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Comment on “Statistical symmetries of the Lundgren-Monin-Novikov hierarchy”
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The article by M. Wacławczyk et al. [Phys. Rev. E 90, 013022 (2014)] proposes two new statistical symmetries
in the classical theory for turbulent hydrodynamic flows. In this Comment, however, we show that both symmetries
are unphysical due to violating the principle of causality. In addition, they must get broken in order to be consistent
with all physical constraints naturally arising in the statistical Lundgren-Monin-Novikov (LMN) description of
turbulence. As a result, we state that besides the well-known classical symmetries of the LMN equations no new
statistical symmetries exist. Finally, we criticize the relation between intermittency and global symmetries as it
is presented throughout that study.
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Summary of key results in [1]. Based on the Lundgren-
Monin-Novikov (LMN) hierarchy of the probability density
functions (PDFs) fn for unbounded turbulent flows[
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]
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2fn+1

]
, (1)

along with several natural constraints to warrant a physical
solution for the PDFs, two new statistical symmetries admitted
by (1) were derived [Eqs. (42) and (63) in [1]]:

T̄ ′
2 : t∗ = t, x∗

(l) = x(l), v∗
(l) = v(l),

(2)
f ∗

n = fn + ψ(v(1))δ(v(1) − v(2)) · · · δ(v(1) − v(n)),

T̄ ′
s : t∗ = t, x∗

(l) = x(l), v∗
(l) = v(l),

(3)
f ∗

n = eas fn + (1 − eas ) · δ(v(1)) · · · δ(v(n)),

which were named as the “shape symmetry” and “intermit-
tency symmetry,” respectively. On the lower statistical level of
the multipoint moments for n � 0

H{n+1} = 〈U(1)(x(1),t) · · · U(n+1)(x(n+1),t)〉, (4)

where U is the instantaneous (fluctuating) velocity field, the
associated multipoint correlation (MPC) invariances

T̄ ′
2 : t∗ = t, x∗

(l) = x(l), H∗
{n} = H{n} + C{n}, (5)

T̄ ′
s : t∗ = t, x∗

(l) = x(l), H∗
{n} = eas H{n}, (6)

are identified as the induced translation and scaling invariance
of the LMN symmetries (2) and (3), respectively. Note that
for reasons of space limitation we do not show here the
transformation for the pressure related moments in (5) and (6)

*frewer.science@gmail.com

as it is done in the original article [1]. A further result obtained
in [1] shows that in the intermittent flow regime of a fully
developed plane Poiseuille channel flow the so-called shape
symmetry (2) takes the form [Eq. (54) in [1]]

f ∗
n = fn + F (y(1), . . . ,y(n))ψ(v′

(1))

×δ(v′
(1) − v′

(2)) · · · δ(v′
(1) − v′

(n)), (7)

where v′
(k)2 = v(k)2, v′

(k)3 = v(k)3, and

v′
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(
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H 2

)−1

,
1

F
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(
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(i)

H 2

)
, (8)

with y(k) ≡ x(k)2 being the wall-normal coordinate and 2H

the width of the channel. Symmetry (7) then gives rise to the
following invariant translations of the moments:

〈U1(x(1),t) · · ·U1(x(n),t)〉∗
= 〈U1(x(1),t) · · ·U1(x(n),t)〉

+C1... 1

(
1 − y2

(1)

H 2

)
· · ·

(
1 − y2

(n)

H 2

)
, (9)

where, according to [1], the coefficients C1... 1 satisfy the
following restrictions:

− 2U0cr � C1 � 2U0cr, − U 2
0cr � C11 � U 2

0cr, · · · (10)

with U0cr being the critical value up to which a laminar channel
flow can be realized. A related invariant scaling law for the
mean velocity profile is then finally derived:

〈U 〉 = C1

k2
ln(y) + C1

2k2

(
1 − y2

H 2

)
+ C. (11)

I. Violation of the causality principle. At first it should be
noticed that the two new symmetries (2) and (3) (as well as the
induced invariances (5) and (6)) only act in a pure statistical
manner without having a transformational origin of any kind
in the underlying deterministic set of equations, since they
are “not reflected in the original [Euler and Navier-Stokes]
equations” ([1], p. 2); neither as a distinctive symmetry, nor as
any ordinary variable transformation. As also discussed further
below from a different perspective, the reason is that in (3)
all multipoint PDFs get scaled by the same constant factor
eas , while in (2) they all get translated by the same spatially
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constant shift ψ , which in both cases makes it mathematically
impossible to establish a transformational link of any kind
to the Euler and Navier-Stokes equations; inevitably, such an
attempt even leads to an inherent contradiction. This problem is
then transferred down to the corresponding invariances for the
velocity moments (5) and (6) (see, e.g., the detailed study [2],
particularly the proof in Appendix A).

It is obvious that such a property necessarily leads to
unphysical behavior, because only the deterministic equations
due to their spatially nonlocal and temporally chaotic
behavior induce the statistical equations, and not vice versa.
Consequently, any transformation which only acts on a purely
statistical (averaged) level without having a deterministic
(fluctuating) origin violates the classical principle of cause and
effect, since the system would experience an effect (change in
averaged dynamics) without a corresponding cause (change
in fluctuating dynamics). Note that the cause itself need not
be a symmetry in order to induce a symmetry as an effect; for
example, as is the case for the well-known diffusion equation:
Its underlying fine-grained discrete random walk does not
admit the variable transformation T : t∗ = e2εt , x∗ = eεx
as a symmetry transformation; only when coarse-graining
this stochastic process to yield the continuous and diffusive
Fokker-Planck equation will it turn into a scaling symmetry,
resulting, however, from the cause of a (noninvariantly)
transformed or changed random walk.

But for (2) and (3) one observes that in both cases only the
coarse-grained PDF fn gets transformed, while the sampled
values v(n) for the fine-grained instantaneous (fluctuating)
velocity field U at point x(n) and time t stay invariant. Hence,
although the dynamical system (t,x,U) stays unchanged under
both symmetry transformations (2) and (3) on its fine-grained
level, it nevertheless undergoes a global change fn → f ∗

n

on its induced coarse-grained level, which is unphysical and
not realized in nature, simply as no cause at all exists from
which (2) or (3) can emerge as a symmetry transformation.
Keep in mind that here the coarse-grained multipoint PDF fn

is defined as an ensemble average over all possible fine-grained
realizations of the flow (see, e.g., [3])

fn(x(1),v(1); . . . ; x(n),v(n); t) =
〈 n∏

i=1

δ(v(i) − U(x(i),t))
〉
,

(12)

where 〈·〉 denotes the averaging or coarse-graining process, and
all v(i) the sampled values of the fluctuating or fine-grained
instantaneous velocity field U at every point x(i) and time
t . Hence, when additionally also regarding the invariance
of equality (12), both transformations (2) and (3) are even
incompatible to this defining relation which is symmetry
breaking, because the left-hand side of (12) changes while
the right-hand side stays unchanged (for the obvious fact that
the coarse-graining process 〈·〉 has no transformational effect
on a kernel which itself stays invariant). Note that the opposite
conclusion is not the rule, i.e., a change on the fluctuating
level can occur without inducing an effect on the averaged
level. A macroscopic or coarse-grained (averaged) observation
might be insensitive to many microscopic or fine-grained
(fluctuating) details in that they get averaged out to zero, a
property of nature widely known as universality (see, e.g., [4]).

II. Noncompatibility with all LMN constraints. It is obvious
that the symmetry transformations (2) and (3) must be compat-
ible or consistent to all constraints of the LMN equations (1),
in particular also to the separation constraint (shown here only
for the two-point PDF)

lim
|x(1)−x(2)|→∞

f2(1,2) = f1(1)f1(2), (13)

otherwise physical solutions get mapped to unphysical ones.
In [1] (see Secs. III D 1 and III D 2) it is correctly shown that
both symmetries (2) and (3) are compatible with the so-called
normalization constraint “(19)” [up to a natural condition
“(46)” for the function ψ in (2)] and the coincidence constraint
“(21)”. At the same time, however, a misleading impression
is given that, in particular, for symmetry transformation (2)
the separation constraint (13) can be ignored without any
important consequences, because, apparently, this property “is
never used in the derivation of the [LMN] equations,” and that
it is “not satisfied by the corresponding symmetries of the MPC
equations, either” ([1], p. 6). In this opinion we cannot agree:
(i) Although the property (13) is not directly used to construct
the LMN equations (1), it nevertheless is an inherent part of
these equations to warrant the outcome of physical solutions,
and (ii) it is not expedient to relate the MPC equations to the
LMN equations, especially since they exhibit a fundamental
disadvantage over the LMN equations when performing an
invariance analysis upon them, in particular as the MPC system
is not equivalent to the LMN system (for more details see [2]).

On the other side, for symmetry transformation (3) an
example is given [see Eq. (65) in [1]], which should show
that for a certain specification of the PDF this symmetry
is compatible with the separation constraint (13). But, this
proof by example is a tautology: By specifying the PDF
fn as the spatially independent and zero-valued δ function
fn = δ(v(1)) · · · δ(v(n)), the symmetry transformation (3) leads
to the expression f ∗

n = fn, i.e., this particular specification
turns the symmetry (3) into a trivial identity transformation,
which, of course in a trivial manner, is always compatible to
any thinkable constraint, also to the separation constraint (13).
Moreover, as can be readily recognized, this tautological
specification of a trivial zero-valued δ function is also the
only possible PDF specification which allows for such a
compatibility.

Hence, the interpretation in [1] on the noncompatibility of
symmetry (2) and the proof by example on the compatibility
of symmetry (3) regarding the separation constraint (13) is
misleading. It is obvious that both symmetry transforma-
tions (2) and (3) are, without exceptions, incompatible with the
separation constraint (13), and that they thus violate one of the
most intuitive physical constraints of the LMN equations: For
all times every PDF solution should show the spatial property
of statistical independence when any two points are infinitely
far apart, that is, any two infinitely distant points should
not influence each other. But exactly this property cannot
be constantly maintained when transforming the system’s
variables according to (2) and (3). The reason is that since both
transformations are true symmetry transformations which map
solutions to new solutions, and since both at the same time
are not compatible with the physical constraint (13) of the
LMN equations, we thus obtain the unwanted effect that an
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initially physical solution can get mapped to an unphysical
solution in which a nonzero correlation between infinitely
distant points will be induced, and this for all times since
the transformations (2) and (3) are time independent. This is
definitely not physical and even is strictly avoided in every
PDF-modeling technique (see, e.g., [5,6]).

Note that both symmetry transformations (2) and (3) can
also not be interpreted as a valid approximation for moderate
separations when the constraint (13) is violated, as was done
by the authors in their preceding work [7], in particular for
symmetry (2). This is due to the fact that every joint-PDF (fn

for n � 2) is a spatially connected quantity, meaning that if it
does not show the correct behavior for large separations, there
is no guarantee that the same PDF will then show a realistic
or physical behavior for moderate separations. This situation
can be formally compared to a boundary value problem for
a differential equation with at least one infinite extension, in
that, if the boundary condition at infinity is not satisfied, it
will effect the solution in the whole domain. In this sense
both symmetries (2) and (3) are unphysical and only turn into
physical transformations if they also satisfy the separation
constraint, but which, however, can only be achieved if ψ = 0
and as = 0. Hence, the separation constraint (13) breaks
the LMN symmetries (2) and (3) in a nonapproximative
manner.

III. On the new “shape symmetry” in channel flow. In the
course of adapting the original “shape symmetry” (2) into
form (7), in order to access the intermittent flow regime
of a fully developed Poiseuille channel flow, the authors
in [1] seem to have overlooked that this process is symmetry
breaking, that is, transformation (7) in its general form does
not leave the LMN equations (1) invariant anymore. For the
proof of this statement, and to see how this adapted shape
symmetry (7) induces an inconsistent transformation in the
statistical transport equations, in particular in the one-point
momentum equations, we again refer to the detailed study [2].

The explanation for this transformational failure already
lies in the equational structure of the LMN hierarchy itself.
While system (1) by construction only applies for spatially
unbounded flows, the authors in [1], however, consider PDFs
for bounded flows by using the profile of a laminar channel flow
(including its boundary region at y = ±H ; see Eq. (49) in [1])
in order to convert their shape symmetry (2) into the form (7).
A loss of symmetry is thus the consequence. Because, when
formally removing the boundary condition again, in letting
H → ∞, will turn the noninvariant transformation (7) back
into the symmetry (2) again (since for any finite values of the
wall-normal coordinate the symmetry-breaking factors in (7)
will neutralize to F = 1 and v′ = v).

Hence, in order to properly address PDFs for bounded
flows, the LMN hierarchy must be rederived such as to
incorporate the considered boundary conditions into the
integrodifferential equations. However, this will result into
fundamentally different equations than those given by the
hierarchy (1), which only applies for unbounded flows, and
to the best of our knowledge such PDF evolution equations for
bounded flows have not been derived yet. But if, then it is also
straightforward to show that the adapted shape symmetry (7)
is not admitted as a symmetry transformation by the bounded
LMN equations for plane channel flow either (see [2]).

IV. The nonconnectedness to random Galilean invariance.
As an aside, we want to remark that the statistical translation
group (5), when specified to C{1} 
= 0 and C{k} = 0, k �
2 [Eq. (15) in [1]], was erroneously identified in [1] as
the random Galilean invariance group, first introduced by
Kraichnan 1965 [8]. This new translation group “(15)” is not
in conformance with the random Galilean group as defined
by Kraichnan (for details see [2,9]). The reason is that the
random Galilean group acts on the fine-grained (fluctuating)
level, while the statistical translation group “(15)” only acts
on the coarse-grained (averaged) level without having a
cause of any kind on the lower fluctuating level; a property
which even violates the classical principle of causality (see
Sec. I). Moreover, (i) the spatial coordinates of the random
Galilean group get transformed in contrast to “(15)”, and
(ii) the transformation rule for all n-point velocity corre-
lations beyond the mean velocity (n � 2) do not trans-
form invariantly under the random Galilean group as given
in “(15)”.

V. On capturing intermittency with global symmetries. In
our opinion, the method of Lie groups, when used as a
constructive method to generate scaling laws in particular
from global symmetry transformations, is not the appropriate
method to capture the complex spatiotemporal phenomenon
of intermittency in dynamical systems, irrespective of whether
internal (small scale) or external (large scale) intermittency
is considered. In general, intermittency is a property which
rather breaks than restores symmetries, not only on the fine-
grained (fluctuating) but also on the coarse-grained (averaged)
level [10–13]. A prominent historical example is the failure
of Kolmogorov’s K41 theory [14–16], which has been found
to be increasingly inaccurate for higher order statistics (see,
e.g., [17,18]). Instead of statistically restoring the deterministic
scaling symmetry of the Navier-Stokes system [17,19,20], an
induced turbulent flow will always statistically evolve such by
showing the property of anomalous scaling and the breaking
of global self-similarity, which both interdependently can be
attributed to the complex property of intermittency [13,17,18].
Although this example only addresses the effect of global
symmetry breaking in the process of internal intermittency, it
nevertheless serves as a representative example for any type
of intermittency.

The point is, that even if we would only consider an
isotropic turbulent flow (which is a highly idealized flow), the
statistical solutions, in particular the higher order correlations,
due to their increasingly pronounced intermittent behavior, are
by far more complicated than we currently can imagine and that
it is actually unrealistic to believe that this complicated behav-
ior can be captured by some global scaling symmetries. The
complexity even increases when considering wall-bounded
flows showing external intermittency [10], which, in contrast
to internal intermittency, is a strongly nonuniversal process
where the mechanism of symmetry breaking will be even more
pronounced. Hence, proposing (11) as an “invariant solution”
to the intermittent scaling behavior of the wall-bounded plane
channel flow as done in [1], it is highly questionable if this is
really the case when (11) is matched to numerical or physical
experiments, and furthermore, whether (11) is really consistent
also to all higher order moments when trying to involve them
accordingly.
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Despite the fact that the two symmetries (2) and (3),
along with their induced invariant transformations (5) and
(6) which then lead to (11), are unphysical in that they not
only violate the fundamental principle of causality of classical
mechanics (as shown in Sec. I) but also must get broken in
order to be compatible with all physical constraints of the
underlying dynamical equations (as shown in Sec. II), the
further and more general problem is that the deterministic
Navier-Stokes theory itself, unfortunately, only allows for
spatially global and not for spatially local symmetries [21]:
All physical symmetries of the deterministic Euler and Navier-

Stokes equations listed in [1] [Sec. II A, Eqs. (8)–(13)] are
only spatially global symmetries. No other, more general
symmetries for this theory exist or are known yet. And it
is exactly due to this fact, that a Lie-group based symmetry
analysis for the unclosed statistical Navier-Stokes theory did
not achieve the same great breakthrough as it did, for example,
for the theory of quantum fields (see, e.g., [22,23]), which is
based on a spatially local symmetry, the local gauge symmetry
which successfully predicts the unknown functional structure
of the interacting fields between the various elementary
particles.
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