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Event-chain algorithm for the Heisenberg model: Evidence for z � 1 dynamic scaling
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We apply the event-chain Monte Carlo algorithm to the three-dimensional ferromagnetic Heisenberg model.
The algorithm is rejection-free and also realizes an irreversible Markov chain that satisfies global balance. The
autocorrelation functions of the magnetic susceptibility and the energy indicate a dynamical critical exponent
z ≈ 1 at the critical temperature, while that of the magnetization does not measure the performance of the
algorithm. We show that the event-chain Monte Carlo algorithm substantially reduces the dynamical critical
exponent from the conventional value of z � 2.
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I. INTRODUCTION

Ever since the advent of the local Metropolis Monte Carlo
algorithm (LMC) [1], Monte Carlo simulations of systems
with many degrees of freedom have played an important role in
statistical physics. Near phase transitions, the LMC is severely
hampered by dynamical arrest phenomena such as critical
slowing down for second-order transitions, nucleation and
coarsening for first-order transitions, and glassy behavior in
disordered systems. A number of specialized algorithms then
allow one to speed up the sampling of configuration space,
namely, the Swendsen-Wang [2] and the Wolff [3] cluster
algorithms, the multicanonical method [4], and the exchange
Monte Carlo method [5] based on extended ensembles.

The above algorithms respect detailed balance, a sufficient
condition for the convergence towards the equilibrium Boltz-
mann distribution. Recently, algorithms breaking detailed
balance but satisfying the necessary global-balance condition
have been discussed [6–9]. Among them, the event-chain
Monte Carlo algorithm (ECMC) [9] has proven useful in
hard-sphere [10,11] and more general particle systems [12,13],
allowing one to equilibrate systems larger than previously
possible [11,14]. It has also been applied to continuous spin
systems [15]. The ECMC uses a factorized Metropolis filter
[12] and relies on an additional lifting variable to augment
configuration space [16]. It is rejection-free and realizes
an irreversible Markov chain. So far, however, the speedup
realized by the ECMC with respect to the LMC has always
represented a constant factor in the thermodynamic limit,
although larger gains are theoretically possible [16,17].

In this paper we apply the ECMC to the three-dimensional
ferromagnetic Heisenberg model, defined by the energy

E({Si}) =
∑
〈i,j〉

Eij = −J
∑
〈i,j〉

Si · Sj , (1)
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where J is the unit of the energy, Si is a three-component
unit vector, and the sum runs over all neighboring pairs of the
N = L3 sites of a simple cubic lattice of linear extension L. In
our simulations, we consider the critical inverse temperature
βc = J/Tc = 0.6930 [18]. To describe the dynamics of the
system, we compute the autocorrelation functions of the en-
ergy, the system magnetization M = ∑

k Sk , and the magnetic
susceptibility

χ = |M|2
N

.

Both the energy and the susceptibility are invariant under
global rotations of the spins Sk around a common axis, whereas
the magnetization follows the rotation. We will argue that the
energy and the susceptibility are slow variables, that is, their
slowest time constant describes the correlation (mixing) time
of the underlying Markov chain. Under this hypothesis, we will
present evidence that the ECMC for the three-dimensional
Heisenberg model reduces the dynamical critical exponent
from the LMC value of z � 2 to z � 1. This considerable
reduction of mixing times with respect to the LMC may
be optimal within the lifting approach [17]. The observed
reduction is all the more surprising as in the closely related XY

model [15], where the spins are two-dimensional unit vectors,
the ECMC realizes speedups by two orders of magnitude with
respect to the LMC, but does not seem to lower the dynamical
critical exponent.

II. THE ECMC ALGORITHM FOR THE
HEISENBERG MODEL

In the LMC, finite local moves are proposed randomly and
a move from a configuration a to a configuration b is accepted
with the notorious Metropolis filter

pMet(a → b) = min[1, exp(−β�E)], (2)

where �E = Eb − Ea is the change of the system energy. For
Heisenberg spins, as for any system with pairwise interactions,
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we may write Eq. (2) as

pMet(a → b) = min

⎡
⎣1,

∏
〈i,j〉

exp(−β�Eij )

⎤
⎦,

with the pair energies �Eij = Eb
ij − Ea

ij [see Eq. (1)]. If the
move b → a is proposed with the same probability as a → b,
the detailed-balance condition

πap
Met(a → b) = πbp

Met(b → a) (3)

is satisfied with the Boltzmann weights πa = exp(−βEa)
and πb = exp(−βEb). The LMC dynamics is diffusive and
detailed balance is enforced through the rejections in the
Metropolis filter of Eq. (2).

In contrast to the LMC, the ECMC produces persistent
infinitesimal moves that nevertheless amount to finite displace-
ments. Specifically, in the Heisenberg model, it augments the
physical space of spin configurations by a lifting variable (k,v)
that defines the considered infinitesimal counterclockwise
rotation of spin k about the axis v. This rotation is accepted
according to a consensus based on all individual pair energies,
namely, the factorized Metropolis filter [12]

pfact(a → b) =
∏
〈i,j〉

min[1, exp(−β�Eij )]. (4)

For infinitesimal rotations and by virtue of the factorized
Metropolis filter, this physical move can only be rejected by
a single neighboring spin l and the lifting variable will then
be moved as (k,v) → (l,v), keeping the sense of rotation, but
passing it on to the spin responsible for the rejection. In the
augmented space, the rejections are thus supplanted by events,
namely, the lifting moves for arrested physical states. As there
are no clockwise moves, obviously pfact(b → a) is zero if
pfact(a → b) > 0, so the detailed balance condition of Eq. (3)
is broken. Nevertheless, it is easy to show for infinitesimal
moves that the more general global balance condition∑

a

πap
fact(a → b) =

∑
c

πbp
fact(b → c) (5)

is satisfied [12,15], with the stationary Boltzmann weights.
Equation (5) describes equality between the global probability
flow into the configuration b (on the left-hand side) and the
flow out of it (on the right-hand side). In contrast to Eq. (3),
a,b,c, . . . now comprise the lifting variable and there are no
rejections in this augmented space (see Ref. [15]).

Practically, while the spin Sk rotates around v, the azimuthal
angle φv,k increases from its initial value φ0 until one of its
neighbors l triggers a lifting (k,v) → (l,v) at φv,k = φl,event.
One no longer samples the acceptation of each infinitesimal
rotation of Sk , but directly samples the event angle φl,event. It
is sampled with a single random number in the event-driven
approach [12,13]. Precisely, φl,event is given by the sampling
of the positive pair energy increase

�El = −[lnR(0,1)]/β, (6)

where R(0,1) is a uniform random number between 0 and 1.
For a fixed rotation axis v, the ECMC for the Heisenberg

model reduces to the one of the XY model: With (φv,k,θv,k)
the spherical coordinates of a spin k in a system where the

z axis is aligned with v, the pair energy Ekl between spins k

and l is

Ekl = −J ′ cos(φv,k − φv,l) + K, (7)

with

J ′ = J sin θv,k sin θv,l ,

K = −J cos θv,k cos θv,l .

Both J ′ and K depend only on the polar angles θv and
remain unchanged along the event chain. The azimuthal-angle
dependence in Eq. (7) is proportional to cos(φv,k − φv,l), as
in the XY model. The positive pair energy increase of Eq. (6)
then becomes

�El = −J ′
∫ φl,event

φ0

max

(
0,

d cos(φv,k − φv,l)

dφv,k

)
dφv,k. (8)

To solve Eq. (8) for φl,event, one first slices off any full rotations
(these n rotations by 2π yield an energy increase of 2nJ ′),
leaving a value �E

f

l ,

E∗
init + �E

f

l = −J ′ cos(φl,event − φv,l − 2nπ ), (9)

where

E∗
init =

{
Ekl if the initial pair energy derivative is positive

−J ′ otherwise.

The true lifting event corresponds to the earliest of the
independent event times sampled for all the neighbors of the
spin k. In the ECMC, the Monte Carlo time is continuous and
proportional to the total displacement of the spins.

The ECMC creates then chains of successive and consistent
finite displacements of different spins. The choice of the length
� of a chain, defined as the cumulative rotation angles about
v of the chain, is free. For the XY model of planar rotators,
v is uniquely defined as the axis perpendicular to the sense
of rotation. For this reason, the ECMC around this axis is
irreducible and the chain length � in this model is best taken
equal to the simulation time [15]. For the Heisenberg model,
spin rotations must be about at least two axes in order to reach
the entire configuration space. The resampling of the rotation
axis is performed after the chain length � is reached. All
configurations of the chain sample the equilibrium distribution
and any uniform subset of them yields valid observable
averages. Observables may be integrated during the continuous
evolution or, e.g., retrieved at regular intervals independent of
the lifting events.

We have checked the correctness of the ECMC and obtained
perfect agreement for the mean energy, the specific heat,
and the susceptibility with the heat-bath algorithm [19,20]
modified with the exchange Monte Carlo method (or parallel
tempering) [5] (see Fig. 1).

III. DYNAMICAL SCALING EXPONENT

At the critical temperature Tc, the correlation length ξ of a
model undergoing a second-order phase transition equals the
system size L and the autocorrelation time of slow variables
τ diverges as τ ∼ Lz, where z is the dynamical critical
exponent. We define time in terms of sweeps: One ECMC
sweep corresponds, on average, to N lifting events and one
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FIG. 1. (Color online) Temperature dependence of (a) the energy density e = E/N , (b) the specific heat c, and (c) the magnetic susceptibility
χ of the three-dimensional Heisenberg model with L = 12. A chain length � = Nπ/10 is used.

LMC sweep to N attempted moves. For both algorithms, the
complexity of one sweep is O(N ) and the CPU times used per
sweep are roughly the same. Time autocorrelation functions
are defined by

CO(t) = 〈O(t ′ + t)O(t ′)〉 − 〈O(t ′)〉2

〈O2(t ′)〉 − 〈O(t ′)〉2
, (10)

where the angular brackets indicate the thermal average and
t ′ is set sufficiently large for equilibration. The dynamical
critical exponent of the LMC for the three-dimensional
Heisenberg model was estimated from the autocorrelation
function of the magnetization M as z = 1.96(6) [21]. The
overrelaxation algorithm [22,23] seems to give z � 1.10 [21],
which was obtained from the autocorrelation function of the
magnetization, and the Wolff algorithm is believed to yield
a value close to zero: z � 0, a value obtained from the
susceptibility autocorrelation function [24].

To evaluate the correlation time and the dynamical critical
exponent for the ECMC, one must pay attention to the
irreversible nature of the underlying Markov chain. During
one event chain, spins all rotate in the same sense and the
system undergoes global rotations with taking into account
the thermal fluctuation. This results in fast oscillations of the
magnetization M and a quick decay of its autocorrelation
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FIG. 2. (Color online) Autocorrelation function of magnetiza-
tion CM (t) at the critical temperature for various system sizes. The
inset shows the spin autocorrelation function of a trivial algorithm
that only performs global rotations in spin space along the two axes.

function that is insensitive to the system size (see Fig. 2) and
even to the temperature. However, this effect is also visible
for a trivial algorithm, which simply performs global rotations
(see the inset of Fig. 2). The trivial algorithm satisfies global
balance, but its correlation time is infinite, as it does not
relax the energy. A similar effect appears in the ECMC for
particle systems [9], which likewise is not characterized by
the mean net displacement of particles. To characterize the
speed of the ECMC, we consider the energy density and
the susceptibility that we conjecture to be slow variables at
the critical temperature. Both χ and e are insensitive to global
rotations and do not oscillate.

As shown in Fig. 3, the autocorrelation functions both of the
energy density and of the susceptibility are well approximated
as a single exponential decay

Cχ (t) = exp(−t/τ ) (11)

on essentially the same time scales. Furthermore, the finite-
size behavior of the autocorrelation times indicates z � 1
dynamical scaling. This z value is significantly less than for the
LMC and very similar to the one obtained for overrelaxation
methods, although the z � 0 value of the cluster algorithm is
not reached.

IV. DISCUSSION AND SUMMARY

The earliest application of lifting [16], the motion of a
particle on a one-dimensional N -site lattice with periodic
boundary conditions, already featured the decrease of the
dynamical scaling exponent from z = 2 to z = 1 (the reduction
of the mixing time from proportional to N2 to proportional
to N ). To reach such reductions, the Markov chain must be
irreversible. It was pointed out that the square-root decrease
of the critical exponent was the optimal improvement [17].
The concepts of factorized Metropolis filters and of infinites-
imal moves brought irreversible lifting algorithms to general
N -body systems, although only finite speed-ups were realized
in the N → ∞ limit. The three-dimensional Heisenberg
model however seems to be an ECMC application with a
lowered critical dynamical exponent. Our observation relies
on the hypotheses that the energy and the susceptibility are
indeed slow variables and that the observed decay of the
autocorrelation function continues for larger times. However,
in Fig. 3, a crossover from z = 1 back to z = 2 as it was
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FIG. 3. (Color online) Autocorrelation functions and time constants of the ECMC for the three-dimensional Heisenberg model at its critical
point β = 0.693: (a) energy density autocorrelation function Ce for system sizes 43,83, . . . ,643, (b) susceptibility autocorrelation function Cχ

for the ECMC for the three-dimensional Heisenberg system sizes 43,83, . . . ,643, and (c) scaling of the autocorrelation time τχ (τe) of the
susceptibility χ (energy density e) with system size L for the ECMC [blue circles (red triangles)] and of the autocorrelation time of the
susceptibility for the LMC (yellow squares). Error bars are smaller than the markers size. The inset shows the speedup for the susceptibility χ

in comparison to the LMC for system sizes 43,83, . . . ,643.

observed in the XY model after approximately five sweeps
[15] appears unlikely to arise after hundreds of sweeps.
The dynamical critical exponent z ≈ 1 represents a maximal
improvement with respect to the z ≈ 2 of the LMC, supposing
again that the theorems of Ref. [17] apply to infinitesimal
Markov chains.

In summary, we have successfully applied the ECMC to
the Heisenberg model in three dimensions. The ECMC shows
considerable promise for spin models and the numerical data
presented in this paper allow us to formulate the exciting con-
jecture that the dynamical critical exponent for the Heisenberg
model is z � 1. The ECMC is also applicable to frustrated
magnets and spin glasses, which involve antiferromagnetic
interactions and/or quenched disorder. Our preliminary study
indicates that the ECMC algorithm is also useful for a Heisen-
berg spin glass model. The ECMC can be easily combined with
other algorithms such as the exchange Monte Carlo method
and the overrelaxation algorithm in the usual manner. This may
allow the investigation of the three-dimensional Heisenberg

spin glass model in the low-temperature region. Large-scale
simulations in this direction are currently in progress. It would
be very interesting to understand why the ECMC is so much
more successful in the Heisenberg model than both in hard and
soft disks and in the XY model.
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