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Geometric and topological properties of the canonical grain-growth microstructure
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Many physical systems can be modeled as large sets of domains “glued” together along boundaries—biological
cells meet along cell membranes, soap bubbles meet along thin films, countries meet along geopolitical boundaries,
and metallic crystals meet along grain interfaces. Each class of microstructures results from a complex interplay
of initial conditions and particular evolutionary dynamics. The statistical steady-state microstructure resulting
from isotropic grain growth of a polycrystalline material is canonical in that it is the simplest example of a cellular
microstructure resulting from a gradient flow of an energy that is directly proportional to the total length or area of
all cell boundaries. As many properties of polycrystalline materials depend on their underlying microstructure, a
more complete understanding of the grain growth steady state can provide insight into the physics of a broad range
of everyday materials. In this paper we report geometric and topological features of these canonical two- and
three-dimensional steady-state microstructures obtained through extensive simulations of isotropic grain growth.
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I. INTRODUCTION

A polycrystalline material is an ensemble of individual
crystallites or grains joined along grain boundaries. Poly-
crystalline microstructures are usually formed during material
synthesis and continue to evolve afterwards by processes
such as grain growth and recrystallization. Most of the
metals, ceramics, and semiconductors ubiquitous in every day
use are polycrystalline. Perhaps the most common class of
polycrystalline microstructures is that resulting from normal
grain growth. This is a process where grain boundaries migrate
with a velocity proportional to their mean curvature, leading
to a monotonic decrease of grain boundary area and excess
energy and a monotonic increase in mean grain size. The usual
idealization is for the grain boundary energy and mobility to
be isotropic and constant.

It has been observed that normal grain growth leads to the
evolution of microstructures that exhibit a statistical steady
state, where statistical distributions of the geometrical and
topological properties of the microstructure remain invariant
as the mean grain size increases [1]. In many real experimental
cases this picture is complicated by anisotropy and the
presence of solutes or additional phases. Nonetheless, isotropic
normal grain growth microstructures are perhaps the most
generic of all polycrystalline microstructures; the simplicity
of grain growth in the isotropic limit and the ubiquity of
the microstructure produced means that normal grain growth
microstructures can be considered as the “harmonic oscillator”
of polycrystalline microstructures or even as “the canonical
polycrystalline microstructure.”

There are other classes of generic polycrystalline
microstructures as well. Random grain nucleation and
constant grain boundary velocities, appropriate for modeling
certain solidification and phase transformation processes,
leads to microstructures which are Voronoi tessellations of
Poisson point processes [2]. These Voronoi microstructures
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have flat grain boundaries and convex grains, and distributions
of their geometric and topological features vastly differ from
those commonly observed in real polycrystalline materials;
we return to this comparison at the end of this report.

Characterizing steady-state microstructures experimentally
in three dimensions is challenging due to the inherent difficulty
in exploring the geometry and topology of grains buried
deep within a three-dimensional (3D) microstructure. Several
such studies have been performed, including by embrittling
the polycrystal grain boundaries and subsequently separating
individual grains [3], by serial sectioning [4–6], and more
recently by synchrotron-based diffraction techniques [7–9].
Because of the difficulties in experimentally characterizing
three-dimensional microstructures consisting of large numbers
of grains, and the fact that isotropic grain boundary energy and
mobility are rare, simulations provide the preferred method to
investigate isotropic normal grain growth microstructures.

The primary purpose of this paper is to provide the most
complete characterization of the geometric and topological
features of two- and three-dimensional isotropic grain growth
microstructures to date, as well as the correlations between
such features. To this end, we use a computer simulation
technique [10,11] to generate one of the largest steady-state
isotropic grain growth microstructure databases. Our geomet-
ric and topological characterization of these microstructures
provides a rigorous, fundamental set of data against which all
polycrystalline microstructures and grain growth theories can
then be compared.

A secondary focus of this paper is to compare two-
and three-dimensional steady-state microstructures in order
to explore the manner in which the introduction of a third
dimension essentially changes the steady-state structure. This
is partly motivated by the substantial investment of the research
community in two-dimensional simulations [12–17], often
with the implicit hope that results gleaned from these will shed
light on the experimentally more relevant three-dimensional
case. Finally, since three-dimensional experimental samples
are often viewed and characterized in cross section, we
also examine the relationship between cross sections of
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FIG. 1. (a) A two-dimensional grain-growth microstructure, (b) a cross section from a three-dimensional grain-growth microstructure, and
(c) a three-dimensional grain-growth microstructure.

three-dimensional structures with both the two- and full
three-dimensional microstructures. Examples of these three
grain growth microstructures are shown in Fig. 1.

II. SIMULATION

A. Prior approaches

Prior simulations of grain growth fall roughly into three
categories. Monte Carlo Potts models [12,13,18,19] were
among the earliest and are still among the most frequently
implemented. Here, space is subdivided into cubical voxels
which are assigned a label indicating to which grain they
belong. Voxels are relabeled in a stochastic manner to mini-
mize interfacial energy between neighboring grains. While the
implementation of this method is relatively straightforward,
some of the complications that arise include anisotropic
boundary conditions [18,20], weakening of vertex angle
boundary conditions [18,20], boundary pinning, and altered
kinetics [18,20,21]. Closely related to this model is the cellular
automaton model [22–25], which allows additional flexibility
in defining energetics.

Phase-field models constitute a second category of simula-
tion methods [26,27]. In this approach, grains are represented
as regions in which the value of a nominally continuous order
parameter goes to 1. The evolution of the microstructure is
described using time-dependent Ginzburg-Landau equations
[28], where different order parameters are associated with
each grain orientation. Modifications of the energy functional
allow for the incorporation of additional physical effects [29].
Limitations of this approach include numerical instability and
the high cost of of representing systems with large numbers of
grains [26,27]. Variations on this approach include continuum-
field [26,30,31] and multi-phase-field [27] models. The
simulation of three-dimensional grain growth by diffusion-
controlled interface motion [32,33] shares some features
with phase-field models and appears to be unconditionally
stable and conceptually and computationally straightforward,
allowing for the simulation of a large number of grains.

A final category of grain growth simulations are front-
tracking methods, including vertex models [16,34], finite-
element models [35–37], and discretized boundary models
as developed by the authors [10,11] and employed here. In
such front-tracking approaches, the grain boundary network is
explicitly discretized and evolved without devoting memory or

processing power to the grain interiors. While computationally
efficient and convenient for the measurement of geometric and
topological features, this approach requires that all topological
events which occur during normal grain growth be anticipated
and handled explicitly. The complexity associated with mesh
management in three dimensions has been a limiting factor in
the widespread implementation of these models.

B. Current approach

Most front-tracking algorithms evolve a system in the
direction of steepest descent of an energy proportional to the
total grain boundary area [34,38], which is equivalent to mean
curvature flow in a continuous setting. One notable feature of
our simulations [10,11] is that the equations of motion derive
directly from the von Neumann–Mullins [39,40] relation in
two dimensions and the MacPherson-Srolovitz relation [41] in
three dimensions. This means that our simulations satisfy the
constraints imposed by these exact relations to high accuracy.
The low curvature of most grain boundaries [34] justifies our
use of a restricted discretization to reduce the computational
requirements.

In two dimensions, boundaries that separate two neighbor-
ing grains are referred to as edges, and three edges meet at a
vertex. Each edge is discretized into a piecewise linear curve;
the discretization adapts during the microstructure evolution to
ensure stability and numerical accuracy. Equations of motion
are obtained from the von Neumann–Mullins relation [39,40],
which describes the evolution of individual grains:

dA

dt
= −2πMγ

(
1 − n

6

)
, (1)

where A is the area of a grain, n is its number of edges, and
M and γ are scalar constants describing the grain boundary
mobility and energy, respectively. This result is exact for
isotropic grain growth in two dimensions, where the total
energy of the system is proportional to the sum of all edge
lengths and the system evolves down the gradient of the energy.
This equation can be adapted to give equations of motion for a
discretized representation of the system [10], which is evolved
using an explicit time integration scheme. Since this algorithm
derives from the exact von Neumann–Mullins relation, the
behavior of every grain in the system satisfies this condition
with minimal error. Specifically, the error resulting from the
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use of a discrete time step �t is of order O(�t2), and the error
from the discretization of grain boundaries is small as well
[10]. Occasionally, when an element of the system becomes
sufficiently small, we adjust the network topology by removing
an edge or a grain or by flipping an edge. Interested readers
are referred to Ref. [10] for a more detailed discussion of the
method and error analysis.

The situation is similar in three dimensions, where a grain
boundary separating two neighboring grains is referred to as
a face. Three adjacent faces meet along an edge and four
edges meet at a vertex. In simulations, the grain boundary
network is discretized by triangulating grain faces, and edges
are discretized into piecewise linear curves. The extension of
the von Neumann–Mullins relation to three dimensions is the
MacPherson-Srolovitz relation [41]. The relation describes the
volume evolution of individual grains as

dV

dt
= −2πMγ

(
L − 1

6
M

)
, (2)

where V is the volume of grain, L is a one-dimensional
measure of the grain called the mean width, and M is the
sum of lengths of all grain edges. This result is an exact
description of isotropic grain growth in three dimensions.
As before, this equation can be adapted to give equations of
motion for a discretized representation of the system [42]. An
explicit time integration scheme is used to evolve the system.
Since the equations of motion are derived from the exact
MacPherson-Srolovitz relation, the evolution of each grain
volume satisfies this condition with minimal numerical error
[11]. Occasionally the size of a grain, face, or edge will become
sufficiently small to require that the topology of the system
be adjusted appropriately. Interested readers are referred to
Refs. [11,42] for a more detailed analysis of the method.

One difficulty with using simulations to characterize the
steady state is that the system must be evolved from the
initial system to the point that steady state is achieved. This
requires that the initial model contain several times more
grains than eventually contribute to the measured steady-state
microstructure statistics. Moreover, since the steady-state
condition is not precisely defined, identifying the point in
time when it is reached is still a matter of some contention.
Data for our 2D system came from a simulation which began
from a Voronoi tessellation of 10 000 000 points uniformly

distributed in the unit square with periodic boundaries. Data
for our 3D system came from 25 simulations, each of which
began from a Voronoi tessellation of 100 000 points uniformly
distributed in the unit cube with periodic boundaries. This
number of grains is well beyond the range of contemporary
front-tracking models [43] and rivals the largest grain growth
simulations performed to date by any method [27,33,44].

C. The canonical steady-state

One reason that steady-state grain-growth microstructures
are so important is that despite the fact that the evolution
equation (mean curvature flow) is very simple, the resultant mi-
crostructures are particularly robust; i.e., a wide range of initial
microstructures all eventually evolve to a statistically identical
microstructure. To illustrate this point, we constructed three
very different initial microstructures and allowed them to
evolve for a time sufficient for their statistical properties to
stabilize (i.e., reach the steady-state behavior).

The three initial conditions considered here were con-
structed as Voronoi tessellations of sets of points in space. The
first system we considered resulted from a random Poisson
process with 100 000 points in the unit cube; i.e., the x, y,
and z coordinates of each point were chosen with uniform
probability in the domain [0,1]. To construct the second
system, we generated a set of points on a 30 × 30 × 30
simple cubic (SC) lattice in the unit cube for a total of
27 000 points. Then each point was given an independent,
random displacement from its lattice position according to
a three-dimensional Gaussian distribution with a standard
deviation equal to 1/10th the SC lattice parameter. The third
system was constructed in a similar manner to the perturbed
SC case, except that the original coordinates were chosen to
lie on a 20 × 20 × 20 face-centered cubic (FCC) lattice with
4 points per unit cell, for a total of 32 000 points; in this
case the points were perturbed away from their FCC positions
according to a three-dimensional Gaussian distribution with a
standard deviation equal to 1/5th of the FCC lattice parameter.
In all three cases, we evolved the systems according to the
above algorithm for a sufficiently long time (measured in
dimensionless units of 1/Mγ ) that the statistical properties
all achieved steady state to within statistical error.

Figure 2(a) shows how the average number of faces per
grain 〈F 〉 changes as the three systems coarsen under curvature

)c()b()a(

FIG. 2. (Color online) (a) The evolution of the average faces per grain 〈F 〉 in the three systems (circles indicate 〈F 〉 at t = 0), converging
to the steady-state value 13.766. (b) The evolution of the fraction of faces with four, five, and six edges in the three systems, converging
to steady-state values p(4) = 0.262, p(5) = 0.364, and p(6) = 0.220. (c) Initial (squares) and final (circles) distributions of grain volumes
(normalized by the mean volume) in the three systems.
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(a) (b) (c)

FIG. 3. Cross sections of three distinct initial microstructures
(top) and the steady-state grain growth microstructure resulting from
them (bottom). Each system began as a Voronoi tessellation of a set of
points: (a) randomly distributed points, (b) a perturbed simple cubic
lattice, and (c) a perturbed face centered cubic lattice.

flow. The initial value of 〈F 〉 differs in the three systems;
in particular 〈F 〉PV = 15.535, 〈F 〉SC = 15.693, and 〈F 〉FCC =
14.654 (as indicated by the symbols at t = 0). Over time, these
values gradually decrease and all converge to 13.766 faces per
grain. In a similar manner, Fig. 2(b) shows the evolution of the
fraction of faces with n = 4, 5, and 6 edges p(n) in the three
systems. Here again we see that despite significant differences
in their initial values, p(n) for all three systems converge to the
same values, p(4) = 0.262, p(5) = 0.364, and p(6) = 0.220.
Finally, Fig. 2(c) shows the initial and steady-state grain
volume distributions, normalized by the mean grain volume,
for all three systems. Despite having started with drastically
different grain size distributions, all three systems evolve to
the same steady state. The statistical properties of the three
systems are effectively identical after t = 0.002, supporting
the notion that initial conditions are eventually “forgotten”
after a system has coarsened by grain growth for a sufficient
time.

The convergence of different random microstructures to
the same statistical steady state can also be observed directly;
typical initial and final cross sections from the three types
of initial conditions are shown in Fig. 3. Notice that despite
the different initial appearances and degrees of order, the final
three microstructures could easily be different areas of a single
structure.

III. CHARACTERIZATION

This section reports data from microstructures initialized
as Poisson-Voronoi (PV) cells (i.e., Voronoi tessellations
of randomly distributed points) and evolved by the grain
growth (curvature flow) algorithm until a statistical steady
state was achieved. A single two-dimensional simulation
began with 10 000 000 grains and achieved steady state when
approximately 4% of the grains remained. Aggregated samples
taken with 4%, 3%, 2%, and 1% of the original grains
remaining gave two-dimensional statistics from a total of

1 000 000 grains. In three dimensions a series of 25 simulations
was performed, each beginning with 100 000 grains. Statistical
steady state was achieved when just over 10% of the grains
remained, and aggregated samples taken from the resulting
configurations gave three-dimensional statistics from a total
of 269 555 grains. For the cross sections of three-dimensional
microstructures, we took a series of cross sections parallel
to the faces of the cubic simulation cell. These were spaced
roughly five grain diameters apart to reduce correlations
between neighboring cross sections, giving statistics from a
total of roughly 100 000 grains. Though there appears to be
no consensus in the literature as to the precise fraction of the
initial grains remaining when the steady state is reached [44],
we believe our conditions are conservative.

We report three types of descriptions of steady-state mi-
crostructures. The first are geometric and topological features
of individual grains, e.g., distributions of grain sizes and
number of neighbors. We refer to these as point quantities
to emphasize that they measure features associated with
individual grains, as opposed to collective arrangements of
multiple grains. The second type of description are correlations
of point quantities between neighboring grains, where distance
between neighboring grains is measured between centers of
mass using the standard Euclidean distance. Third, we in-
vestigate correlations of point quantities between neighboring
grains, where distance between grains is measured using a
topological quantity that we call bond distance; we provide
evidence that this measurement of proximity is preferable
to the more commonly used notions of nearest and next-
nearest neighbors. Finally, given substantial evidence that the
steady-state grain-growth microstructure is well defined, we
argue that the steady state is a more reasonable proxy for
real polycrystalline materials than the frequently used Poisson
Voronoi construction.

Where possible, we compare analogous data from two-
dimensional simulations, three-dimensional simulations and
cross sections of three-dimensional simulations, denoted 2D,
3D, and 3DX, respectively. Error bars in all plots indicate one
standard error from the mean, though any systematic error is
neglected.

A. Point quantities

The most frequently reported statistics describing steady-
state grain growth microstructures are of features of individual
grains. In this section, we consider distributions of point quan-
tities including the number of faces, surface area, volume, edge
lengths, perimeters, mean width, a measure of compactness,
and others. A discussion of Lewis’s law [45] and Feltham’s
law [46], correlations between the number of edges and the
size of a grain in two dimensions, and the generalization of
these to the three-dimensional structures is included as well.

1. Edges and faces

The von Neumann–Mullins relation indicates that the
number of edges of a grain in the 2D system completely
determines the rate of change of a grain’s area, suggesting
that the distribution of the number of edges is important
to the evolution of the microstructure as a whole. This
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(a)

(b)

FIG. 4. (Color online) (a) Edges per grain in 2D and 3DX and
of faces in 3D. Splines provide a guide for the eye; error bars are
smaller than the markers. Experimental results from a 3DX aluminum
sample [47] are provided for comparison. (b) Faces per grain in 3D;
error bars are smaller than the markers. Experimental results from a
titanium alloy [48] and a numerical prediction [49] are provided for
comparison.

distribution is reported in Fig. 4(a) for the 2D and 3DX
systems. Several analogous quantities can be identified in three
dimensions, including the number of edges per face or faces
per grain, reported in Figs. 4(a) and 4(b). One consequence
of Euler’s theorem [50] is that the average number of edges
per grain in the 2D and 3DX systems must be precisely
six. Simulation data shows 6.000 ± 0.001 edges per face
in 2D, with a standard deviation 1.273 ± 0.001; analogous
data show 6.000 ± 0.006 edges per face in 3DX and a
standard deviation of 1.813 ± 0.006. In 3D, the corresponding
constraints on the average number of edges per face and
the average number of faces per grain is weaker [51,52].
Simulation data indicates 5.1283 ± 0.0006 edges per face
in 3D and a standard deviation of 1.1292 ± 0.0006. In 3D,
the average number of faces per grain 〈F 〉 determines the
average number of edges per face 〈E〉 through the relation

〈F 〉 = 12/(6 − 〈E〉). Since 〈E〉 = 5.1283 ± 0.0006, we have
that 〈F 〉 ≈ 13.766 ± 0.009. A precise justification of these
average values in 3D is not known, though several studies
predict the smaller value of 13.397 [53–57] for the average
number of faces and one predicts 13.564 [58]. Likewise, there
is no known analytic function that gives the distributions in
Figs. 4(a) and 4(b), despite some recent attempts [49,59] for
the 3D case. Nevertheless, the striking similarity in the shapes
of the distributions for edges per grain in 2D and for faces per
grain in 3D suggests the existence of a shared fundamental
cause. Meanwhile, the difference in the distributions of edges
per grain in the 2D and 3DX systems, along with considerable
other evidence in the literature, makes clear the difficulty of
directly comparing two-dimensional simulations with cross
sections of experimental samples. This is the case despite
suggestive results reported by Anderson et al. [18] where these
distributions nearly overlap.

Our results for the 2D system compare well with the distri-
bution of edges per grain as given by other recent simulations
[17,32,60] and provide further evidence that the distribution
peaks at six sides rather than five. This is in contradiction to
early simulation [18] and experimental [47] results. Simulation
results for the 3DX case occur less frequently in the literature
due to the increased computational requirements, though our
distribution appears to be consistent with more recent studies
[32,61]. Curiously, the corresponding experimental results
[46,62,63] for cross sections of three-dimensional samples
consistently give distributions with more five-sided faces
than six-sided faces. Since the apparent number of edges in
cross section depends sensitively on the grain geometry, this
discrepancy could depend on how a sample was prepared and
not be generically representative of steady-state grain growth
microstructure.

For the 3D system, the distribution of edges per face in our
simulations is consistent with that reported for grains in an
aluminum alloy [64] as well as with the results of several other
simulations [26,43,61]. Finally, the distribution of faces per
grain has been a subject of frequent study, as it was believed
that a grain’s number of faces guides its growth in 3D in the
same way that a grain’s number of edges guides it in 2D.
Our findings agree with those of simulations implemented
using a variety of approaches [27,33,44], as well as with the
statistics derived from a population of thousands of grains
[48] obtained from a β-titanium alloy by serial sectioning
techniques. There is, therefore, ample support for our findings.
One of the more recent theoretical predictions [49] generally
performs well but shows statistically significant deviation from
our data—it predicts more grains with few faces and fewer
grains with many faces than we observe.

Regardless of the similarities between Figs. 4(a) and 4(b),
we note that there is an important difference in what they
measure. In two dimensions, the combinatorial type of a
grain is completely described by its number of faces. That
is, any grain with n edges has exactly the same combinatorial
structure as any other grain with n edges. However, three-
dimensional grains are much more complicated, and many
distinct polyhedra share the same number of faces [65]. For
example, grains with 8 faces can have one of 14 distinct types,
while those with 9 faces can have one of 50. As the number
of faces increases, the number of distinct combinatorial types
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(a)

(b)

FIG. 5. (Color online) (a) Effective grain radii for 2D and 3DX
and effective face radii for 3D. (b) Effective grain radii for 3D.
Predictions [49,66] and experimental results [48] are provided for
comparison. Effective radii given in units of average effective radius;
error bars are smaller than the marker size.

increases faster than exponentially. Therefore, the information
indicated in Fig. 4(b) is much less descriptive of a three-
dimensional system than Fig. 4(a) is of a two-dimensional
one.

2. Areas and volumes

One of the more accessible and physically relevant descrip-
tions of a microstructure is the distribution of grain sizes,
though that can be measured in different ways. The most
common measurement of size is the effective grain radius,
i.e., the square root of the area of a two-dimensional grain
or the cube root of the volume of a three-dimensional grain.
Figure 5(a) gives the distributions of the effective grain radii
for the 2D and 3DX systems, as well as of the effective face
radii for the 3D system; the prediction of Hillert [66] for the
distribution of grain radii in the 2D system is plotted as well for
comparison. While Hillert’s prediction is still often regarded in

the literature as a reliable reference, it does not agree with our
results. Figure 5(b) gives the corresponding distribution for the
effective grain radii in the 3D simulation and from thousands
of grains in an experimental β-titanium alloy [48]. The Hillert
[66], Weibull [60], and Rios [49] distributions are provided for
comparison, where the Weibull distribution is given by

f (r) = krk−1

λk
exp

(−rk

λk

)
, (3)

with fitting parameters k = 2.762 ± 0.001 and λ = 1.1570 ±
0.0003 as determined by least squares. The coefficients of
determination R2—0.767, 0.991, and 0.998, respectively—
indicate that the Rios distribution follows our simulations
most closely. However, the Weibull distribution performs only
slightly less well and has the advantage of a simple algebraic
form.

Several features of the distributions in Fig. 5(a) deserve
further mention. One is that the distributions for the 3DX
and 3D systems do not pass through the origin, meaning
that there is a finite probability of finding a grain or a face
with an arbitrarily small effective radius. The other is that
the distribution for the effective radii of the 2D system shows
more than one peak; the most pronounced being to either side
of an effective radius of one. A shoulder occurs just below an
effective radius of 0.5 as well, though this is more subtle. Given
the relatively small size of our errors, these features cannot be
attributed to noise, and another explanation is required.

We first discuss the observation of finite probability at
zero size. This discussion is simplified by changing the
independent variables of the probability density functions in
Fig. 5. Specifically, a probability density function f (r) of the
radius r = a1/2 in Fig. 5(a) is converted into the corresponding
probability density of the area a,

g(a) = a−1/2

2
f (a1/2), (4)

and is plotted in Fig. 6(a). From this vantage, the positive
probability of finding a grain or a face with an arbitrarily small
effective radius in the 3DX or 3D systems is simply the result
of the probability density function of areas in these systems
decaying as a−1/2 near the origin.

The explanation for the peaks in the distribution of the
effective radii for the 2D system, and the corresponding ones in
the probability density function of the areas, is more involved.
For this purpose, we separate the grains of the 2D system
into classes with a fixed number of edges. The probability
density functions for the populations of grains in the separate
classes appear in Fig. 6(b), where they can be observed to be
smooth functions. Adding the separate curves in Fig. 6(b) to
obtain the distribution in Fig. 6(a) results in peaks precisely
where the distribution for grains with four sides intersects
that for grains with five, the distribution for grains with five
sides intersects that for grains with six, and the distribution
for grains with six sides intersects that for grains with seven.
Presumably other peaks occur at the remaining intersections
of these distributions, but the number of grains involved could
be small enough that the peak is not easily distinguished from
the background. This phenomenon has been recognized in the
literature before [27,34], though the apparent importance of
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(a)

(b)

FIG. 6. (Color online) (a) Grain areas in 2D and 3DX and face
areas in 3D. Error bars are smaller than the marker size. (b) Probability
density functions for grain areas in 2D with a fixed number of edges.
Areas are given in normalized units.

the combinatorial structure of the grains to the system as a
whole does not seem to be widely appreciated. This could
be due to the relative scarcity of sufficiently precise data to
adequately resolve the peaks, leading to several suggestions
that the areas follow an exponential distribution [18,43].

Following the transformation from Fig. 5(a) to Fig. 6(a), the
probability density function f (r) for the 3D system in Fig. 5(b)
is converted into a function of volume v,

g(v) = v−2/3

3
f (v1/3), (5)

and is plotted in Fig. 7. The most notable feature of the
resulting probability density function is the resemblance to an
exponential distribution. This striking result has been reported
previously [18,43,67]. An exponential distribution of volumes
implies a Weibull distribution for effective grain radii with
k = 3 and λ = 1 in Eq. (3), found by inverting Eq. (5).

FIG. 7. (Color online) Grain volumes, given in units of average
grain volume; error bars are smaller than the marker size.

The reason why a (near) exponential distribution is observed
remains unknown.

A second notable feature of the grain volume distribution
is the absence of multiple peaks analogous to those for the
area distribution of grains in the 2D system. One possible
explanation is that the separate distributions corresponding
to those in Fig. 6(b) more nearly overlap [67], making
the transitions less abrupt. Alternatively, the MacPherson-
Srolovitz relation indicates that the combinatorial type of a
grain in a 3D system does not directly govern its volume
evolution, suggesting that a division of the grains into distinct
classes based on combinatorial type would not be especially
meaningful.

We note that many grain size distributions have been re-
ported (e.g., see recent simulation data for 2D [17,27,32], 3DX
[32,33,43], and 3D [26,33,67]). While these results appear
consistent between the different studies, the very large samples
represented in the data presented here bring new features to
the fore, including the statistically significant deviation of the
grain volume distribution from a pure exponential.

3. Lewis’s law, Feltham’s law, and generalizations

While the importance of combinatorially distinct popu-
lations of grains to the peaks in the grain area distribution
function in 2D is not widely recognized, the importance of
combinatorially distinct classes has been considered in other
contexts. When investigating a section of cucumber epidermis,
Lewis [45] noticed that cell areas appeared to be proportional
to their number of sides n, for values of n ranging from about
four to seven. This relationship is often referred to as Lewis’s
law and plays an important part in the application of the
maximum entropy formalism to the structural properties of
cellular networks [50,53,68]. While it is widely believed that
Lewis’s law is a general result that holds over a wide range
of n (neglecting Lewis’s original qualification), the areas of
the grains in the 2D system do not appear to follow Lewis’s
law over an appreciable range; see Fig. 8(a). Similarly, the
same figure indicates that Lewis’s law neither applies widely
to grain areas in 3DX nor to face areas in the 3D system. This
conclusion is supported by other literature [16,69], as well.
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(a)

(b)

FIG. 8. (Color online) (a) Average area of grains (2D and 3DX)
or faces (3D) with a given number of edges. (b) Average perimeter
of grains (2D and 3DX) or faces (3D) with a given number of edges.
Areas and perimeters given in normalized units; some error bars are
smaller than the marker size.

The situation is slightly better for the extension of this
relation to 3D in Fig. 9(c), where the average grain volume
appears to increase linearly with the number of faces n for n �
20. This is consistent with the literature [38], though Fig. 4(b)
indicates that this extension of Lewis’s law would hold only
for a relatively small fraction of the grains in the system.

Feltham [46] provided experimental data on annealed tin
in support of the claim that the average linear measure of a
two-dimensional grain increases linearly with its number of
edges; this is referred to as Feltham’s law [70–73]. Figure 8(b)
indicates how perimeters of grains in the 2D and 3DX systems,
and of faces in the 3D system, increase with number of
edges. Of course, a single system cannot simultaneously follow
Lewis’s law and Feltham’s law, and the respective accuracy of
the two is a question that has received some attention [71].
With regard to our simulations though, Feltham’s law does
not appear to hold for any of the cases in Fig. 8(b). Nor does

Feltham’s law hold for the analogous plot of the effective
radii of grains in the 3D system in Fig. 9(a). Our statistically
significant conclusion for an accurate normal grain growth
simulation is supported by several other simulations in 2D
[16,74] and 3D [33,43] but not by all [18,21,74].

Finally, Fig. 9(b) considers a relationship that lies between
Lewis’s law and Feltham’s law, namely, the dependence of the
average surface area of a grain in 3D on its number of faces.
There is a portion of the plot that could be considered linear,
though the noticeable deviations for low and high values of n

discourages any proposal that this is a fundamental feature of
the system.

4. Edge lengths, perimeters, and surface areas

Having studied the most common measures of grain size
in Sec. III A 2, we now consider the size of features on the
boundaries of grains. Figure 10(a) shows the distribution of
edge lengths for the 2D, 3DX, and 3D systems. As noted
previously with regard to Fig. 5(a), the distribution for a
genuinely two-dimensional structure is noticeably distinct
from a cross section of a three-dimensional one. A second
striking feature is that there is a finite probability of finding
an arbitrarily short edge in all three systems. However, since
the 2D and 3D evolution equations do not reference the
features of individual edges, there is no reason to question
the existence of arbitrarily short edges in normal grain growth
situations. Although this distribution appears infrequently
in the literature, Thomas [44] performed a Monte Carlo
simulation of a 3D system and reported an edge length
distribution substantially different from ours. We suspect that
this is attributable to the difficulty of measuring edge lengths
for voxelized grains, particularly for short edges.

The absence of the grain perimeter in the evolution
equations can be used to explain the finite probability of an
arbitrarily small perimeter for a grain in the 3DX system
and for a face in the 3D system as well, as indicated in
Fig. 10(b). This does not apply for the perimeters of grains
in the 2D system though, since Fig. 8(b) indicates that a grain
with a small perimeter will generally have few edges, and
therefore becomes smaller (to the point of vanishing). The most
conspicuous feature of Fig. 10(b), though, is the resemblance
to Fig. 5(a). Indeed, they should be related by a rescaling of
the independent variable, since both give a probability density
function of a linear measure of the size of a grain. This implies
that the peaks in the distribution for the 2D system result
from the separation of the grains into combinatorially distinct
populations.

The remaining boundary element is unique to three-
dimensional grains. Figure 11 shows the distribution of surface
areas of grains for the 3D system; similar distributions of
grain surface areas have been reported previously [43,44].
Although the bin for the smallest grain surface area shows
a substantial probability density, the trend in this distribution
does not necessarily imply that the probability density at zero
grain surface area is finite.

5. Isoperimetric ratios

Another way to characterize individual grains is by the
deviation of their shape from a circle or sphere in two or three
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(a) (b) (c)

FIG. 9. (Color online) (a) Average effective radius, (b) surface area, and (c) volume of grains with a given number of faces for 3D. Using
least-squares fitting, the average volume of grains with n faces for n � 20 follows the linear relation an + b with a = 0.260 ± 0.001 and
b = 2.97 ± 0.03. Effective radius, surface area, and volume are given in normalized units; some error bars are smaller than the marker size.

(a)

(b)

FIG. 10. (Color online) (a) Edge lengths in 2D, 3DX, and 3D.
(b) Grain perimeters in 2D and 3DX and face perimeters in 3D.
Edge lengths and perimeters given in normalized units; error bars are
smaller than the marker size.

dimensions, respectively. For a grain in two dimensions or a
face in three dimensions, the isoperimetric ratio is defined as
the ratio of the area A of a grain to the area of a circle with
the same perimeter P , or 4πA/P 2. Figure 12(a) shows this
quantity for grains in 2D and 3DX and for grain faces in 3D.
Similarly, for a grain in three dimensions the isoperimetric
ratio is defined as the ratio of the square of the volume V of
a grain to the square of the volume of a sphere having the
same surface area S, or 36πV 2/S3. Figure 12(b) shows the
distribution of this measure for grains from the 3D system.

The isoperimetric inequality states that the isoperimetric
ratio is bounded above by one, with equality only for a sphere.
Clearly, all of the data peak close to unity, indicating that
grains in normal grain growth microstructures are quite close
to spheres (this is consistent with the microstructures seen in
Fig. 1). The average isoperimetric ratios of grains in the 2D and
3DX systems, and of faces in the 3D system, are 0.85628 ±
0.00004, 0.7817 ± 0.0004, and 0.76803 ± 0.00005, respec-
tively. That grains of the 2D system are considerably more
circular than grains of the 3D and 3DX systems should be
expected from energetic considerations, since the energy of
the 2D system is proportional to the total boundary length.
Evolution along the steepest descent in energy therefore drives

FIG. 11. (Color online) Grain surface areas, in normalized units;
error bars are smaller than the marker size.
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(a)

(b)

FIG. 12. (Color online) (a) Isoperimetric ratios for grains in 2D
and 3DX, and for faces in 3D. (b) Isoperimetric ratios for grains in
3D. Error bars are smaller than the marker size.

the grains of the 2D system to be more circular, subject to
the constraint that they remain space filling. For comparison,
we note that the isoperimetric ratio for (space-filling) regular
hexagons is ≈0.907.

Meanwhile, the average isoperimetric ratio of grains in 3D
is 0.6571 ± 0.0002. This should not be directly compared
with the corresponding quantity in two dimensions, though,
since the isoperimetric ratio in two and three dimensions is the
quotient of quantities with dimensions of the second and sixth
powers of length, respectively. Accounting for this difference
by taking the cube root of 0.6571 gives 0.8694, implying that
that grains in three dimensions are slightly more spherical than
those in two dimensions are circular, as could be expected
from the increase in geometrical degrees of freedom with
dimension. For comparison, we note that the isoperimetric
ratio for (space-filling) truncated octahedra is ≈0.753.

While the energetic argument, above, applies to normal
grain growth structures, the grains of other cellular microstruc-

(a)

(b)

FIG. 13. (Color online) (a) Mean widths of grains, in normalized
units; error bars are smaller than the marker size. (b) Average mean
width, average sum of triple edge lengths bounding a grain, and
average sum of those quantities over all grains with a given number
of faces.

tures are often substantially less spherical. For instance, the
cells in Voronoi tessellations of Poisson distributed points
have average isoperimetric ratios of 0.7281 ± 0.0001 and
0.53320 ± 0.00005 in two and three dimensions, respectively.

6. Mean width and related quantities

One measure of particular importance in view of the
MacPherson-Srolovitz relation is the mean width of grains
in three dimensions. The probability distribution for the mean
width is plotted in Fig. 13(a). Since the importance of the
mean width for normal grain growth has only recently been
appreciated [41], no experimental studies and relatively few
simulations (e.g., see, Ref. [36]) report this quantity. Inspection
of Fig. 13(a) reveals that this distribution nearly coincides
with the plot in Fig. 5(b). While the coincidence of these
probability density functions does not necessarily imply that
the mean width of a particular grain scales with the cubed
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root of its volume, this observation could help to formulate
a closed set of equations involving the MacPherson-Srolovitz
relation [Eq. (2)], much in the same way that the Hillert theory
of grain growth [66] is based upon the von Neumann–Mullins
relation.

The sum of the bounding triple edge lengths appears
together with the mean width in the MacPherson-Srolovitz
relation for grain growth in 3D. To explore the interaction of
the mean width L of a grain and the sum of the bounding triple
edge lengths M in determining the growth rate, we consider
the averages of these quantities over all grains with a fixed
number of faces in Fig. 13(b). When scaled appropriately,
these quantities can be summed to determine the average
growth rate of grains with a given number of faces (plotted as
the dot-dashed curve with triangular markers). An analysis of
regular polyhedra [57] gives a prediction for the mean width
of grains as a function of their number of faces, though the
difference of the prediction from our results reveals that grains
with small number of faces often differ substantially from
regular polyhedra. Following the same line of reasoning, a
prediction [75] for the rate of change of volume of a grain
roughly follows the dot-dashed curve in Fig. 13(b) for grains
with many faces. The difference between this prediction from
our results for grains with few faces is quite significant,
though, since grains with few faces often evolve the most
rapidly.

Notice that the expected mean width and sum of the triple
edges of a grain increase with its number of faces for grains
with many faces. For grains with few faces, the mean width
dominates the MacPherson-Srolovitz equation, and the grain
shrinks. For grains with many faces, the sum of the triple edges
dominates the equation and the grain grows. The crossover
occurs for grains with approximately 15 faces. Curiously,
there does not appear to be agreement between any of the
simulations results [36,37,44] corresponding to the dot-dashed
curve in Fig. 13(b). The origin of this inconsistency is not
known, though the frequent disagreement for grains with
small numbers of faces suggests that the cause could be an
inconsistent treatment of small grains.

B. Quantities correlated over metric distance

Many features of a microstructure depend not only on
properties of its individual grains but also on their arrangement
relative to one another. A variety of functions can be used to
characterize these geometric features, including the two-point
correlation function for two-phase materials [76,77] and the
radial pair correlation function for liquids or amorphous solids
[78,79]. The quantity measured in this section is similar to
the usual radial pair correlation function but is applied to the
grains of a microstructure rather than to atoms of a liquid.

Specifically, let xi and yj be values of a property of interest
(e.g., volume, surface area) for the ith and j th grains of the
microstructure. The indicator function χij (ρ) is equal to 1
when the j th grain intersects a sphere of radius ρ constructed
around the center of mass of the ith grain and vanishes
otherwise. Notice that χij (ρ) is not necessarily symmetric
in i and j . Finally, let 〈x〉 and 〈y〉 indicate the weighted
average values of xi and yi , calculated using the expres-
sions

∑
ij χij (ρ)xi/

∑
ij χij (ρ) and

∑
ij χij (ρ)yj/

∑
ij χij (ρ),

respectively. The Pearson correlation coefficient between the
values of this property for a central grain and the grains residing
at some distance ρ is given by

rxy(ρ) =
∑

ij χij (ρ)(xi − 〈x〉)(yj − 〈y〉)√[ ∑
ij χij (ρ)(xi − 〈x〉)2

][∑
ij χij (ρ)(yj − 〈y〉)2

] ,

(6)

where the sums include all allowed values of i and j . The
correlation coefficient rxy is plotted in Fig. 14 for several
properties as a function of ρ.

The correlation between the numbers of edges of a pair of
grains for 2D and 3DX, and between the numbers of faces of
a pair of grains for 3D, is given in Fig. 14(a). We normalize
distance by the square root of the average grain area or cube
root of the average grain volume, as appropriate. The most
conspicuous feature of this plot is the strong peak at small
distances, caused by the perfect correlation of the number of
sides of a central grain with itself. As the distance from a

(a) (b) (c)

FIG. 14. (Color online) (a) Correlation between the number of edges (2D, 3DX) or faces (3D) of a central grain with those of surrounding
grains. (b) Correlation between the perimeter (2D, 3DX) or surface area (3D) of a central grain with those of surrounding grains. (c) Correlation
between the area (2D, 3DX) or volume (3D) of a central grain with those of surrounding grains.
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central grain increases this correlation oscillates, becoming
negative at a distance of about one average grain diameter and
positive at about two average grain diameters. This correlation
rapidly weakens, to the point that there is no noticeable
correlation between the number of sides of a central grain
with grains three (average) grain diameters or more away.

Figure 14(b) shows the correlation between perimeters of
neighboring grains in 2D and 3DX and between surface areas
of neighboring grains in 3D. Analogously, Fig. 14(c) gives
the correlation between areas of neighboring grains in 2D
and 3DX and between volumes of neighboring grains in 3D.
Despite the general consistency of the behavior described
above throughout the plots in Fig. 14, a comparison of the
correlations in the 2D, 3DX, and 3D systems reveals several
significant features. For example, the dimensionality of the
system appears to strongly influence the correlations to the
point that the curves for the 2D and 3DX systems nearly
overlap. This is particularly striking given the differences in
the statistical features of the 2D and 3DX systems reported in
Sec. III A and the differences in the origin of the structures.
Meanwhile, the correlations for the 3D system are consistently
weaker than for the two-dimensional systems. This is consis-
tent with the general principle that more degrees of freedom
are accessible to systems in higher dimensions. Finally, the
shoulder appearing in the plots of the 2D and 3DX systems at
a distance of about half a grain diameter does not appear to
have been noticed previously in the literature.

Some features of these figures can be explained by
separating the contributions into a part from the central grain,
a part from the nearest neighbors, and so forth. With reference
to Fig. 14(a), at a distance of roughly one average grain
diameter, the number of sides of a central grain is negatively
correlated with that of its surrounding grains. Assuming that
many of the grains intersected by a sphere of radius one
average grain diameter share a side with the central grain,
this negative correlation indicates a property of the nearest
neighbors. Specifically, this provides some support for the
Aboav-Weaire law [80,81] or the empirical observation that
grains with many sides are generally surrounded by grains
with few sides and vice versa.

A small positive correlation in the number of sides is
observed at a distance of two average grain diameters.
Following the above reasoning, one expects that a sphere
of this radius should generally intersect the second-nearest
neighbors, indicating that the average number of sides of the
second-nearest neighbors is weakly positively correlated with
the central grain. This can be explained as an iterated effect
of the Aboav-Weaire law. That is, the nearest neighbors of
a grain with many sides will generally have few sides, and
the nearest neighbors of any one of these nearest neighbors
with few sides will generally have many sides. Since the set of
nearest neighbors of the nearest neighbors shares many grains
with the set of second nearest neighbors of the central grain,
the Aboav-Weaire law implies that there should be a weak
positive correlation in the number of sides of a central grain
with the grains at about two average grain diameters.

As stated though, the Aboav-Weaire law relates the number
of sides of grains sharing a particular topological relationship,
not necessarily a particular spatial separation. The assumption
that the majority of grains at a distance of one average grain

FIG. 15. Bond distance calculated for neighboring grains in a
two-dimensional microstructure. The central grain is labeled C, and
numbers indicate bond distances to other grains.

diameter are nearest neighbors of the central grain, and that
many of the grains at a distance of two average grain diameters
are second-nearest neighbors of the central grain, appears to
be reasonable. Nevertheless, the use of a spatial separation
introduces a complication that could be avoided by considering
the topological relationship of the grains directly.

C. Quantities correlated over topological distance

An interpretation of the correlation functions reported in
Sec. III B relies on the separation of contributions from the
central grain, from the grains with which it shares a side,
and from grains further away. This separation suggests that
the features of the structure be studied directly for pairs
of grains with a given topological relationship rather than
indirectly for pairs of grains with a given spatial separation.
Several relevant notions of topological distance appear in the
literature, including shell distance [82–84] and bond distance
[85,86]. The bond distance between two grains is the minimum
number of edges in a path between their boundaries. As a
reference, Fig. 15 indicates the bond distances of neighboring
grains around a central grain in a simulated two-dimensional
microstructure. The shell distance between two grains is the
minimum number of grain boundaries that must be crossed to
go from the interior of one to the interior of the other.

As in Sec. III B, let xi and yj be values of a property of
interest (e.g., the number of sides of a grain) of the ith and j th
grains. The indicator function χij (d) is equal to 1 when the
j th grain is at bond distance d from the ith grain, and vanishes
otherwise. The joint probability f (x,y|d) is calculated from
all pairs of xi and yj for which χij (d) does not vanish. The
probability f (x|d) is calculated by summing f (x,y|d) over all
possible values of y. The conditional probability for y given
x is f (y|x,d) = f (y,x|d)

f (x|d) . In the following figures, we give
the mean and standard error of the mean of this conditional
probability distribution as functions of the value x of the central
grain and for d = 0, 1, and 2.

We now consider the number of edges or faces in two or
three dimensions, respectively. Earlier studies investigated the
relationship between the number of sides of a central grain to
the average number of sides of neighboring grains (i.e., bond
distance 0). This stems from the experimental observation by
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(a) (b) (c)

FIG. 16. (Color online) Average number of edges or faces of neighboring grains as a function of the number of edges or faces of a central
grain for bond distances 0, 1, and 2; where not indicated, error bars are smaller than the marker size. Predictions of Aboave-Weaire for d = 0
are shown as the plain dashed curves and are obtained using μ2 from Fig. 4 and a fitted to the data.

Aboav [80] on a cross section of polycrystalline MgO that
a grain with many sides is typically surrounded by grains
with few sides and vice versa. An equation, frequently known
as the Aboav-Weaire law [80,81], attempts to capture this
relationship by expressing the average number of sides of a
neighbor mn as a function of the number of sides of a central
grain with n sides:

mn = 〈n〉 − a + 〈n〉a + μ2

n
, (7)

where 〈n〉 is the average number of sides per grain in the
system, μ2 is the variance of the distribution of the number of
sides, and a is a fitting parameter depending on the structure
[52,87].

The correlation between the number of sides of grains and
the Aboav-Weaire law appear in Fig. 16. For bond distance 0,
the fitting parameters a are determined by least squares to be
a = 1.159 ± 0.004, 0.943 ± 0.007, and 0.074 ± 0.007 for the
2D, 3DX, and 3D systems, respectively. While the resulting
predictions agree with bond distance 0 averages reasonably
well, there is substantial deviation for central grains with small
number of sides, especially in 2D and 3DX. Indeed, these
deviations should be expected when applying Eq. (7), since
the usual Aboav-Weaire law neglects several terms that are
present in a more complete analysis [88].

Neighboring grains at bond distance 1 generally display a
behavior that is opposite to that for bond distance 0, i.e., they
tend to have few sides when the central grain has few and more
sides when the central grain has many. By contrast with the
grains at two average grain diameters in Sec. III B, though, this
cannot be explained as the iterated effect of the Aboav-Weaire
law. Consider that both grains at bond distances 1 and 2 are
nearest neighbors of grains at bond distance 0 in Fig. 15 and
that the average number of sides of grains at bond distance
2 is almost independent of the number of sides of the central
grain in Fig. 16. If the behavior of the grains at bond distance
1 could be explained as an iterated effect of the Aboav-Weaire
law, then the same behavior should be observed for grains at a
bond distance 2. This is contrary to the simulation results and
some other explanation is required.

The analysis of the average number of sides of grains at
bond distance 1 is made more manageable by identifying all
events that can change the set of grains at this bond distance.
The elementary topological transitions implemented in our
simulations [10,11] give six distinct events in two dimensions
(see Fig. 17) and seven distinct events in three dimensions.
Although our discussion focuses on two-dimensional events,
we assert that the three-dimensional case is analogous. The
numbers in Fig. 17 indicate the current bond distance of a
grain from a central grain C, while the +/− sign within each
grain indicates whether the grain has gained or lost an edge
as a result of the transition. Events (a)–(c) in Fig. 17 apply an
edge-flip to one of the edges in the vicinity of the central grain;
events (d)–(f) involve the collapse of a two or three-sided face.
Since the relative fraction of such faces in the structure is
small [see Fig. 4(a)], these events occur infrequently relative
to (a)–(c).

Statistics shown in Fig. 16 derive from normal grain-growth
microstructures, in which grains with few sides tend to
become smaller. In 2D, this is a direct consequence of the

(a) (b)

(c)

(e)

(d)

(f)

FIG. 17. All events that change the set of grains at bond distance
1 in two dimensions. Numbers indicate the bond distance of the grain
from a central grain C; +/− signs show whether the grain containing
the symbol gains or loses an edge during the event occurring in the
direction of the arrow.
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(a) (b) (c)

FIG. 18. (Color online) Average size of neighboring grains as a function of size of a central grain (in normalized units) and bond distance.
Spline curves have been added to provide a guide for the eye.

von Neumann–Mullins relation [Eq. (1)]; in 3D this is a result
of the trends in Fig. 13(b) along with the MacPherson-Srolovitz
relation [Eq. (2)]. A central grain with few sides will, therefore,
tend to become smaller and shed neighbors that replace the
grains at bond distance 1, as with event (a) in Fig. 17. Assuming
that the neighbors of the central grain most likely to be lost are
those themselves becoming smaller and losing sides, grains at
a bond distance 1 around a central grain with few sides should
have few sides as well.

A different mechanism is required to explain the observa-
tion that grains at bond distance 1 have slightly more than
the average number of sides when the central grain has many.
By reasoning analogous to that for the case of a central grain
with few sides, a central grain with many sides will generally
grow and acquire more sides. This suggests that event (b)
will occur frequently and event (a) will occur infrequently.
Event (c) should occur at an intermediate frequency since
this edge-flip does not interact directly with the central grain.
Notice that the most frequent events (b) and (c) move grains
from bond distance 2 into the population at bond distance 1.
From Fig. 16, grains at bond distance 2 should have the same
expected number of sides as the system average. While event
(b) moves these grains to bond distance 1 without changing
the number of sides, event (c) increases the number of sides of
the relevant grain by 1. The average number of sides of a grain
at bond distance 1 from a central grain with many sides should
therefore be expected to be slightly higher than the system
average.

We now examine the sizes of grains separated by a particular
bond distance, as indicated in Fig. 18. A consistent feature of
these results is that the average area or volume of neighboring
grains at bond distance 0 decreases with increasing area or
volume of a central grain; this is similar to the behavior of
the average number of sides of grains at bond distance 0 as a
function of the number of sides of a central grain in Fig. 16.
This similarity should be expected given the strong correlation
between the number of sides and the size of a grain as seen
in Figs. 8 and 9. More striking, however, is the observation
that for almost any bond distance and any size of central
grain, the average size of surrounding grains is higher than the
corresponding system average (i.e., unity). This phenomenon

is a consequence of the fact that grains with large areas and
many sides are neighbors to many grains and are included in
the averages of Fig. 18 more frequently than grains with small
areas and few sides. This shifts all of the curves upward; this
effect increases with increasing connectivity of the network as
occurs in going from two to three dimensions.

However, this does not explain why the average size of
neighboring grains at bond distance 1 is consistently higher
than the average size of grains at bond distance 2. For this
purpose, consider the grains in the vicinity of the central grain
C in Fig. 19. Suppose that the number of sides of the central
grain is n. When the central grain is surrounded by grains all
with six sides [e.g., see (b)], the number of grains at bond
distance 1 is n and the number of grains at bond distance 2
is n. A five-sided grain at bond distance 0, as in (a), reduces
the number of grains at bond distance 2 by 1. Conversely, a
grain with seven or more sides at bond distance 0, as in (c),
increases the number of grains at bond distance 2 by 1. Now,
grains of small area generally have few sides (see Fig. 8) and
grains with few sides generally have neighbors with many sides
(shown in Fig. 16). A small central grain will therefore have
more neighbors at bond distance 2 than at bond distance 1.
By analogous reasoning, a large central grain will have fewer
neighbors at bond distance 2 than at bond distance 1. Finally,
notice that bond distance is a symmetric function. Therefore,
a large grain will be observed more often at bond distance 1
from a central grain than at bond distance 2, while a small grain

(a) (b) (c)

FIG. 19. A central grain C with neighboring grains at various
bond distances. Illustrations highlight the effect of the number of
sides of grains at bond distance 0 on the total number of grains at
bond distance 2, as described in the text.
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(a) (b) (c)

FIG. 20. (Color online) Average boundary size of neighboring grains as a function of boundary size of a central grain (in normalized units).
Some error bars are smaller than the marker size.

will be observed more often at bond distance 2 from a central
grain than at bond distance 1. This difference in sampling will
drive the curves in Fig. 18 for bond distance 1 higher than the
curves for bond distance 2. The same reasoning pertains to the
three-dimensional case.

The final property of interest considered is the perimeter
or surface area of a grain; results are presented in Fig. 20.
Overall, the behavior is similar to that in Fig. 18 and
analogous explanations for this behavior apply. One significant
difference, however, is the appearance of distinct peaks in the
average perimeter of grains at bond distance 0 from a central
grain in the 2D system. The resemblance of these peaks to
the ones in Figs. 6(a) and 10(b) suggests that they arise from
the same source, i.e., from the separate contributions of grains
with different number of sides.

The results in this section suggest that analysis of a
microstructure by shell distance is generally not sufficient to
distinguish the arrangement or the characteristics of grains
around a central grain and that a more complete description of
topological relative position is required. While bond distance
provides one such alternative, it is clear that it remains an
incomplete measure of topological relative position.

D. Poisson-Voronoi microstructure

While we consider the steady-state, isotropic grain-growth
(curvature flow) microstructure to be the prototype or canon-
ical form of a polycrystalline microstructure, other relatively
simples types of microstructures are also discussed in the
literature. In general, different evolution or microstructure
formation laws yield microstructures with very different
statistical (geometric and topological) properties. Probably the
most widely discussed “other” microstructure is the Poisson-
Voronoi (PV) construction. In a materials science context,
the PV microstructure is often described as arising from the
simultaneous nucleation of grains at random positions in space
and the isotropic growth of these grains such that the velocity of
the growth front is constant in time. When two growth fronts
impinge, they are replaced by stationary grain boundaries,
resulting in a static PV microstructure. This microstructure
could apply in the extreme limits of phase transformations or

recrystallization [89,90]. Other similar nucleation and growth
laws have also been proposed [90,91].

(a)

(b)

FIG. 21. (Color online) Distribution of (a) faces per grain and
(b) normalized grain volumes from grain-growth and Poisson-
Voronoi microstructures.
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To illustrate several simple examples of the differences
between the PV and the steady state, isotropic grain-growth
microstructures, we compare the distribution of faces per grain
and grain volume in the two microstructures in Fig. 21(a).
Not only is the average number of faces per grain noticeably
smaller in the grain-growth microstructure, but the distribution
is considerably wider. The distribution of grain volumes
in the two systems also differs significantly. Whereas cell
volumes follow a near-exponential distribution in the grain
growth microstructure, small grains in PV microstructures are
vanishingly rare and the grain volume distribution is peaked
at finite grain size. Much more extensive sets of PV statistics
to compare with the other measurements in this paper can be
found elsewhere [92].

IV. DISCUSSION AND CONCLUSION

The existence of a statistically steady-state grain-growth
microstructure has been commonly conjectured in studies of
grain growth. To achieve such a statistical steady state, the
microstructure must undergo grain growth for sufficient time
for the system to “forget” its initial state. In simulations, the
initial state is typically a Voronoi tessellation of a random
distribution of points, while in experiment it is inherited
from prior processing. Substantial evolution requires growth
growth simulations to begin from a large number of initial
grains such that when statistics are measured, most of the
initial grains have been consumed. In the present study, we
report statistical analysis of some of the largest two- and
three-dimensional normal grain growth simulation data sets
produced to date. These simulations are accurate in that they
are consistent with the von Neumann–Mullins relation in two
dimensions [39,40] and the MacPherson-Srolovitz relation in
three dimensions [41]. A detailed description of the simulation
methods and their numerical errors can be found elsewhere
[10,11,42].

The simulation results presented here vividly illustrate a
number of qualitative differences between two-dimensional
systems and cross sections of three-dimensional ones. The
distribution of edges in the cross sections is noticeably
wider than in the genuine two-dimensional system, as is the
distribution of edge lengths. Cross sections thus contain a
larger fraction of grains with many sides, as well as a higher
fraction of very long edges. Moreover, grains in the genuine
two-dimensional system are significantly more circular than
grains in cross sections. These three differences can be
accounted for by considering that two-dimensional systems
evolve through a steepest descent path in energy, which in
two-dimensional systems is proportional to the total length of
the grain boundaries. This inhibits the development of very
long edges, grains with many edges, and grains with low
isoperimetric ratios. Because the evolution of cross sections is
not governed by the same energy-minimization considerations,
grains tend to be less circular, and long edges and grains with
many sides arise more frequently.

The more prominent feature distinguishing genuine two-
dimensional systems from cross sections of three-dimensional
ones can be observed in the distributions of grain areas
and perimeters. Two-dimensional systems exhibit bimodal
distributions of these quantities, whereas cross sections exhibit

unimodal ones. Although these features have been observed
previously, insufficient data have been available to draw
definitive conclusions. Given the accuracy in the data reported
here, these two trends cannot be attributed to noise. They
appear to result from the role that topology plays in the
evolution of genuine two-dimensional systems, which it does
not play in the evolution of cross sections.

We also observe important qualitative differences between
the 2D and 3D systems. In particular, we note that unlike
the bimodal distribution of grain areas and perimeters in
two-dimensional systems, the distribution of grain volumes
and surfaces areas in three dimensions is unimodal. This can
similarly be attributed to the reduced role of topology in three
dimensions: whereas the von Neumann–Mullins relationship
relates the growth rate of a grain to its topology, the analogous
MacPherson-Srolovitz relation does not.

Another significant finding of our simulations is the near-
exponential distribution of grain volumes in three-dimensional
systems. The probability density function of finding a grain
with a given normalized volume x is accurately described
by the simple exponential e−x . The reason for this near-
exponential distribution of the grain volumes is not known
and requires further inquiry.

We also find that while neither Lewis’s law or Feltham’s
law accurately describe the relationship between the number
of edges of a grain in two dimensions and its size, a similar
rule seems to hold in three dimensions. That is, the volume of
a grain appears to grow linearly with its number of faces n for
n � 20. It should, however, be noted that the fraction of grains
with 20 or more faces is rather small. We do not currently
understand the source of this relationship.

The last important set of results concerns pairwise cor-
relations between grains separated by some metric or topo-
logical distance. Our results illustrate a qualitative similarity
between two-dimensional systems and cross sections of three-
dimensional ones. The pairwise correlations between grains
separated by some metric distance appear very similar in
both systems despite the substantial difference in their origins.
Both of these systems exhibit correlations noticeably stronger
than those that appear in the three-dimensional system. It
appears that the dimension of the systems plays a larger
role in determining these correlations than the particular
method of generating them. In all three systems, we find
that pairwise correlations of sizes and shapes are roughly
zero at distances greater than three grain diameters. This
indicates that although the rules of evolution impose some
local ordering on a structure, this ordering vanishes rather
quickly.

Pairwise correlations between grains at different topolog-
ical separations provide additional insight into grain growth
structures and methods of measuring their properties. Neigh-
boring grains at bond distance 0 tend to have fewer sides
when a central grain has more sides and vice versa; this
is consistent with the classical Aboav-Weaire law. When
considering generalizations of the law to grains that are
not immediate neighbors, we observe that data for bond
distance 1 is almost always distinguished from data for
bond distance 2. This suggests that the traditional notion of
next-nearest neighbors—which fails to distinguish between
these two distances—is inadequate in analyzing grain-growth
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microstructures. In particular, we find that grains at bond
distance 1 tend to have few sides when the central grain
has few sides and vice versa; this correlation does not hold
for bond distance 2. All correlations between a central grain
and its neighbors vanish for grains at bond distances 3 or 4,
which illustrates that the ordering generated by grain-growth
evolution is fairly local.

We also consider generalizations of the Aboav-Weaire
law to correlations between metric properties of neighboring
grains. We note that for bond distance 0, the average area,
perimeter, volume, and surface area of a neighboring grain
decreases with increasing area, perimeter, volume, and surface
area of a central grain. This can be explained by the strong
correlation between the topology of a grain and its metric size
as investigated earlier in the paper. This data also illustrates
the role which topology plays in the genuine two-dimensional
structure, which exhibits multiple peaks in the data for
correlations of areas and perimeters between neighboring
grains; these peaks do not appear in the data from the cross
sections.

Finally, since the steady-state grain-growth microstruc-
ture is reasonably well defined, a comparison with the
Poisson-Voronoi microstructure is meaningful. The Poisson-
Voronoi microstructure is found to drastically differ, sug-
gesting that it is a poor representation of polycrystalline
microstructures that have experienced extensive grain growth.
Nonetheless, the ease of constructing PV microstructures
has led many researchers to use them to represent poly-
crystalline materials independent of the physical context
[93–95]. We respectfully argue that this practice should be
discontinued.
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Ludwig, D. Weygand, and P. Gumbsch, Script. Mater. 66, 1
(2012).

[9] H. Abdolvand, M. Majkut, J. Oddershede, S. Schmidt, U.
Lienert, B. J. Diak, P. J. Withers, and M. R. Daymond,
Int. J. Plasticity 70, 77 (2015).

[10] E. A. Lazar, R. D. MacPherson, and D. J. Srolovitz, Acta Mater.
58, 364 (2010).

[11] E. A. Lazar, J. K. Mason, R. D. MacPherson, and D. J. Srolovitz,
Acta Mater. 59, 6837 (2011).

[12] P. S. Sahni, G. S. Grest, M. P. Anderson, and D. J. Srolovitz,
Phys. Rev. Lett. 50, 263 (1983).

[13] G. S. Grest, M. P. Anderson, and D. J. Srolovitz, Phys. Rev. B
38, 4752 (1988).

[14] D. Fan and L. Q. Chen, Acta Mater 45, 611 (1997).
[15] D. Fan, C. Geng, and L. Q. Chen, Acta Mater. 45, 1115 (1997).
[16] D. Weygand and Y. Brechet, Philos. Mag. B 78, 329 (1998).
[17] D. Kinderlehrer, I. Livshits, and S. Ta’asan, SIAM J. Sci.

Comput. 28, 1694 (2006).
[18] M. P. Anderson, G. S. Grest, and D. J. Srolovitz, Philos. Mag. B

59, 293 (1989).

[19] P. Mulheran and J. H. Harding, Acta Metall. Mater. 39, 2251
(1991).

[20] E. A. Holm, J. A. Glazier, D. J. Srolovitz, and G. S. Grest,
Phys. Rev. A 43, 2662 (1991).

[21] Y. J. Kim, S. K. Hwang, M. H. Kim, S. I. Kwun, and S. W. Chae,
Mat. Sci. Eng. A-Struct. 408, 110 (2005).

[22] J. Geiger, A. Roosz, and P. Barkoczy, Acta Mater. 49, 623
(2001).

[23] D. Raabe, Ann. Rev. Mater. Res. 32, 53 (2002).
[24] K. G. F. Janssens, Modell. Simul. Mater. Sci. Eng. 11, 157

(2003).
[25] H. L. Ding, Y. Z. He, L. F. Liu, and W. J. Ding, J. Cryst. Growth

293, 489 (2006).
[26] C. E. Krill III and L.-Q. Chen, Acta Mater. 50, 3057 (2002).
[27] S. G. Kim, D. I. Kim, W. T. Kim, and Y. B. Park, Phys. Rev. E

74, 061605 (2006).
[28] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

(1993).
[29] V. Tikare, E. A. Holm, D. Fan, and L. Q. Chen, Acta Mater. 47,

363 (1998).
[30] L. Vanherpe, N. Moelans, B. Blanpain, and S. Vandewalle,

Phys. Rev. E 76, 056702 (2007).
[31] M. R. Dorr, J. L. Fattebert, M. E. Wickett, J. F. Belak, and P. E.

A. Turchi, J. Comput. Phys. 229, 626 (2010).
[32] M. Elsey, S. Esedoglu, and P. Smereka, J. Comput. Phys. 228,

8015 (2009).
[33] M. Elsey, S. Esedoglu, and P. Smereka, Proc. Roy. Soc. A-Math.

Phy. 467, 381 (2011).
[34] T. Nagai, S. Ohta, K. Kawasaki, and T. Okuzono, Phase Transit

28, 177 (1990).
[35] A. Kuprat, SIAM J. Sci. Comput. 22, 535 (2000).
[36] L. A. Barrales-Mora, G. Gottstein, and L. S. Shvindlerman,

Acta Mater. 56, 5915 (2008).
[37] M. Syha and D. Weygand, Modell. Simul. Mater. Sci. Eng. 18,

015010 (2010).

063308-17

http://dx.doi.org/10.1063/1.336528
http://dx.doi.org/10.1063/1.336528
http://dx.doi.org/10.1063/1.336528
http://dx.doi.org/10.1063/1.336528
http://dx.doi.org/10.1007/BF02643395
http://dx.doi.org/10.1007/BF02643395
http://dx.doi.org/10.1007/BF02643395
http://dx.doi.org/10.1007/BF02643395
http://dx.doi.org/10.1046/j.1365-2818.2001.00832.x
http://dx.doi.org/10.1046/j.1365-2818.2001.00832.x
http://dx.doi.org/10.1046/j.1365-2818.2001.00832.x
http://dx.doi.org/10.1046/j.1365-2818.2001.00832.x
http://dx.doi.org/10.1016/j.scriptamat.2006.02.039
http://dx.doi.org/10.1016/j.scriptamat.2006.02.039
http://dx.doi.org/10.1016/j.scriptamat.2006.02.039
http://dx.doi.org/10.1016/j.scriptamat.2006.02.039
http://dx.doi.org/10.1016/j.matchar.2014.02.009
http://dx.doi.org/10.1016/j.matchar.2014.02.009
http://dx.doi.org/10.1016/j.matchar.2014.02.009
http://dx.doi.org/10.1016/j.matchar.2014.02.009
http://dx.doi.org/10.1016/j.msea.2009.04.009
http://dx.doi.org/10.1016/j.msea.2009.04.009
http://dx.doi.org/10.1016/j.msea.2009.04.009
http://dx.doi.org/10.1016/j.msea.2009.04.009
http://dx.doi.org/10.1016/j.scriptamat.2011.08.005
http://dx.doi.org/10.1016/j.scriptamat.2011.08.005
http://dx.doi.org/10.1016/j.scriptamat.2011.08.005
http://dx.doi.org/10.1016/j.scriptamat.2011.08.005
http://dx.doi.org/10.1016/j.ijplas.2015.03.001
http://dx.doi.org/10.1016/j.ijplas.2015.03.001
http://dx.doi.org/10.1016/j.ijplas.2015.03.001
http://dx.doi.org/10.1016/j.ijplas.2015.03.001
http://dx.doi.org/10.1016/j.actamat.2009.09.008
http://dx.doi.org/10.1016/j.actamat.2009.09.008
http://dx.doi.org/10.1016/j.actamat.2009.09.008
http://dx.doi.org/10.1016/j.actamat.2009.09.008
http://dx.doi.org/10.1016/j.actamat.2011.07.052
http://dx.doi.org/10.1016/j.actamat.2011.07.052
http://dx.doi.org/10.1016/j.actamat.2011.07.052
http://dx.doi.org/10.1016/j.actamat.2011.07.052
http://dx.doi.org/10.1103/PhysRevLett.50.263
http://dx.doi.org/10.1103/PhysRevLett.50.263
http://dx.doi.org/10.1103/PhysRevLett.50.263
http://dx.doi.org/10.1103/PhysRevLett.50.263
http://dx.doi.org/10.1103/PhysRevB.38.4752
http://dx.doi.org/10.1103/PhysRevB.38.4752
http://dx.doi.org/10.1103/PhysRevB.38.4752
http://dx.doi.org/10.1103/PhysRevB.38.4752
http://dx.doi.org/10.1016/S1359-6454(96)00200-5
http://dx.doi.org/10.1016/S1359-6454(96)00200-5
http://dx.doi.org/10.1016/S1359-6454(96)00200-5
http://dx.doi.org/10.1016/S1359-6454(96)00200-5
http://dx.doi.org/10.1016/S1359-6454(96)00221-2
http://dx.doi.org/10.1016/S1359-6454(96)00221-2
http://dx.doi.org/10.1016/S1359-6454(96)00221-2
http://dx.doi.org/10.1016/S1359-6454(96)00221-2
http://dx.doi.org/10.1080/13642819808206731
http://dx.doi.org/10.1080/13642819808206731
http://dx.doi.org/10.1080/13642819808206731
http://dx.doi.org/10.1080/13642819808206731
http://dx.doi.org/10.1137/030601971
http://dx.doi.org/10.1137/030601971
http://dx.doi.org/10.1137/030601971
http://dx.doi.org/10.1137/030601971
http://dx.doi.org/10.1080/13642818908220181
http://dx.doi.org/10.1080/13642818908220181
http://dx.doi.org/10.1080/13642818908220181
http://dx.doi.org/10.1080/13642818908220181
http://dx.doi.org/10.1016/0956-7151(91)90007-N
http://dx.doi.org/10.1016/0956-7151(91)90007-N
http://dx.doi.org/10.1016/0956-7151(91)90007-N
http://dx.doi.org/10.1016/0956-7151(91)90007-N
http://dx.doi.org/10.1103/PhysRevA.43.2662
http://dx.doi.org/10.1103/PhysRevA.43.2662
http://dx.doi.org/10.1103/PhysRevA.43.2662
http://dx.doi.org/10.1103/PhysRevA.43.2662
http://dx.doi.org/10.1016/j.msea.2005.07.046
http://dx.doi.org/10.1016/j.msea.2005.07.046
http://dx.doi.org/10.1016/j.msea.2005.07.046
http://dx.doi.org/10.1016/j.msea.2005.07.046
http://dx.doi.org/10.1016/S1359-6454(00)00352-9
http://dx.doi.org/10.1016/S1359-6454(00)00352-9
http://dx.doi.org/10.1016/S1359-6454(00)00352-9
http://dx.doi.org/10.1016/S1359-6454(00)00352-9
http://dx.doi.org/10.1146/annurev.matsci.32.090601.152855
http://dx.doi.org/10.1146/annurev.matsci.32.090601.152855
http://dx.doi.org/10.1146/annurev.matsci.32.090601.152855
http://dx.doi.org/10.1146/annurev.matsci.32.090601.152855
http://dx.doi.org/10.1088/0965-0393/11/2/304
http://dx.doi.org/10.1088/0965-0393/11/2/304
http://dx.doi.org/10.1088/0965-0393/11/2/304
http://dx.doi.org/10.1088/0965-0393/11/2/304
http://dx.doi.org/10.1016/j.jcrysgro.2006.05.060
http://dx.doi.org/10.1016/j.jcrysgro.2006.05.060
http://dx.doi.org/10.1016/j.jcrysgro.2006.05.060
http://dx.doi.org/10.1016/j.jcrysgro.2006.05.060
http://dx.doi.org/10.1103/PhysRevE.74.061605
http://dx.doi.org/10.1103/PhysRevE.74.061605
http://dx.doi.org/10.1103/PhysRevE.74.061605
http://dx.doi.org/10.1103/PhysRevE.74.061605
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1016/S1359-6454(98)00313-9
http://dx.doi.org/10.1016/S1359-6454(98)00313-9
http://dx.doi.org/10.1016/S1359-6454(98)00313-9
http://dx.doi.org/10.1016/S1359-6454(98)00313-9
http://dx.doi.org/10.1103/PhysRevE.76.056702
http://dx.doi.org/10.1103/PhysRevE.76.056702
http://dx.doi.org/10.1103/PhysRevE.76.056702
http://dx.doi.org/10.1103/PhysRevE.76.056702
http://dx.doi.org/10.1016/j.jcp.2009.09.041
http://dx.doi.org/10.1016/j.jcp.2009.09.041
http://dx.doi.org/10.1016/j.jcp.2009.09.041
http://dx.doi.org/10.1016/j.jcp.2009.09.041
http://dx.doi.org/10.1016/j.jcp.2009.07.020
http://dx.doi.org/10.1016/j.jcp.2009.07.020
http://dx.doi.org/10.1016/j.jcp.2009.07.020
http://dx.doi.org/10.1016/j.jcp.2009.07.020
http://dx.doi.org/10.1098/rspa.2010.0194
http://dx.doi.org/10.1098/rspa.2010.0194
http://dx.doi.org/10.1098/rspa.2010.0194
http://dx.doi.org/10.1098/rspa.2010.0194
http://dx.doi.org/10.1080/01411599008207938
http://dx.doi.org/10.1080/01411599008207938
http://dx.doi.org/10.1080/01411599008207938
http://dx.doi.org/10.1080/01411599008207938
http://dx.doi.org/10.1137/S1064827598348374
http://dx.doi.org/10.1137/S1064827598348374
http://dx.doi.org/10.1137/S1064827598348374
http://dx.doi.org/10.1137/S1064827598348374
http://dx.doi.org/10.1016/j.actamat.2008.08.006
http://dx.doi.org/10.1016/j.actamat.2008.08.006
http://dx.doi.org/10.1016/j.actamat.2008.08.006
http://dx.doi.org/10.1016/j.actamat.2008.08.006
http://dx.doi.org/10.1088/0965-0393/18/1/015010
http://dx.doi.org/10.1088/0965-0393/18/1/015010
http://dx.doi.org/10.1088/0965-0393/18/1/015010
http://dx.doi.org/10.1088/0965-0393/18/1/015010


MASON, LAZAR, MACPHERSON, AND SROLOVITZ PHYSICAL REVIEW E 92, 063308 (2015)

[38] K. Fuchizaki, T. Kusaba, and K. Kawasaki, Philos. Mag. B 71,
333 (1995).

[39] J. von Neumann, in Metal Interfaces (American Society for
Metals, Cleveland, OH, 1952), pp. 108–110.

[40] W. W. Mullins, J Appl Phys 27, 900 (1956).
[41] R. D. MacPherson and D. J. Srolovitz, Nature 446, 1053 (2007).
[42] E. A. Lazar, The Evolution of Cellular Structures via Curvature

Flow, Ph.D. thesis, Princeton University (2011).
[43] F. Wakai, N. Enomoto, and H. Ogawa, Acta Mater. 48, 1297

(2000).
[44] G. L. Thomas, R. M. C. de Almeida, and F. Graner, Phys. Rev.

E 74, 021407 (2006).
[45] F. T. Lewis, Anatom. Rec. 38, 341 (1928).
[46] P. Feltham, Acta Metall. Mater. 5, 97 (1957).
[47] V. E. Fradkov, A. S. Kravchenko, and L. S. Shvindlerman,

Script. Mater. 19, 1291 (1985).
[48] D. J. Rowenhorst, A. C. Lewis, and G. Spanos, Acta Mater. 58,

5511 (2010).
[49] P. R. Rios and M. E. Glicksman, Acta Mater. 56, 1165 (2008).
[50] N. Rivier, Physica D 23, 129 (1986).
[51] D. Weaire and N. Rivier, Contemp. Phys. 25, 59 (1984).
[52] M. A. Fortes, J. Phys.-Paris 50, 725 (1989).
[53] N. Rivier and A. Lissowski, J. Phys. A-Math. Gen. 15, L143

(1982).
[54] R. Kusner, Proc. Roy. Soc. Lond. A Mat. 439, 683 (1992).
[55] R. T. DeHoff, Acta Metall. Mater. 42, 2633 (1994).
[56] S. Hilgenfeldt, A. M. Kraynik, S. A. Koehler, and H. A. Stone,

Phys. Rev. Lett. 86, 2685 (2001).
[57] M. E. Glicksman, Philos. Mag. 85, 3 (2005).
[58] H. S. M. Coxeter, Illinois J. Math. 2, 746 (1958).
[59] P. R. Rios and M. E. Glicksman, Acta Mater. 55, 1565 (2007).
[60] W. Fayad, C. V. Thompson, and H. J. Frost, Script. Mater. 40,

1199 (1999).
[61] D. Weygand, Y. Brechet, J. Lepinoux, and W. Gust, Philos. Mag.

B 79, 703 (1999).
[62] P. A. Beck, Adv. Phys. 3, 245 (1954).
[63] D. A. Aboav and T. G. Langdon, Metallography 2, 171 (1969).
[64] W. M. Williams and C. S. Smith, J. Met. 4, 755 (1952).
[65] E. A. Lazar, J. K. Mason, R. D. MacPherson, and D. J. Srolovitz,

Phys. Rev. Lett. 109, 095505 (2012).
[66] M. Hillert, Acta Metall. Mater. 13, 227 (1965).
[67] H. Wang, G. quan Liu, and X. ge Qin, Int. J. Min. Met. Mater.

16, 37 (2009).

[68] N. Rivier, Philos. Mag. B 52, 795 (1985).
[69] J. Stavans, Rep. Prop. Phys. 56, 733 (1993).
[70] S. Ling, M. P. Anderson, G. S. Grest, and J. A. Glazier, in

Materials Science Forum, Vol. 94 (Trans Tech Publications Inc.,
Enfield, NH, 1992), pp. 39–52.

[71] K. Y. Szeto and W. Y. Tam, Physica A 221, 256 (1995).
[72] R. M. C. De Almeida and J. C. M. Mombach, Physica A 236,

268 (1997).
[73] U. Thiele and K. Eckert, Phys. Rev. E 58, 3458 (1998).
[74] Y. Saito, ISIJ Int. 38, 559 (1998).
[75] M. E. Glicksman, P. R. Rios, and D. J. Lewis, Philos. Mag. 89,

389 (2009).
[76] Y. Jiao, F. H. Stillinger, and S. Torquato, Proc. Natl. Acad. Sci.

USA 106, 17634 (2009).
[77] D. T. Fullwood, S. R. Niezgoda, and S. R. Kalidindi, Acta Mater.

56, 942 (2008).
[78] E. R. Weeks and D. A. Weitz, Phys. Rev. Lett. 89, 095704 (2002).
[79] C. Y. Lee, Z. H. Stachurski, and T. R. Welberry, Acta Mater. 58,

615 (2010).
[80] D. A. Aboav, Metallography 3, 383 (1970).
[81] D. Weaire, Metallography 7, 157 (1974).
[82] M. A. Fortes and P. Pina, Philos. Mag. B 67, 263 (1993).
[83] T. Aste, D. Boose, and N. Rivier, Phys. Rev. E 53, 6181 (1996).
[84] T. Aste, K. Y. Szeto, and W. Y. Tam, Phys. Rev. E 54, 5482

(1996).
[85] H. M. Ohlenbusch, T. Aste, B. Dubertret, and N. Rivier,

Eur. Phys. J. B 2, 211 (1998).
[86] B. Dubertret, K. Y. Szeto, and W. Y. Tam, Europhys. Lett. 45,

143 (1999).
[87] D. A. Aboav, Metallography 13, 43 (1980).
[88] J. K. Mason, R. Ehrenborg, and E. A. Lazar, J. Phys. A-Math.

Theor. 45, 065001 (2012).
[89] J. L. Meijering, Philips Res. Rep. 8, 270 (1953).
[90] W. A. Johnson and R. F. Mehl, Trans. AIME 135, 416 (1939).
[91] J. W. Christian, The Theory of Transformations in Metals and

Alloys (Elsevier Science Ltd, Oxford, UK, 2002).
[92] E. A. Lazar, J. K. Mason, R. D. MacPherson, and D. J. Srolovitz,

Phys. Rev. E 88, 063309 (2013).
[93] A. Hasnaoui, H. Van Swygenhoven, and P. Derlet, Acta Mater.

50, 3927 (2002).
[94] A. Latapie and D. Farkas, Phys. Rev. B 69, 134110 (2004).
[95] Z. Wu, Y. Zhang, M. Jhon, and D. Srolovitz, Acta Mater. 61,

5807 (2013).

063308-18

http://dx.doi.org/10.1080/13642819508239038
http://dx.doi.org/10.1080/13642819508239038
http://dx.doi.org/10.1080/13642819508239038
http://dx.doi.org/10.1080/13642819508239038
http://dx.doi.org/10.1063/1.1722511
http://dx.doi.org/10.1063/1.1722511
http://dx.doi.org/10.1063/1.1722511
http://dx.doi.org/10.1063/1.1722511
http://dx.doi.org/10.1038/nature05745
http://dx.doi.org/10.1038/nature05745
http://dx.doi.org/10.1038/nature05745
http://dx.doi.org/10.1038/nature05745
http://dx.doi.org/10.1016/S1359-6454(99)00405-X
http://dx.doi.org/10.1016/S1359-6454(99)00405-X
http://dx.doi.org/10.1016/S1359-6454(99)00405-X
http://dx.doi.org/10.1016/S1359-6454(99)00405-X
http://dx.doi.org/10.1103/PhysRevE.74.021407
http://dx.doi.org/10.1103/PhysRevE.74.021407
http://dx.doi.org/10.1103/PhysRevE.74.021407
http://dx.doi.org/10.1103/PhysRevE.74.021407
http://dx.doi.org/10.1002/ar.1090380305
http://dx.doi.org/10.1002/ar.1090380305
http://dx.doi.org/10.1002/ar.1090380305
http://dx.doi.org/10.1002/ar.1090380305
http://dx.doi.org/10.1016/0001-6160(57)90136-0
http://dx.doi.org/10.1016/0001-6160(57)90136-0
http://dx.doi.org/10.1016/0001-6160(57)90136-0
http://dx.doi.org/10.1016/0001-6160(57)90136-0
http://dx.doi.org/10.1016/0036-9748(85)90053-5
http://dx.doi.org/10.1016/0036-9748(85)90053-5
http://dx.doi.org/10.1016/0036-9748(85)90053-5
http://dx.doi.org/10.1016/0036-9748(85)90053-5
http://dx.doi.org/10.1016/j.actamat.2010.06.030
http://dx.doi.org/10.1016/j.actamat.2010.06.030
http://dx.doi.org/10.1016/j.actamat.2010.06.030
http://dx.doi.org/10.1016/j.actamat.2010.06.030
http://dx.doi.org/10.1016/j.actamat.2007.11.010
http://dx.doi.org/10.1016/j.actamat.2007.11.010
http://dx.doi.org/10.1016/j.actamat.2007.11.010
http://dx.doi.org/10.1016/j.actamat.2007.11.010
http://dx.doi.org/10.1016/0167-2789(86)90120-X
http://dx.doi.org/10.1016/0167-2789(86)90120-X
http://dx.doi.org/10.1016/0167-2789(86)90120-X
http://dx.doi.org/10.1016/0167-2789(86)90120-X
http://dx.doi.org/10.1080/00107518408210979
http://dx.doi.org/10.1080/00107518408210979
http://dx.doi.org/10.1080/00107518408210979
http://dx.doi.org/10.1080/00107518408210979
http://dx.doi.org/10.1051/jphys:01989005007072500
http://dx.doi.org/10.1051/jphys:01989005007072500
http://dx.doi.org/10.1051/jphys:01989005007072500
http://dx.doi.org/10.1051/jphys:01989005007072500
http://dx.doi.org/10.1088/0305-4470/15/3/012
http://dx.doi.org/10.1088/0305-4470/15/3/012
http://dx.doi.org/10.1088/0305-4470/15/3/012
http://dx.doi.org/10.1088/0305-4470/15/3/012
http://dx.doi.org/10.1098/rspa.1992.0177
http://dx.doi.org/10.1098/rspa.1992.0177
http://dx.doi.org/10.1098/rspa.1992.0177
http://dx.doi.org/10.1098/rspa.1992.0177
http://dx.doi.org/10.1016/0956-7151(94)90205-4
http://dx.doi.org/10.1016/0956-7151(94)90205-4
http://dx.doi.org/10.1016/0956-7151(94)90205-4
http://dx.doi.org/10.1016/0956-7151(94)90205-4
http://dx.doi.org/10.1103/PhysRevLett.86.2685
http://dx.doi.org/10.1103/PhysRevLett.86.2685
http://dx.doi.org/10.1103/PhysRevLett.86.2685
http://dx.doi.org/10.1103/PhysRevLett.86.2685
http://dx.doi.org/10.1080/14786430412331329892
http://dx.doi.org/10.1080/14786430412331329892
http://dx.doi.org/10.1080/14786430412331329892
http://dx.doi.org/10.1080/14786430412331329892
http://dx.doi.org/10.1016/j.actamat.2006.10.017
http://dx.doi.org/10.1016/j.actamat.2006.10.017
http://dx.doi.org/10.1016/j.actamat.2006.10.017
http://dx.doi.org/10.1016/j.actamat.2006.10.017
http://dx.doi.org/10.1016/S1359-6462(99)00034-2
http://dx.doi.org/10.1016/S1359-6462(99)00034-2
http://dx.doi.org/10.1016/S1359-6462(99)00034-2
http://dx.doi.org/10.1016/S1359-6462(99)00034-2
http://dx.doi.org/10.1080/13642819908205744
http://dx.doi.org/10.1080/13642819908205744
http://dx.doi.org/10.1080/13642819908205744
http://dx.doi.org/10.1080/13642819908205744
http://dx.doi.org/10.1080/00018735400101203
http://dx.doi.org/10.1080/00018735400101203
http://dx.doi.org/10.1080/00018735400101203
http://dx.doi.org/10.1080/00018735400101203
http://dx.doi.org/10.1016/0026-0800(69)90081-0
http://dx.doi.org/10.1016/0026-0800(69)90081-0
http://dx.doi.org/10.1016/0026-0800(69)90081-0
http://dx.doi.org/10.1016/0026-0800(69)90081-0
http://dx.doi.org/10.1103/PhysRevLett.109.095505
http://dx.doi.org/10.1103/PhysRevLett.109.095505
http://dx.doi.org/10.1103/PhysRevLett.109.095505
http://dx.doi.org/10.1103/PhysRevLett.109.095505
http://dx.doi.org/10.1016/0001-6160(65)90200-2
http://dx.doi.org/10.1016/0001-6160(65)90200-2
http://dx.doi.org/10.1016/0001-6160(65)90200-2
http://dx.doi.org/10.1016/0001-6160(65)90200-2
http://dx.doi.org/10.1016/S1674-4799(09)60007-8
http://dx.doi.org/10.1016/S1674-4799(09)60007-8
http://dx.doi.org/10.1016/S1674-4799(09)60007-8
http://dx.doi.org/10.1016/S1674-4799(09)60007-8
http://dx.doi.org/10.1080/13642818508240637
http://dx.doi.org/10.1080/13642818508240637
http://dx.doi.org/10.1080/13642818508240637
http://dx.doi.org/10.1080/13642818508240637
http://dx.doi.org/10.1088/0034-4885/56/6/002
http://dx.doi.org/10.1088/0034-4885/56/6/002
http://dx.doi.org/10.1088/0034-4885/56/6/002
http://dx.doi.org/10.1088/0034-4885/56/6/002
http://dx.doi.org/10.1016/0378-4371(95)00238-3
http://dx.doi.org/10.1016/0378-4371(95)00238-3
http://dx.doi.org/10.1016/0378-4371(95)00238-3
http://dx.doi.org/10.1016/0378-4371(95)00238-3
http://dx.doi.org/10.1016/S0378-4371(96)00366-4
http://dx.doi.org/10.1016/S0378-4371(96)00366-4
http://dx.doi.org/10.1016/S0378-4371(96)00366-4
http://dx.doi.org/10.1016/S0378-4371(96)00366-4
http://dx.doi.org/10.1103/PhysRevE.58.3458
http://dx.doi.org/10.1103/PhysRevE.58.3458
http://dx.doi.org/10.1103/PhysRevE.58.3458
http://dx.doi.org/10.1103/PhysRevE.58.3458
http://dx.doi.org/10.2355/isijinternational.38.559
http://dx.doi.org/10.2355/isijinternational.38.559
http://dx.doi.org/10.2355/isijinternational.38.559
http://dx.doi.org/10.2355/isijinternational.38.559
http://dx.doi.org/10.1080/14786430802651513
http://dx.doi.org/10.1080/14786430802651513
http://dx.doi.org/10.1080/14786430802651513
http://dx.doi.org/10.1080/14786430802651513
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1016/j.actamat.2007.10.044
http://dx.doi.org/10.1016/j.actamat.2007.10.044
http://dx.doi.org/10.1016/j.actamat.2007.10.044
http://dx.doi.org/10.1016/j.actamat.2007.10.044
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1016/j.actamat.2009.09.040
http://dx.doi.org/10.1016/j.actamat.2009.09.040
http://dx.doi.org/10.1016/j.actamat.2009.09.040
http://dx.doi.org/10.1016/j.actamat.2009.09.040
http://dx.doi.org/10.1016/0026-0800(70)90038-8
http://dx.doi.org/10.1016/0026-0800(70)90038-8
http://dx.doi.org/10.1016/0026-0800(70)90038-8
http://dx.doi.org/10.1016/0026-0800(70)90038-8
http://dx.doi.org/10.1016/0026-0800(74)90004-4
http://dx.doi.org/10.1016/0026-0800(74)90004-4
http://dx.doi.org/10.1016/0026-0800(74)90004-4
http://dx.doi.org/10.1016/0026-0800(74)90004-4
http://dx.doi.org/10.1080/13642819308207873
http://dx.doi.org/10.1080/13642819308207873
http://dx.doi.org/10.1080/13642819308207873
http://dx.doi.org/10.1080/13642819308207873
http://dx.doi.org/10.1103/PhysRevE.53.6181
http://dx.doi.org/10.1103/PhysRevE.53.6181
http://dx.doi.org/10.1103/PhysRevE.53.6181
http://dx.doi.org/10.1103/PhysRevE.53.6181
http://dx.doi.org/10.1103/PhysRevE.54.5482
http://dx.doi.org/10.1103/PhysRevE.54.5482
http://dx.doi.org/10.1103/PhysRevE.54.5482
http://dx.doi.org/10.1103/PhysRevE.54.5482
http://dx.doi.org/10.1007/s100510050242
http://dx.doi.org/10.1007/s100510050242
http://dx.doi.org/10.1007/s100510050242
http://dx.doi.org/10.1007/s100510050242
http://dx.doi.org/10.1209/epl/i1999-00138-7
http://dx.doi.org/10.1209/epl/i1999-00138-7
http://dx.doi.org/10.1209/epl/i1999-00138-7
http://dx.doi.org/10.1209/epl/i1999-00138-7
http://dx.doi.org/10.1016/0026-0800(80)90021-X
http://dx.doi.org/10.1016/0026-0800(80)90021-X
http://dx.doi.org/10.1016/0026-0800(80)90021-X
http://dx.doi.org/10.1016/0026-0800(80)90021-X
http://dx.doi.org/10.1088/1751-8113/45/6/065001
http://dx.doi.org/10.1088/1751-8113/45/6/065001
http://dx.doi.org/10.1088/1751-8113/45/6/065001
http://dx.doi.org/10.1088/1751-8113/45/6/065001
http://dx.doi.org/10.1103/PhysRevE.88.063309
http://dx.doi.org/10.1103/PhysRevE.88.063309
http://dx.doi.org/10.1103/PhysRevE.88.063309
http://dx.doi.org/10.1103/PhysRevE.88.063309
http://dx.doi.org/10.1016/S1359-6454(02)00195-7
http://dx.doi.org/10.1016/S1359-6454(02)00195-7
http://dx.doi.org/10.1016/S1359-6454(02)00195-7
http://dx.doi.org/10.1016/S1359-6454(02)00195-7
http://dx.doi.org/10.1103/PhysRevB.69.134110
http://dx.doi.org/10.1103/PhysRevB.69.134110
http://dx.doi.org/10.1103/PhysRevB.69.134110
http://dx.doi.org/10.1103/PhysRevB.69.134110
http://dx.doi.org/10.1016/j.actamat.2013.06.026
http://dx.doi.org/10.1016/j.actamat.2013.06.026
http://dx.doi.org/10.1016/j.actamat.2013.06.026
http://dx.doi.org/10.1016/j.actamat.2013.06.026



