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Full Eulerian lattice Boltzmann model for conjugate heat transfer
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In this paper a full Eulerian lattice Boltzmann model is proposed for conjugate heat transfer. A unified
governing equation with a source term for the temperature field is derived. By introducing the source term, we
prove that the continuity of temperature and its normal flux at the interface is satisfied automatically. The curved
interface is assumed to be zigzag lines. All physical quantities are recorded and updated on a Cartesian grid. As
a result, any complicated treatment near the interface is avoided, which makes the proposed model suitable to
simulate the conjugate heat transfer with complex interfaces efficiently. The present conjugate interface treatment
is validated by several steady and unsteady numerical tests, including pure heat conduction, forced convection,
and natural convection problems. Both flat and curved interfaces are also involved. The obtained results show
good agreement with the analytical and/or finite volume results.
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I. INTRODUCTION

Heat transfer between different mediums is frequently
encountered in many engineering application fields, such
as cooling of microelectronic devices, heat exchangers, and
chemical and nuclear reactors. In the past few decades, conju-
gate heat transfer has been investigated by many researchers
theoretically and experimentally. In addition to the theoretical
and experimental methods, the computer simulation technique
is an effective and reliable research approach. Through
solving the governing equation of the temperature field and
implementing the conjugate interface conditions, the details
of the temperature distribution can be obtained. In fact, the
numerical works of the conjugate heat transfer based on
convectional computational fluid dynamics methods have been
done by many scholars.

The lattice Boltzmann method (LBM) has been a popular
kinetic scheme in recent years. Via simple algebraic manipu-
lations, many complex fluid systems can be simulated. Now
LBM has been proved to be a competitive and composing
numerical simulation tool for incompressible flows, and it
has been applied successfully in multicomponent-multiphase
flows [1,2], turbulence flows [3,4], microflows [5,6], fluid-
solid interactions [7–11], porous media flows [12–14], and
thermal flows [15–18]. The efforts of simulation of conjugate
heat transfer using LBM have been also considered in some
open literature. The first attempt to study this issue was done
by Wang et al. [19]. They proposed a “half lattice divi-
sion” treatment for fluid-solid conjugate interface conditions.
Although there are not any additional treatments near the
fluid-solid interface, however, this method is limited to the
steady cases [19,20]. Meng et al. presented a counter-slip
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scheme which assumes that the unknown energy distributions
of the fluid and solid are in equilibrium with the counter-
slip internal energy [21]. Meng et al. used this method
to simulate the conjugate heat transfer in high-frequency
oscillating flows. Seddiq et al. also developed a scheme to
solve the conjugate heat transfer problems by the LBM [22].
In this method, they assumed that the ratio of the gradient
of the distribution functions is proportional to the reverse
of the thermal conductivities ratio. However, as pointed out
in Ref. [23], the above assumption of proportionality on the
distribution function has not been proved. In fact, all the above
interface schemes based on the LB model for conjugate heat
transfer can only be applied in straight-interface geometry.
To overcome this drawback, Hu et al. extend the LBM in
combination with the immersed boundary method to simulate
the fluid-solid conjugate heat transfer problems in complex
geometries. However, only steady cases can be simulated [24].
Li et al. proposed an approach based on their generalized
framework for thermal boundary condition treatments [23,25].
This treatment preserves second-order accuracy for arbitrary
link fractions. Li et al. applied their method to simulate
some numerical examples successfully, including steady and
unsteady flows with conjugate heat transfer. Le et al. also
developed a conjugate interface method by performing ex-
trapolations along the normal direction [26]. They argued that
the normal heat flux across the interface cannot be computed
directly. This indicates that some important parameters cannot
be calculated. The basic idea of their method is to determine
the transport scalar value at the interface by extrapolations
from the two separate domains toward the interface along the
normal direction. Then the conjugate boundary condition can
be transferred to a Dirichlet boundary condition. Then the
corresponding approach for a Dirichlet boundary condition
can be used.

In this paper, a full Eulerian lattice Boltzmann model
for conjugate heat transfer is proposed. A unified governing
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equation with a source term is built to model the temperature
field in both fluid and solid regions. We prove that the
continuity conditions of the temperature and normal heat flux
are satisfied automatically. In our scheme, the curved interface
is treated as the zigzag lines. It need not track to the Lagrangian
points or points of intersection between the grid lines and the
curved interface. As a result, the present solution procedure
does not require complicated treatment near the interface and
is independent of the interface topology. The present method
has a great potential to simulate a heat transfer system with
complex and time-dependent interfaces. It should be noted that
Karani and Huber also proposed a full Eulerian LB model for
conjugate heat transfer in heterogeneous media [27]. However,
according to our study, there exist two theoretical drawbacks
in their method. One is that this method lacks mathematical
rigor in deriving the evolution equation of the temperature
field. Another drawback is that the numerical results of this
method show the dependence of the discrete scheme on the
heat capacitance.

The present LB model is examined by some test cases. Both
steady-state and transient conjugate heat transfer problems
are considered. It is found that the present results agree well
with the analytical or finite volume solutions. The remainder
of this paper is organized as follows. Section II presents the
mathematical foundation of the present LB model. The details
of the present conjugate interface treatment are discussed
in Sec. III. Section IV provides the numerical results and
discussion.

II. MATHEMATICAL FORMULA

As shown in Fig. 1, the fluid-solid conjugate heat transfer
problem is considered. The entire computational domain is
composed by the fluid region �1 and solid region �2. The
fluid-solid interface is denoted by �. n is the unit outward
normal vector on �. The fluid and solid materials have
different thermophysical properties, such as density, ρ, thermal
conductivity, κ , and specific heat capacity, cp. The governing
equation of temperature field on �1 ∪ �2 can be written as

∂T

∂t
+ ∇ · (uT ) = ∇ · (χ∇T ), (1)

FIG. 1. A diagram of geometry for conjugate heat transfer
problems.

where T and u are the temperature and velocity, respectively.
χ is the thermal diffusivity and is defined as

χ (x) =
{ κ1

(ρcp)1
, x ∈ �1,

κ2
(ρcp)2

, x ∈ �2.
(2)

The conjugate interface conditions are given by

T1|� = T2|�, (3)

κ1
∂T1

∂n

∣∣∣∣
�

= κ2
∂T2

∂n

∣∣∣∣
�

. (4)

In this study, a source term or correction term q is intro-
duced to implement the above conjugate interface conditions.
The modified governing equation can be written as

∂T

∂t
+ ∇ · (uT ) = ∇ · (χ∇T ) + q, (5)

q =
∫

�

δQδ(x − X)ds, (6)

where δ is the Dirac function. δQ is the heat flux across the
interface �. s is the arc-length parameter. Actually, inclusion
of a source term in the governing equation to implement the
boundary condition is widely used in the immersed boundary
method (IBM), immersed interface method, and distributed
Lagrange multiplier–fictitious domain method.

In fact, we can prove that the heat flux δQ can be expressed
as

δQ = −κ1
∂T1

∂n

∣∣∣∣
�

[
1

ρcp

]
= −κ2

∂T2

∂n

∣∣∣∣
�

[
1

ρcp

]
, (7)

where the square brackets [ ] are the jump function across the
interface �, and it is denoted by

[	(X)] = lim
ε→0+

[	(X + εn) − 	(X − εn)]. (8)

In the following section, the above interface relation
[Eq. (7)] is derived. Based on the previous study [17], we
have the following jump conditions:

[T ] = 0, (9)

δQ = −
[
χ

∂T

∂n

]
. (10)

Obviously, Eq. (9) indicates that the temperature is continuous
across the interface �.

From Eqs. (7) and (10), we can get

κ1

(ρcp)1

∂T1

∂n

∣∣∣∣
�

− κ2

(ρcp)2

∂T2

∂n

∣∣∣∣
�

= κ2

(ρcp)1

∂T2

∂n

∣∣∣∣
�

− κ2

(ρcp)2

∂T2

∂n

∣∣∣∣
�

. (11)

Further, Eq. (11) can be simplified as

κ1
∂T1

∂n

∣∣∣∣
�

= κ2
∂T2

∂n

∣∣∣∣
�

. (12)

As expected, we found that the continuity of normal heat flux
can be ensured. The proof is completed.

063305-2



FULL EULERIAN LATTICE BOLTZMANN MODEL FOR . . . PHYSICAL REVIEW E 92, 063305 (2015)

Moreover, without considering the heat source term, that
is,

δQ = −
[
χ

∂T

∂n

]
= 0. (13)

It denotes

χ1
∂T

∂n

∣∣∣∣
�

= χ2
∂T

∂n

∣∣∣∣
�

. (14)

If the ratio of thermal conductivities is not equal to the ratio of
thermal diffusivities, we cannot obtain the correct solution. The
present conclusion is consistent with the analysis in Ref. [27].

III. NEW LATTICE BOLTZMANN MODEL FOR
CONJUGATE HEAT TRANSFER

The D2Q9 lattice model is selected as an example to
describe the present algorithm, and the corresponding discrete
velocity set is defined as

eα =

⎧⎪⎪⎨
⎪⎪⎩

(0,0), α = 0(
cos

[
(α − 1)π

2

]
, sin

[
(α − 1)π

2

])
c, α = 1,2,3,4

√
2
(

cos
[
(2α − 1)π

4

]
, sin

[
(2α − 1)π

4

])
c, α = 5,6,7,8,

(15)

where c = x/t ; x is the lattice spacing and t is the time step. In the case of x = t , c is set as 1.
In recent years, many LB models for convection-diffusion equations (CDEs) have been proposed [28–31]. The following

multirelaxation-time LB model is chosen as the temperature field solver [30]. The evolution equation with source term can be
written as

g(x + eαt,t + t) − g(x,t) = −M−1Sg[m(x,t) − meq(x,t)] + tM−1

(
I − Sg

2

)
Q(x,t), (16)

where the above notations denote

g(x,t) = (g0(x,t),g1(x,t), . . . ,g8(x,t))T , (17)

m(x,t) = Mg = (m0(x,t),m1(x,t), . . . ,m8(x,t))T , (18)

meq(x,t) = (
m

eq
0 (x,t),meq

1 (x,t), . . . ,meq
8 (x,t)

)T
, (19)

Q(x,t) = (Q0(x,t),Q1(x,t), . . . ,Q8(x,t))T . (20)

Here gα(x,t) is the temperature distribution function for the discrete velocity eα . M is the orthogonal transformation matrix and
it can be constructed by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

Sg is the relaxation matrix in the moment space and it is given by

Sg =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ0 0 0 0 0 0 0 0 0
0 σ1 0 0 0 0 0 0 0
0 0 σ2 0 0 0 0 0 0
0 0 0 σ3 (σ3/2 − 1)σ4 0 0 0 0
0 0 0 0 σ4 0 0 0 0
0 0 0 0 0 σ5 (σ5/2 − 1)σ6 0 0
0 0 0 0 0 0 σ6 0 0
0 0 0 0 0 0 0 σ7 0
0 0 0 0 0 0 0 0 σ8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)
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FIG. 2. (Color online) A diagram of geometry for a curved
interface and a staircase interface.

It should be noticed that Sg is not a diagonal matrix. As asserted
in Ref. [30], the additional deviation term in the recovered
macroscopic equation can be eliminated. Here, the elements
in matrix Sg are determined by

σ0 = 0, σ1 = σ2 = σ4 = σ6 = σ7 = σ8 = 1,
(23)

σ3 = σ5 = t

3χ/c + 0.5t
.

The equilibrium moment meq is

meq = (T , − 2T ,2T ,uT , − uT ,vT , − vT ,0,0). (24)

The discrete heat source or sink term Q in Eq. (16) is
obtained by

Q = (q, − 2q,2q,0,0,0,0,0,0). (25)

The temperature in the LBM can be calculated by

T =
∑

α

gα + 1

2
qt. (26)

In the present model, the stair-step approximation is
adopted to treat a curved interface. As shown in Fig. 2, the
curved interface � is replaced by the zigzag line �0. The stair
line can be divided into a series of straight line segments. As
a result, the subsegments can be represented by

(xi+(1/2),y),yj−(1/2) � y � yj+(1/2), or
(27)

(x,yj+(1/2)),xi−(1/2) � x � xi+(1/2).

FIG. 3. (Color online) Schematic of two different discrete delta
functions.

At first the Dirac function is replaced by the discrete delta
function. As shown in Fig. 3, two different one-dimensional
discrete delta functions are used. One is [32]

D(x) = W1(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
3x

(1 +
√

1 − 3r2), 0 � |r| < 0.5,

1
6x

[5 − 3|r| −
√

−3(1 − |r|)2 + 1],

1 � |r| < 1.5,

0,|r| � 1.5.

(28)

And the other is [33]

D(x) = W2(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8x

(3 − 2|r| +
√

1 + 4|r| − 4r2),

0 � |r| < 1,

1
8x

[5 − 2|r| −
√

−7 + 12|r| − 4r2],

1 � |r| < 2,

0,|r| � 2,

(29)

where r = x/x.
Now the calculation method of the source term q is given.

Taking q(xi,yj ) as an example, we have

q(xi,yj ) ≈
∫ xi+(1/2),yj+(1/2)

xi+(1/2),yj−(1/2)

δQ(X,Y )D(xi − X)δ(yj − Y )dY +
∫ xi+(1/2),yj+(1/2)

xi−(1/2),yj+(1/2)

δQ(X,Y )δ(xi − X)D(yj − Y )dX

+
∫ xi−(1/2),yj+(1/2)

xi−(1/2),yj−(1/2)

δQ(X,Y )D(xi − X)δ(yj − Y )dY +
∫ xi+(1/2),yj−(1/2)

xi−(1/2),yj−(1/2)

δQ(X,Y )δ(xi−X)D(yj − Y )dX. (30)

It is worth noting that in the above equation the discrete delta function W1 is adopted. The radius of influence domain of W1 is
1.5x. So some other integral terms, such as

∫ xi+(3/2),yj+(1/2)

xi+(3/2),yj−(1/2)
δQ(X,Y )D(xi − X)δ(yj − Y )dY , are neglected. We notice that the

domains of integration in the third and fourth terms are not located at the zigzag line �0. Based on the relation (7), the third and
fourth terms on the right-hand side of Eq. (30) actually equal zero. Only the first and second terms must be considered. They are
evaluated by

∫ xi+(1/2),yj+(1/2)

xi+(1/2),yj−(1/2)

δQ(X,Y )D(xi − X)δ(yj − Y )dY =
∫ xi+(1/2),yj+(1/2)

xi+(1/2),yj−(1/2)

δQ(xi+(1/2),Y )D(xi − xi+(1/2))δ(yj − Y )dY
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≈ D(xi − xi+(1/2))
∫ xi+(1/2),yj+(1/2)

xi+(1/2),yj−(1/2)

δQ(xi+(1/2),Y )δ(yj − Y )dY

≈ δQ(xi+(1/2),yj )D(xi − xi+(1/2))(yj+(1/2) − yj−(1/2)). (31)

∫ xi+(1/2),yj+(1/2)

xi−(1/2),yj+(1/2)

δQ(X,Y )δ(xi − X)D(yj − Y )dX =
∫ xi+(1/2),yj+(1/2)

xi−(1/2),yj+(1/2)

δQ(X,yj+(1/2))δ(xi − X)D(yj − yj+(1/2))dX

≈ D(yj − yj+(1/2))
∫ xi+(1/2),yj+(1/2)

xi−(1/2),yj+(1/2)

δQ(X,yj+(1/2))δ(xi − X)dX

≈ δQ(xi,yj+(1/2))D(yj − yj+(1/2))(xi+(1/2) − xi−(1/2)). (32)

The key issue is how to calculate the heat flux δQ. In Ref. [29], a local numerical scheme for temperature derivatives is
provided:

∇(χT ) =
{(

1 − σ3

2

)[(
m3 − m

eq
3

) + σ4

2

(
m4 − m

eq
4

)](
1 − σ5

2

)[(
m5 − m

eq
5

) + σ6

2

(
m6 − m

eq
6

)]}
. (33)

Obviously, the above formula only holds when the temperature field is sufficiently smooth. However, in the present problem,
when κ1 �= κ2, we have

∂T1

∂n

∣∣∣∣
�

�= ∂T2

∂n

∣∣∣∣
�

. (34)

So the temperature field is not smooth. Therefore the above computational scheme cannot be used in this case. Actually, the above
scheme is derived using the Chapman-Enskog asymptotic analysis [30]. In the derivation of this formula, the Taylor expansion is
applied for all symmetrical discrete lattice directions. It indicates that the scheme (33) is a central-difference-type scheme. Based
on Appendix B in Ref. [17], we can get

(χTx)1 + (χTx)2

2
=

(
1 − σ3

2

)[(
m3 − m

eq
3

) + σ4

2

(
m4 − m

eq
4

)]
, (35)

(χTy)1 + (χTy)2

2
=

(
1 − σ5

2

)[(
m5 − m

eq
5

) + σ6

2

(
m6 − m

eq
6

)]
. (36)

Applying Eq. (4), one can obtain

κ1
∂T1

∂x
= κ2

∂T2

∂x
=

(
1 − σ3

2

)[(
m3 − m

eq
3

) + σ4
2

(
m4 − m

eq
4

)]
1

(ρcp)1
+ 1

(ρcp)2

, (37)

κ1
∂T1

∂y
= κ2

∂T2

∂y
=

(
1 − σ5

2

)[(
m5 − m

eq
5

) + σ4
2

(
m6 − m

eq
6

)]
1

(ρcp)1
+ 1

(ρcp)2

. (38)

If we set

Rx(x) =
(

1 − σ3

2

)[
m3(x) − m

eq
3 (x)

] + σ4

2

[
m4(x) − m

eq
4 (x)

]
, (39)

Ry(x) =
(

1 − σ5

2

)[
m5(x) − m

eq
5 (x)

] + σ4

2

[
m6(x) − m

eq
6 (x)

]
, (40)

the heat fluxes across the interface xi+(1/2) and yj+(1/2) are given by

δQ(xi+(1/2),yj ) =
2[Rx(xi,yj ) + Rx(xi+1,yj )]

(
1

(ρcp)1
− 1

(ρcp)2

)
1

(ρcp)1
+ 1

(ρcp)2

, (41)

δQ(xi,yj+(1/2)) =
2[Ry(xi,yj ) + Ry(xi,yj+1)]

(
1

(ρcp)1
− 1

(ρcp)2

)
1

(ρcp)1
+ 1

(ρcp)2

. (42)

Once δQ(xi+(1/2),yj ),δQ(xi,yj+(1/2)) are obtained, q(xi,yj ) can be approximated using Eqs. (30)–(32).
When considering the flow with heat transfer, the lattice Boltzmann equation (LBE) for Navier-Stokes equation is needed.

The multirelaxation-time LB evolution equation for the flow field reads [34]

f(x + eαt,t + t) − f(x,t) = −M−1Sf [n(x,t) − neq(x,t)] + tM−1

(
I − Sf

2

)
F(x,t), (43)
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where

f(x,t) = (f0(x,t),f1(x,t), . . . ,f8(x,t))T , (44)

n(x,t) = Mf = (n0(x,t),n1(x,t), . . . ,n8(x,t))T , (45)

neq(x,t) = (
n

eq
0 (x,t),neq

1 (x,t), . . . ,neq
8 (x,t)

)T
, (46)

F(x,t) = (F0(x,t),F1(x,t), . . . ,F8(x,t))T . (47)

The equilibrium moments neq
α are defined as

neq = (ρ, − 2ρ + 3(u2 + v2),ρ − 3(u2 + v2),u, − u,

v, − v,u2 − v2,uv)T . (48)

The diagonal relaxation matrix is expressed as

Sf = diag(s0,s1,s2,s3,s4,s5,s6,s7,s8). (49)

Here we set

s0 = s3 = s5 = 0, (50)

s1 = s2 = s7 = s8 = t

3ν/c + 0.5t
, (51)

s4 = s6 = 8
2 − s1

8 − s1
. (52)

F is the discrete force term in the moment space which is
given as

F = (0,6(ufx + vfy), − 6(ufx + vfy),

fx, − fx,fy, − fy,2ufx − 2vfy,vfx + ufy)T , (53)

where f = (fx,fy) is the body force. The macroscopic density
and velocity are calculated by

ρ =
∑

α

fα, (54)

u =
∑

α

eαfα + 1

2
ft. (55)

The solution procedure of the present LB scheme is
provided in the following section. Suppose the physical
quantities such as gα(x,t) at time level t have been obtained.
The computational procedure of the physical quantities at time
level t + t is summarized as follows:

(1) Compute the heat flux δQ at the interface �0 using
Eqs. (41)and (42).

(2) Determine the heat source q using Eqs. (30)–(32).
(3) Obtain the force term F and heat source or sink Q in LB

evolution equations (43) and (16) using Eqs. (53) and (25).
(4) Compute the density and temperature distribution

functions at time t + t in the entire computational domain
using Eqs. (43) and (16).

(5) Obtain the macroscopic velocity u and temperature T

using Eqs. (55) and (26).
(6) Compute the equilibrium distribution functions meq,neq

using Eqs. (24) and (48).

FIG. 4. Schematic of a two-layer heat conduction medium.

IV. RESULTS AND DISCUSSION

In this section, some numerical examples are simulated to
verify the present LB model. To compare with the analytical
solutions, three heat conduction problems which have analyti-
cal solutions are tested. Then the forced and natural convection
flow problems are considered. The obtained results are also
compared with the finite volume results.

A. Heat conduction in a stratified solid medium

First, the accuracy of the present interface treatment is
investigated. We consider the heat conduction between two
square solids which is shown in Fig. 4. The left and right
walls are kept at the constant temperature Tc,Th(Th > Tc).
The periodic boundary condition is imposed on the bot-
tom and top walls. The corresponding physical parameters
are set to be χ1/χ2 = 0.5, κ1/κ2 = 1/3, σ3,1 = σ5,1 = 5/3,
and σ3,2 = σ5,2 = 10/7. The exact solution is expressed as
follows:

T a(x,y) =
{

3x
2H

(Th − Tc) + Tc, 0 � x � H(
x

2H
+ 1

2

)
(Th − Tc) + Tc, H � x � 2H,

(56)

where H is the width of the computational domain. In this
simulation, four different grids x = H/20, H/40, H/80,
and H/160 are used. The L2 norm is adopted to compute
the dimensionless temperature numerical errors, and it is
expressed as

L2 error = 1

Th − Tc

√∑
(T n − T a)2

N
, (57)

where N is the number of the node in the computational
domain. As shown in Fig. 5, it can be observed that the
present model has a superlinear convergence rate when
different discrete delta functions are adopted. In fact, discrete
delta functions lead to the first-order approximation. This
conclusion has been widely validated by many IBM works.
Considering the simplicity, D = W1 is chosen unless stated
otherwise.

Different from the work which was proposed by Wang
et al. [19], the present method can be also applied to the
unsteady conjugate heat transfer. The transient heat conduction
in a three-layer stratified medium is simulated. The composite
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FIG. 5. (Color online) The L2 errors of the temperature versus
the grid spacing with different discrete delta functions.

medium consisting of three parallel layers is shown in Fig. 6.
The initial and boundary conditions are set to be

T (x,y,0) = Tc, 0 < x < 3H, 0 < y < 1.5H, (58)

T (x,0,t) = T (x,1.5H,t), (59)

T (0,y,t) = Tc, T (3H,y,t) = Th. (60)

In Ref. [35], a series solution is provided. The numerical
solution will be compared with the analytical solution. In this
simulation, the corresponding parameters are set as χ1 = χ3 =
1.0, χ2 = 3.0, κ1 = κ3 = 1.0, κ2 = 0.1, σ3,1 = σ5,1 = 5/3,
σ3,2 = σ5,2 = 1.25, and σ3,3 = σ5,3 = 5/3. A mesh which
consists of 90 × 90 cells is used. In Fig. 7, the dimen-
sionless temperature profiles (T − Th)/T at the times t =
0.1,0.5,1,2 are plotted, where T = Th − Tc. As can been
seen, the numerical results have excellent agreement with
the analytical solutions. This phenomenon indicates that the
present method is capable of simulating the unsteady conjugate
heat transfer.

B. Heat conduction in concentric annulus

Now we consider the heat conduction problem with curved
boundaries. The concentric annulus with different thermody-
namic parameters is shown in Fig. 8. The following Dirichlet
boundary condition is imposed on the outer cylinder:

T (R2,θ ) = cos [n(θ + θ0)], n ∈ Z, (61)

FIG. 6. Schematic of a three-layer stratified medium.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x/H

(

t=0.1, analytical
t=0.5, analytical
t=1.0, analytical
t=2.0, analytical
t=0.1, present
t=0.5, present
t=1.0, present
t=2.0, present

T
-T

c )
/  Δ

T

FIG. 7. (Color online) Comparison of the analytical and LBM
solutions at different times.

where R2 is the radius of the outer cylinder and the inner
boundary is subjected to the following conjugate boundary
condition:

T1(R1) = T2(R1), (62)

κ1
∂T1

∂r
(R1) = κ2

∂T2

∂r
(R1), (63)

where R1 is the radius of the inner cylinder.
The analytical solution for this problem is given by [23]

T e
1 (r,θ ) = c1r

n cos [n(θ + θ0)], 0 � r � R1, (64)

T e
2 (r,θ ) = (c2r

n + c3r
−n) cos [n(θ + θ0)], R1 � r � R2,

(65)

where

c1 = 2κ2/κ1R
−2n
1 R−n

2

(κ2/κ1 + 1)R−2n
1 + (κ2/κ1 − 1)R−2n

2

, (66)

c2 = (κ2/κ1 + 1)R−2n
1 R−n

2

(κ2/κ1 + 1)R−2n
1 + (κ2/κ1 − 1)R−2n

2

, (67)

c3 = (κ2/κ1 − 1)R−n
2

(κ2/κ1 + 1)R−2n
1 + (κ2/κ1 − 1)R−2n

2

. (68)

In the present method, the smooth curved surface is
assumed to be zigzag lines; the accuracy of the boundary

FIG. 8. Schematic illustration of a two-layer annulus.
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FIG. 9. (Color online) Comparison of the present radial tempera-
ture profiles with analytical solutions when θ = 0,π/6,π/4,π/3,π/2
and θ0 = 0.

approximation is consistent with that of the discrete delta
approximation. The corresponding parameters for this simula-
tion are set to be n = 2, R2 = 2R1, χ1 = χ2 = 0.8, κ2/κ1 = 3
or 1/3, σ3,1 = σ5,1 = 1.25, and σ3,2 = σ5,2 = 1.25. The nu-
merical results are obtained from simulations on a 100 × 100
mesh. In addition, the Dirichlet boundary condition on the
outer cylinder must be treated. Here the immersed boundary
method which was proposed in Ref. [17] is used.

Figure 9 presents the radial temperature profiles for differ-
ent thermal conductivity ratios at θ = 0,π/6,π/4,π/3,π/2
when θ0 = 0. As expected, the LBM results show good
agreement with the analytical solutions. Considering the stair-
step approximation of the curved interface, the representation
of the interface geometry is not accurate. So the rotational
symmetry of the present method is tested. The outer cylinder
is imposed on three different boundary conditions (61) with
θ0 = 0, − π/6, − π/4. The radial temperature profiles at θ =
0,π/6,π/4 (θ + θ0 = 0) are presented in Fig. 10. It can be
seen clearly that these results are very close to each other. This
indicates that the present method is adequate to deal with the
heat transfer problem in complex geometries.

C. Forced convection in a channel

In this section, the flow and heat transfer in a channel is sim-
ulated as an example to illustrate the practical application of the

0 0.4 0.8 1.2 1.6 2
0

0.3

0.6

0.9

1.2

r/R
1

T

θ=0, θ
0
=0

θ=π/6, θ
0
=−π/6

θ=π/4, θ
0
=−π/4

FIG. 10. (Color online) Comparison of the radial temperature
profiles when κ2/κ1 = 3. Red solid line: θ = 0, θ0 = 0. Blue dashed
line: θ = π/6, θ0 = −π/6. Black dash-dotted line: θ = π/4, θ0 =
−π/4.

present method. As shown in Fig. 11, the sizes of both fluid and
solid domains are 4H × H , where H is the width of the chan-
nel. The outer boundaries of the solid domain are heated by
high temperature Th. The left and right boundaries of the solid
domain are adiabatic. At the inlet, the fluid with a low tem-
perature Tc is injected. The flow is driven by the pressure flow
and is assumed to be a fully developed state. In other words,
the flow in the channel has the following analytical solution:

u(x,y) = 4u0

(
y

H
− 1

)(
2 − y

H

)
, H � y � 2H, (69)

where u0 is the peak velocity in the channel.
The cases with two different thermal conductivity ratios

between solid and fluid phases (κs/κf = 3,10) are sim-
ulated. When κs/κf = 3, we have σ3,s = σ5,s = 1.25 and
σ3,f = σ5,f = 5/3. On the other hand, as κs/κf = 10, the
corresponding parameters are set to be σ3,s = σ5,s = 2/3 and
σ3,f = σ5,f = 5/3. To compare different numerical results, the
conventional finite volume method ( SIMPLE -like algorithm)
is also used to simulate the present problem. Both simulations
are carried out on a 160 × 120 mesh. In finite volume (FV)
simulation, the peak velocity is fixed at u0 = 1. Actually,
different from LBM, no low Mach number limit exists in
the conventional FV scheme. As shown in Fig. 12, the

FIG. 11. Schematic illustration of flow and heat transfer in a
channel.
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FIG. 12. (Color online) Comparison of the temperature profiles
for different thermal conductivity ratios at different horizontal
positions: x/H = 1,2,3.

temperature profiles at different horizontal positions x/H =
1,2,3 are presented. An overview of the figure indicates that
the LBM results show excellent agreement with the FV results.
Furthermore, we find that the relative errors of the temperature
(max TLBM−TFV

TFV
) between different methods are within 0.56%.

Because the finite volume method (FVM) ( SIMPLE -like
algorithm) has been well verified in the previous work, it
indicates that the present LB scheme is suitable for simulating
conjugate heat transfer problems. The CPU time costs for
both methods are also compared on the same mesh. The
present simulations are running on a desktop (CPU 3.4 GHz
and 8 G RAM). Only serial programs are considered. For
the present problem, the FV scheme is almost 2.31 times
faster than the present LBE. This is consistent with the
conclusion in Ref. [36]. However, the LBM is intrinsically
parallel. The parallel LBM codes are more efficient. For the
practical applications, heat transfer in complex geometries can
be encountered frequently. In this case, the LBM has a great
advantage over the FVM [36].

D. Natural convection in a cavity filled with circular solid blocks

The present method is also extended to simulate the natural
convection with conjugate heat transfer. Different from the
forced convection, the velocity and temperature fields are

FIG. 13. Schematic of a cavity filled with solid blocks.

coupled in the natural convective flow. Figure 13 depicts a
schematic of a cavity filled with circular solid blocks. The
bottom and top walls are adiabatic. The left wall is heated
uniformly and right is cooled uniformly (Th > Tc). The cavity
is filled with some conducting solid blocks in the form of
circular obstacles of diameter dp. The void space is filled
with the fluid. Under the gravity condition, the convective
flow is driven by the temperature difference. For the natural
convection, two important parameters, Rayleigh and Prandtl
numbers, must be defined. They are

Ra = gβH 3(Th − Tc)

νχf

, Pr = ν

χf

, (70)

where g,β are the gravitational acceleration and thermal
expansion coefficients of the fluid, respectively, H is the side
length of the cavity, and ν is the kinematic viscosity of the
fluid.

Moreover, the porosity φ is calculated as

φ = 1 − N
πd2

p

4H 2
, (71)

where N is the number of blocks. The Nusselt number which
evaluates the heat transfer rate is given by

Nu = − H

(Th − Tc)

∂T

∂x

∣∣∣∣
x=0

. (72)

The average Nusselt number is computed by

N̄u =
∫ H

0 Nudy

H
. (73)

The no-slip boundary condition on the surfaces of the
inner cylinders is implemented using the immersed boundary

TABLE I. Comparison of the averaged Nusselt number when
Ra = 105, Pr = 0.7, χs/χf = 1.

κs/κf LBM FVM

0.1 0.8495 0.8503
1 1.2614 1.2986
10 2.0429 2.0375
100 2.2957 2.2656
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(a) κ2/κ1 = 3

(b) κ2/κ1 = 1/3

FIG. 14. (Color online) Comparison of LBM results (red lines)
and FVM results (greenish-gray lines): (a) streamlines and (b)
isotherms, for Ra = 105, Pr = 0.7, φ = 0.64, κs/κf = 5, N = 4.

method in Ref. [37]. Now we consider the cases with Ra = 105,
Pr = 0.7, χs/χf = 1, N = 4, and φ = 0.64 for different
thermal conductivity ratios. The simulation parameters are
set to be σ3,s = σ5,s = 1.25 and σ3,f = σ5,f = 1.25. We also
employ the FVM (SIMPLE-like algorithm) and pseudo-solid-
specific-heat technique to simulate the present thermal flow
problem on 200 × 200 mesh. Both LBM results and FV results
of the averaged Nusselt number are listed in Table I. It can be

seen obviously that N̄u increases with the increasing of κs/κf .
Good agreement between the two calculation results can be
observed.

Finally, the present LB model is used to investigate the
effect of the number N . φ and Pr are also set to be 0.64,0.7. The
number of cylinders N is increased from 4 × 4 to 32 × 32. Ra
is fixed at 107. The thermal conductivity ratio κs/κf is set to be
5. Accordingly, σ3,s = σ5,s = 10/11 and σ3,f = σ5,f = 5/3
are chosen.

To compare the LB results and FV results more fully,
the streamlines and isotherm for N = 4 × 4 are presented in
Fig. 14. Some small eddies are be captured by two methods.
It can be found that there are no significant differences
between the two results. Figure 15 depicts the streamlines and
isotherms for N = 8 × 8,16 × 16,32 × 32. When N = 8 × 8,
the isotherms are irregular. As N increases, the isotherms
become smoother. In fact, as the number of cylinders increases,
the flow and temperature field can be studied using a
semiempirical method at the representative elementary volume
scale [12–14].

V. CONCLUSIONS

Study of the conjugate heat transfer using LBM has been
a hot topic over the last two years [23,25–27]. In fact, two
different strategies have been considered to deal with this
issue. The first strategy is to discretize Eqs. (3) and (4) directly
[23,25,26]. Then the distribution functions neighboring the
interface can be corrected. However, these algorithms depend
on the the topology of the interface. Complicated treatments
are needed to satisfy the conjugate boundary conditions.
The other strategy is to introduce a source term in the
evolution equation [27]. The source term method is very
simple and efficient. However, in the work of Karani and
Huber [27], their method is a lack of mathematical rigor
in differentiating a piecewise constant function. Moreover,
the dependency between the finite difference scheme of heat
capacitance and numerical solutions exists. In this work,
we propose a new source term method to implement the
conjugate interface conditions based on LBE. A unified
governing equation with a source term is built in different
regions. Through a simple mathematical demonstration, we
prove that the conjugate interface conditions can be satisfied.
The present LB model is based on a rigorous mathematical
foundation. Furthermore, the curved interface is assumed as
zigzag lines. So the off-lattice points do not exist in this
model. The present model can be viewed as a full Eulerian
method. As a result, many complex thermal flow problems
with conjugate heat transfer, such as the phase change
problems and the coupled multiple physicochemical thermal
processes, can be simulated efficiently. The conjugate interface
conditions hold instantaneously. So the present model can be
employed for both steady and transient conjugate heat transfer
problems.

This LB model has been validated through several test
examples, including both steady and unsteady conjugate heat
transfer. It can be found that the obtained results show good
agreement with the analytical or finite volume solutions. In
particular, two practical applications have been considered:
cooling of the microchannel and natural convection in a

063305-10



FULL EULERIAN LATTICE BOLTZMANN MODEL FOR . . . PHYSICAL REVIEW E 92, 063305 (2015)

0.4

0.3
0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

(a) N = 8

0.4
0.3

0.2

0.1

0

-0.1

-0.2
-0.3

-0.4

(b) N = 16

0.4
0.3

0.2

0.1

0

-0.1

-0.2

-0.3
-0.4

(c) N = 32

FIG. 15. (Color online) Streamlines and isotherms for Ra = 105, Pr = 0.7, φ = 0.64, κs/κf = 5.
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porous enclosure. These numerical tests clearly indicate
that the present conjugate interface treatment has a strong
application potential.

It should noted that only two-dimensional cases are men-
tioned in this paper. The three-dimensional lattice Botzmann
models can be constructed similarly.
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