dynamics for increasing the pump
intensity [Figs. 3(a)–3(c)]. Then, we show that increasing
the pump value above the primary threshold allows one to
continuously tune the phase velocity. This is reported in
Fig. 2(a). We want to emphasize that the global evolution of
the experimental drift velocity follows qualitatively well the
one from the stochastic numerical predictions. In parallel, the

experimental pattern wave number remains within 10% of its
relative change for a pump intensity ranging up to two times
the primary threshold value. This experimentally confirms
the predictions, evidencing the control of the drift velocity
of a spatial structure while keeping its wave number almost
unchanged.

To summarize, we demonstrate that the application of
an asymmetrical Fourier filtering in the feedback loop of a
Kerr system changes it to be convective, that is, transverse
patterns become propagative. We show that the induced noise-
sustained and absolute patterns are always propagative above
the convective threshold. We demonstrate that we can manage
the drift velocity of the transverse patterns while keeping its
wavelength “almost” constant. The data show very good agree-
ment between analytical predictions, numerical simulations,
and experimental results. The asymmetrical Fourier filtering
method could also be applied in other pattern-forming systems
and appears to be a viable way to control and manage pattern
formation. For example, this method could be applied for the
control of charge waves or for enhancing the performances of
scanning/transport mechanisms, particularly, with interest for
biological applications and photonic devices.
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