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In this Reply we respond to the criticism of Frewer et al. presented in the Comment on “Statistical symmetries
of the Lundgren-Monin-Novikov hierarchy” by Wacławczyk et al. [Phys. Rev. E 90, 013022 (2014)]. We discuss
physical interpretation of the statistical symmetries, and respond to criticism on the violation of the causality
principle. We derive the Lundgren-Monin-Novikov equations for a flow with boundaries. Last, we stress that our
work addressed the phenomenon of “external intermittency” (separation between laminar and turbulent flow),
and not “internal intermittency” (strong fluctuations at small scales).
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I. INTRODUCTION

We understand that besides less important points, the key
criticism of Frewer et al. is that the statistical symmetries
derived in Wacławczyk et al. [1] are unphysical, due to the
fact that, although the probability density functions (PDFs) fn

transform, the sample space v(i) remains invariant. According
to Frewer et al. the new symmetries violate the principle of
causality.

We agree with some of the minor points of the comment
by Frewer et al., and correct some of our statements. We also
explain that the issue of boundary conditions raised in [2] is
not a concern, by deriving the PDF equation in the presence
of boundaries. Still, on the whole we do not at all agree with
the conclusions of the comment. As we will show below, the
proposed statistical symmetries are physically meaningful and
the causality principle is not violated. In the following we
would like to explain our view in more detail with a point-by-
point reply to the criticism outlined in the Comment.

II. REPLY TO: VIOLATION OF THE CAUSALITY
PRINCIPLE

In Ref. [1] we derived transformations of PDFs which
follow from the scaling and translation transformations of
multipoint correlation (MPC) equations from [3,4]. For the
PDFs these transformations have the following form:

f ∗
n = eas fn + (1 − eas )δ(v(1))δ(v(1) − v(2)) . . .

· · · δ(v(1) − v(n)) (1)

called the “intermittency symmetry” and

f ∗
n =fn + ψ(v(1))δ(v(1) − v(2)) · · · δ(v(1) − v(n)), (2)

where
∫

ψ dv(1) = 0, called the “shape symmetry.”
The authors of the Comment on “Statistical symmetries

of the Lundgren-Monin-Novikov hierarchy” claim that the
statistical transformations derived in Ref. [1] are unphysical
as “deterministic equations due to their spatially nonlocal and
temporally chaotic behavior induce the statistical equations,
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and not vice versa.” The same criticism appears in another
contribution of Frewer et al. [5].

Before we reply to this part of the Comment we would
first like to explain the notion of “statistical symmetry.” Such
name has in fact been used in other areas of science, e.g., in
the study of dynamical systems [6], statistical physics [7], or
even sensory coding [8], to name only a few. The common
observation of these works seems to be that even if one
particular field (or image) does not verify the symmetry, it
can be observed over a large ensemble of fields (or images).
As an example, let us consider a steady laminar Poiseuille
flow in a channel which is invariant under reflection about the
center plane y = 0. This symmetry is broken when the flow
becomes unsteady, i.e., U (x,y,z) �= U (x, − y,z); however, it
is once again recovered for the ensemble averaged velocity,
〈U 〉(y) = 〈U 〉(−y). The reason is that the instantaneous
solutions U (x,y,z) and U (x, − y,z) appear in the ensemble
with equal probabilities. In Ref. [1], by “statistical symmetry”
we mean, generally, transformations of statistics (translations,
reflections, scaling, etc.) which leave the considered hierarchy
of equations invariant, which is the case for the transformations
(1) and (2).

In Ref. [1] we claimed that constant fields (or laminar fields)
can be solutions of the governing Navier-Stokes equations
and that the transformations (1) and (2) are connected with
the presence of such fields in the ensemble. Contrary to the
criticism of Frewer et al., we did not claim that the statistical
equations induce anything on deterministic equations. We
rather observed that the deterministic Navier-Stokes equations,
due to the possibly different nature of their solutions (turbulent
or nonturbulent), caused by small changes in the initial and
boundary conditions, induced transformation of the PDF
functions (1) and (2) and respective transformations of velocity
moments.

In Ref. [1] we first considered statistical turbulence motion
in free space without boundaries. If fn is a PDF of a turbulent
flow [cf. Fig. 1(a)], both transformations, first (1) and next (2)
with ψ = δ(v(1) − U0) − δ(v(1)) transform fn into a PDF of
an intermittent flow with a certain share of constant fields in
the ensemble

f ∗
n = eas fn + (1 − eas )δ(v(1) − U0) · · · δ(v(n) − U0) (3)
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FIG. 1. (a) Turbulent PDF f1. (b) Transformed PDF f ∗(v) = eas f1 + (1 − eas )δ(v − U0).

[cf. Fig. 1(b)], where U0 is a laminar velocity. After such a
transformation the moment statistics of velocities change to

〈Ui(1) (x(1),t) · · · Ui(n) (x(n),t)〉∗
= eas 〈Ui(1) (x(1),t) · · ·Ui(n) (x(n),t)〉

+ (1 − eas )U0i(1) · · · U0i(n) , (4)

i.e., they are rescaled by the factor eas (the same for all
moments of any order) and translated.

Contrary to the claim of Frewer et al., the definition

fn(v(1), . . . ,v(n)) =
〈

n∏
i=1

δ[v(i) − U(x(i),t)]

〉
(5)

still applies to both fn and f ∗
n described by Eq. (3). Here, the

single velocity fields v and U are not rescaled but the share
of laminar solutions in the ensemble changes. This could be
caused, e.g., by the change of initial conditions or external
disturbances, hence the claim of Frewer et al. that “no cause
at all exists from which (1) or (2) can emerge as a symmetry
transformation” is not supported.

Lastly, Frewer et al. notice that “the cause itself need not
to be a symmetry in order to induce a symmetry as an effect.”
This statement actually supports our result. Possibly different
nature of solutions to the deterministic equations (turbulent
or nonturbulent) induce an effect: scaling and translational
symmetries of the velocity moments.

III. REPLY TO: NONCOMPATIBILITY WITH ALL
LUNDGREN-MONIN-NOVIKO (LMN) CONSTRAINTS

Another central criticism of Frewer et al. is the
incompatibility of the proposed statistical symmetries
with the separation constraint f2(v(1),v(2); x(1),x(2),t) =
f1(v(1); x(1),t)f1(v(2); x(2),t) for |x(1) − x(2)| → ∞. We agree
with this criticism. However, we have already explicitly
noticed this inconsistency in our paper. In fact, we furthermore
noticed in Ref. [1] that this property “is not satisfied by the
corresponding symmetries of the MPC equations,” which was
supposed to be an observation, not an argument. We also
discussed the case of a (purely) turbulent flow and end up with
the conclusion that the separation constraint would reduce the
“shape symmetry” (2) to the identity transformation f ∗

n = fn.
Next, however, we presented the PDF as a sum of the laminar
and turbulent parts f = gL + gT and argued that the shape

symmetry (2) can only modify the laminar part of the PDF. If
we consider the PDF of the form (3), the two-point PDF in the
limit |x(1) − x(2)| → ∞ reads

lim
|x (1)−x (2)|→∞

f ∗
2 = eas f1(v(1); x(1),t)f1(v(2); x(2),t)

+ (1 − eas )δ(v(1) − U0)δ(v(2) − U0). (6)

The moments of velocity calculated from (6) have the form

〈Ui(x(1),t)〉∗ = eas 〈Ui(x(1),t)〉 + (1 − eas )U0i ,

〈Ui(x(1),t)Uj (x(2),t)〉∗ = eas 〈Ui(x(1),t)〉〈Uj (x(2),t)〉
+ (1 − eas )U0iU0j

and 〈Ui(x(1),t)Uj (x(2),t)〉∗ �= 〈Ui(x(1),t)〉∗〈Uj (x(1),t)〉∗.
Hence, although the intermittent PDFs are observed in nature,
the separation constraint is not satisfied due to the presence
of constant laminar fields in the ensemble which introduces
correlation between different points in the flow even for
|x(1) − x(2)| → ∞. We also note here that when we consider
the laminar and turbulent parts of the PDF separately, the
separation constraint is satisfied for each of them.

IV. REPLY TO: ON THE NEW “SHAPE SYMMETRY”
IN CHANNEL FLOW

In the paper we argued that due to the interpretation of both
symmetries, as connected with the laminar-turbulent flows
in the case of channel flow, these symmetries would have a
different form. The PDF of a laminar flow in the channel reads

fL(v(1), . . . ,v(n); x(1), . . . ,x(n),t)

=
〈

n∏
j=1

δ

[
v(j ) − U {ω}

0

(
1 − y2

(j )

H 2

)]〉
, (7)

where U {ω}
0 = [U {ω}

0 ,0,0] is the streamwise velocity in the
centerline which can, in general, be a random variable (for the
case of a changing pressure gradient) and y(j ) = x(j )2 is the
wall-normal coordinate. This formula was further rewritten in
Wacławczyk et al. [1] using properties of the delta function,
and we presented the “shape” symmetry for the channel flow as

f ∗
n = fn + F (y(1), . . . ,y(n))ψ(v′

(1))δ(v′
(1) − v′

(2))

· · · δ(v′
(1) − v′

(n)), (8)
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where

F (y(1), . . . ,y(n)) =
n∏

j=1

(
1 − y2

(j )

H 2

)−1

, (9)

and for each j

v′
(j )1 = v(j )1

(
1 − y2

(j )

H 2

)−1

, v′
(j )2 = v(j )2, v′

(j )3 = v(j )3.

(10)
Moreover, as follows from Eq. (7) the flow occurs in the x

direction only, hence the form of function ψ in Eq. (8) is

ψ(v′
(1)) = ψ1(v′

(1)1)δ(v(1)2)δ(v(1)3). (11)

We agree that the LMN equations in the form presented
in the paper are valid only in the infinite domain. We
acknowledge this inconsistency and should have explicitly
noted this problem in the paper. Below, we present the PDF
equations for the bounded geometry of the channel flow and
show its invariance under the transformation (8).

If we consider a domain � and its boundary �, then
a solution of the Poisson equation for the pressure can be
presented as

P (x) =
∫

�

G(x,x′)∇2P (x′)dx′ +
∫

�

P (x′)
∂G(x,x′)

∂n′ dS ′

−
∫

�

G(x,x′)
∂P (x′)

∂n′ dS ′, (12)

where G(x,x′) is a Green’s function of a given geometry and
∂/∂n denotes a differentiation in the direction normal to the
boundary � (the normal vector points outward). For the case
of a laminar flow in the channel the first term in Eq. (12)
vanishes as we have ∇2P = 0. The remaining, in fact boundary
terms, lead to the classical solution P (x) = −2xρνU0/H

2 +
C, where U0 is the velocity at the channel centerline y = 0
and C is an arbitrary constant. The considerations presented
by Frewer et al. in Ref. [5] would imply P (x) = 0, which of
course, cannot be a solution for the pressure-driven channel
flow.

A constant pressure gradient solution can be obtained from
Eq. (12) if the Green’s function satisfies a proper far-field
condition. The Green’s function for a channel was derived,
e.g., in Ref. [9]. This function has the properties ∂G/∂y = 0 at
y = ±H , ∂G/∂z = 0 at z = −Lz,Lz (in our case Lz 
 H ),
and has a far-field condition G = |x|/(8LzH ) at x = ±Lx

where Lx → ∞. For the laminar flow in a channel, ∇2P (x′) =
0 and we apply a constant pressure gradient at the inlet
and outlet boundaries ∂P/∂x = 
P/(2Lx) = −2ρνU0/H

2.
From Eq. (12) for Lz 
 H we obtain

∂P (x)

∂x
= − 1

8LzH

∂

∂x

∫ H

−H

∫ Lz

−Lz

[(
−
P

2Lx

|x − x ′|
)∣∣∣

x ′=−Lx

+
(


P

2Lx

|x − x ′|
)∣∣∣

x ′=Lx

]
dz′dy ′

= −2ρνU0/H
2. (13)

If the Green’s function in Eq. (12) is constructed such
that it satisfies homogeneous Neumann boundary conditions
∂G(x,x′)/∂n′ = 0 at the wall boundaries, the nth equation of
the LMN hierarchy for flow in a channel can be extended to

[
∂t +

n∑
i=1

v(i) · ∇(i)

]
fn =

n∑
j=1

∇v(j ) ·
{∫

�

[
∇(j )G(x(j ),x(n+1))

∫
(v(n+1) · ∇(n+1))

2fn+1dv(n+1)

]
dx(n+1)

}

−
n∑

j=1

∇v(j ) ·
{∫

�

[∇(j )G(x(j ),x(n+1))

×
∫ 〈

1

ρ

∂P (x(n+1))

∂n(n+1)

∣∣∣∣v(1) = U(x(1),t), . . . ,v(n+1) = U(x(n+1),t)

〉
fn+1dv(n+1)

]
dS(n+1)

}

−
n∑

j=1

∇v(j ) ·
[

lim|x(n+1)−x(j )|→0
ν
n+1

∫
v(n+1)fn+1dv(n+1)

]
. (14)

So far, we did not specify the pressure gradient at the boundary,
and hence, we wrote this term with the use of a conditional
average. Alternatively, the pressure could be represented as a
sum of three terms: the basic pressure P0 = x(dP/dx), where
dP/dx is a constant, complementary pressure ph(x,t) being
a solution of the homogeneous Laplace equation satisfying
the nonhomogeneous boundary conditions, and the Green’s
function pressure pG(x,t), which is a solution of the non-
homogeneous Poisson equation with homogeneous boundary

conditions [10]. The boundary terms can be represented as
functionals of the wall stress generated by the flow. Such
representation leads to the Leray version of the Navier-Stokes
equations where pressure is eliminated and ∇ · U = 0 enters
the system as an initial condition [10].

We argued in Ref. [1] that the shape symmetries (2) and (8)
could only modify the laminar part of the PDF, hence f ∗ =
gT + g∗

L. In the laminar case ∂P {ω}/∂x = −2ρνU
{ω}
0 /H 2

(where, similar as in Ref. [1], we assume that the pressure
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gradient may change and we treat the centerline velocity U {ω}
0

as a random variable). The PDF of laminar velocity is given
by Eq. (7) and the boundary integral in (14) will read

2ν

H 2

∫
F (y(1), . . . ,y(n))

〈
U {ω}

0

n+1∏
k=1

δ
(
v′

(k) − U {ω}
0

)〉
dv′

(n+1)

(15)

= 2ν

H 2

1

1 − y2
(j )/H

2
v(j )fL(1, . . . ,n), (16)

where we used the sifting property of the delta function. Hence,
after the transformation (8) we obtain an additional term in
Eq. (14), namely,

− 2ν

H 2

1

1 − y2
(j )/H

2

n∑
j=1

∇v(j ) · [v(j )F (y(1), . . . ,y(n))ψ(v′
(1))

× δ(v′
(1) − v′

(2)) · · · δ(v′
(1) − v′

(n))]. (17)

On the other hand, the last, viscous term in Eq. (14), after the
transformation (8) will give rise to the additional term

−ν

n∑
j=1

∇v(j ) ·
[

lim|y(n+1)−y(j )|→0

n+1

∫
v′

(n+1)

(
1 − y2

(n+1)

H 2

)
F (y(1), . . . ,y(n))ψ(v′

(1))δ(v′
(1) − v′

(2)) · · · δ(v′
(1) − v′

(n+1))dv′
(n+1)

]
.

(18)

With the use of the sifting property of the delta function we change v′
(n+1) to v′

(j ) and calculate the integral to obtain

−ν
1

1 − y2
(j )/H

2

n∑
j=1

∇v(j ) ·
[

lim|y(n+1)−y(j )|→0

n+1

(
1 − y2

(n+1)

H 2

)
v(j )F (y(1), . . . ,y(n))ψ(v′

(1))δ(v′
(1) − v′

(2)) · · · δ(v′
(1) − v′

(n))

]
. (19)

After calculating the Laplacian, (19) will cancel with (17).
As other terms in (14) remain invariant under (8), this finally
proves the invariance of (14) under the transformation (8).

At the end we may consider a case with a constant, fixed
pressure gradient ∂P/∂x = 
P/(2Lx) in the channel. By
analogy to Eq. (3), both, the intermittency and the shape
symmetry can transform fn of a turbulent flow into

f ∗
n = eafn + (1 − ea)F (y(1), . . . ,y(n))δ(v′

(1) − U0)

× δ(v′
(1) − v′

(2)) · · · δ(v′
(1) − v′

(n)). (20)

Such a transformation can be caused by a change of a level
of external disturbances. As a result, the character of the flow
can change from turbulent to laminar or intermittent (laminar
or turbulent) [11]. Hence, we want to reject once again the
criticism of Frewer et al. of the violation of the causality
principle. It should be noted that in Wacławczyk et al. [1]
the effect of boundaries was ignored indeed. Still, the analysis
given above rectifies this problem and, most important, is fully
consistent with the argument of statistical symmetries.

V. REPLY TO: THE NONCONNECTEDNESS TO RANDOM
GALILEAN INVARIANCE

In Ref. [12], Kraichnan considered a case when “Each flow
in the ensemble is subject to translation velocity, constant in
space and time, but which has Gaussian ensemble distribution,”
U∗ = U + aξ , x∗ = x + atξ where ξ is a Gaussian random
number. He argued that for such a case “the internal dynamics
of the turbulence is unaffected.” Although it first seemed
to us that some analogy may exist between the statistical
symmetries and Kraichnan’s “random Galilean invariance,”
we admit that such statement was not justified. Still, we
think this is only a matter of wording and has nothing to
do with the mathematical or physical content of our paper.
In this context, we should mention that the far-field condition
for |x − x′| → ∞ is not satisfied for the random Galilean

invariance, either, 〈Ui(x,t)Uj (x′,t)〉∗ =〈Ui(x,t)〉〈Uj (x′,t)〉+
aiaj �= 〈U ∗

i (x,t)〉〈U ∗
j (x,t)〉. This is, similar as in our case, due

to the presence of the constant fields.

VI. REPLY TO: ON CAPTURING INTERMITTENCY WITH
GLOBAL SYMMETRIES

Frewer et al. discuss our results in the context of the
anomalous scaling and breaking of global self-similarity.
These phenomena are connected with the phenomenon of
“internal intermittency” of small turbulence scales. We neither
mentioned this phenomenon nor aimed to capture it in
Wacławczyk et al. [1]. In our paper we wrote explicitly that
“by intermittency we understand a flow with subsequently
changing turbulent and nonturbulent regimes” (i.e., “external
intermittency”).

VII. SUMMARY

We admit that certain inexactnesses can be found in our
paper, i.e., there is no clear analogy between the statistical
symmetries and Kraichnan’s random Galilean invariance.
Moreover, we should have discussed the fact that the con-
sidered LMN system is valid for boundary-free flows. In the
present “Reply to the Comment . . . ” we derived the LMN
equation in a bounded domain.

We do not agree, however, with the main objection of
Frewer et al. that the transformation of a PDF can only follow
from a transformation of sample space variables v.

We stated in Ref. [1] that statistical symmetries first found
in the MPC equations ([3,4]) are connected with turbulent
or non turbulent flows. The intermittency symmetry changes
the intermittency factor while the shape symmetry modifies
the laminar part of the PDF. After such transformations the
statistics change, although the instantaneous velocities U in
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separate realizations of the flow are not transformed (i.e., they
are not rescaled or translated).

The statistical symmetries of MPC equations [Eqs. (6) and
(7) in the “Comment on . . . .” by Frewer et al.) have explicitly
been used for the construction of group invariant solutions
(turbulent scaling laws) in Refs. [3,13,14] and are clearly
validated therein. Hence, there is clear physical evidence for
the existence and importance of the statistical symmetries.
We note in passing that the present interpretation involving

turbulent or nonturbulent flows has only become clear after
considering PDF equations in Ref. [1].
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