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Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory
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We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev.
Lett. 113, 155006 (2014);] for the calculation of ionic and electronic transport properties of dense plasmas.
To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal
conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found
with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the
method do not increase with temperature, we can produce results at much higher temperatures than is accessible
by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent
experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].
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I. INTRODUCTION

Recently we presented an approach for “fast and accurate
quantum molecular dynamics of dense plasmas across tem-
perature regimes” based on a carefully designed orbital-free
implementation of density functional theory (DFT) [1]. Our
orbital-free approximation retains the accuracy of the orbital-
based Kohn-Sham method (it reproduces the electron density
to high accuracy), while being computationally less expensive
and reaching much higher temperatures than are accessible
with the Kohn-Sham method. This was shown in Ref. [1] for
static properties, including the equation of state of hydrogen
from 1 to 100 eV, as well as for the pair distribution functions
of aluminum near melt and in warm dense matter conditions.

In this paper, we extend our study to the calculation
of dynamical properties. To this end we calculate both
ionic and electronic transport coefficients, including the ion
self-diffusion coefficient, the ion shear viscosity coefficient,
the electrical and thermal conductivities, and the reflectivity
coefficient. As with the static properties, we find very good
agreement with Kohn-Sham DFT calculations. Moreover,
the orbital-free approach provides significant relief from the
computational cost temperature bottleneck of the Kohn-Sham
method, allowing us to calculate accurately more extreme
conditions. This is particularly useful for the calculation of
ionic transport properties, which necessitate much longer
simulations than necessary for equation of state calculations.

The paper is organized as follows. In Sec. II, we focus
on ionic transport properties and validate our method for
the calculation of the self-diffusion and viscosity coefficients
in hydrogen and aluminum plasmas by comparison with
Kohn-Sham method at low temperature and then extend those
calculations to higher temperatures. In Sec. III we focus on
electronic transport properties and consider the electrical and
thermal conductivities of hydrogen and aluminum plasmas;
here we make use of both the ionic positions and associated
electron density from the orbital-free calculations as a shortcut
to the orbitals required in the Kubo-Greenwood formalism. In
both sections, we systematically compare the computational
cost of our orbital-free approach with the Kohn-Sham method.
Finally, special attention is given to the electrical conductivity
of warm dense aluminum at 2.7 g/cm3 in view of the recent ex-
perimental determination at the Linac Coherent Light Source

facility reported in Ref. [2]. We find the latter experimental
conductivity results to be inconsistent with our orbital-free
DFT results, for which we provide further discussion.

II. IONIC TRANSPORT

The full details of the orbital-free formulation and imple-
mentation may be found in Ref. [1] and its Supplemental Ma-
terial. We simply recall here that the main difference between
the orbital-based Kohn-Sham method and our orbital-free
approach is in the noninteracting free energy contribution of
the total Kohn-Sham free energy decomposition. As opposed
to the Kohn-Sham method which evaluates this term through
the single particle orbitals, our approach uses an approximation
in terms of electron density only that enforces the exact linear
response in the uniform limit.

Applying that approach, here we calculate the ion self-
diffusion and shear viscosity coefficients of hydrogen and alu-
minum plasmas using the standard Green-Kubo relations [3].
Hence the self-diffusion coefficient is obtained from the time
integration of the velocity autocorrelation function,

D = 1

3N

N∑
i=1

∫ ∞

0
〈Vi(t) · Vi(0)〉dt, (1)

where N is the total number of ions in the simulation
cell, Vi(t) is the velocity of the ith ion at time t , and
the brackets indicate the equilibrium thermal average. The
ionic shear viscosity coefficient is obtained by integrating the
autocorrelation function of the off-diagonal components of the
stress tensor,

η = 1

6�kBT

3∑
α �=β

∫ ∞

0
〈σα,β (t)σα,β(0)〉dt, (2)

where � and T are the system volume and temperature, kB the
Boltzmann constant, and σ is the ionic stress tensor, given by

σ =
N∑

i=1

mViVi + σ II + σ IE. (3)

The first term on the right-hand side is the kinetic contribution,
while the ion-ion, σ II , and ion-electron, σ IE , potential
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contributions are as given in Ref. [4] and depend only on
the electron density and ion positions.

A. Hydrogen

The Kohn-Sham calculations were performed using the
Quantum-ESPRESSO code [5] at the �-point only and used a
projector augmented-wave (PAW) pseudopotential, while the
orbital-free calculations employed a local pseudopotential as
described in Ref. [1]. For comparison, we also show results
obtained using the cruder Thomas-Fermi approximation. In all
cases the simulations included 128 atoms in the unit cell, with
time steps from 0.002 to 0.2 fs depending on temperature, and
they were performed in the isokinetic ensemble [6]. In most
calculations, the local density approximation (LDA) [7] for
the exchange-correlation energy was used; other calculations
were done using the Perdew-Burke-Ernzerhof (PBE) gener-
alized gradient approximation [8]. While inclusion of finite-
temperature effects in the exchange-correlation energy [9,10]
may have some effect, here we focus on zero-temperature
functionals to make connection with previous Kohn-Sham-
based results. The orbital-free calculations were equilibrated
for 10 000 steps and the statistics gathered for 120 000
steps, while for the Kohn-Sham calculation 40 000 steps were
completed after equilibration.

Figure 1 shows results at density 2 g/cm3 and lower
temperatures for which comparative Kohn-Sham results can
be obtained. In Fig. 1(a) the results are shown to agree very
well with the Kohn-Sham results [11]. As for the Thomas-
Fermi approximation, it underestimates the self-diffusion by
20%–30% at these conditions.

We note that the calculations were run on the same 48-
core single node hardware, and the time to complete 40 000
molecular dynamics steps at T = 2 eV for the Kohn-Sham and
our orbital-free methods was 87.25 and 7.35 hr, respectively,
giving a nearly 12 times speed up for the orbital-free case. For
still increasing temperature, the Kohn-Sham approach costs
more in machine memory and cpu time, while the orbital-free
method has no increased cost with increasing temperature.

This freedom from the scale-up of computational cost with
temperature allows us to extend our hydrogen results to much
higher temperatures. In Fig. 2 we show the self-diffusion (a)
and shear viscosity (b) coefficients for hydrogen at 2 and
8 g/cm3 in the range of temperatures from 1 to 100 eV. At
the lowest temperatures of 1 and 2 eV (and 5 eV for 8 g/cm3)
Kohn-Sham calculations are also shown for comparison. We
see an agreement to within 4% of our method.

The self-diffusion results in general have an uncertainty of
5%, which is determined by inspection of the convergence of
the Kubo relation (1). The Thomas-Fermi approach (which is
not shown in Fig. 2), however, differs from our results by 15%–
20% up to 10 eV, and then gradually comes in to agreement
with our results, showing a difference within 1% at 80 eV.
For the viscosity coefficient, the orbital-free results agree with
the Kohn-Sham results to a maximum error of 10%, which is
within the uncertainties of the calculations, which are 10-12%.
While the viscosity coefficients at 2 g/cm3 increase monoton-
ically in this temperature region, the 8 g/cm3 case exhibits
a minimum around 2 eV. This is indicative of the transition
from a weakly coupled to a strongly coupled plasma regime as

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

D
 (

10
-3

 c
m

2 /s
)

T (eV)
(a)

This work
Thomas-Fermi

Kohn-Sham

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

D
 (

10
-3

 c
m

2 /s
)

T (eV)
(b)

This work
Thomas-Fermi

Kohn-Sham
This work-PBE 
This work-NHC

FIG. 1. (Color online) Self-diffusion coefficient of hydrogen
plasmas at 2 g/cm3 and lower temperatures, where comparison
with Kohn-Sham is possible. In (a) our results show excellent
agreement with Kohn-Sham while the Thomas-Fermi approach
exhibits ∼20%–30% difference. In (b) we see that for hydrogen
at these temperatures and densities, there is minimal difference in
using LDA or PBE exchange-correlation functionals. Also using
a Nose-Hoover chain (NHC) thermostat [12], we find negligible
difference with the isokinetic thermostat used in all other calculations
discussed in this paper.

the temperature decreases, similar to that found in the simpler
one-component plasma model [13].

B. Aluminum

The Kohn-Sham calculations were performed at the �-point
using 64 atoms in the unit cell and used a 680 eV plane wave
cutoff. A total of 180 bands were calculated to achieve a 10−3

threshold in the occupation number at 2.7 g/cm3 and 1 eV,
and 160 bands were needed for a maximum occupation of
2 × 10−4 at 8.1 g/cm3 and 1 eV. The orbital-free calculations
were performed for 108 atoms on a 643 grid. Finally, the local
pseudopotential for the orbital-free calculations [1] and the
PAW for the Kohn-Sham calculations include three valence
electrons only; this limits the the maximum temperature
permissible to about 10 eV.
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FIG. 2. (Color online) Self-diffusion coefficient (a) and shear
viscosity coefficient (b) for hydrogen plasmas at 2 and 8 g/cm3 in
the range of temperatures from 1 to 100 eV. Very good agreement
is shown with Kohn-Sham at lower temperatures. As expected the
shorter mean-free-path associated with higher density leads to lower
diffusion and higher viscosity.

Figure 3 shows the self-diffusion results for warm dense
aluminum at ambient solid density, 2.7 g/cm3, and three times
compression, 8.1 g/cm3, in the range of temperature from 0.5
to 10 eV. As with hydrogen we see very good agreement in
the self-diffusion coefficient at lower temperature where the
calculations overlap. However, the time for the completion of
45 000 molecular dynamics time steps for the Kohn-Sham
calculation at 2.7 g/cm3 and 1 eV was 225 hr on a 48 core
node, while the time to complete the same number of steps on
just 16 cores of the same machine in the orbital-free case was
13.1 hr.

Finally we consider the case of liquid aluminum near melt.
In our previous work [1] we showed excellent agreement for
the ion-ion pair distribution function as compared with both
the Kohn-Sham method and experimental results. Following
that, we examine here the self-diffusion as calculated at the
experimental densities and temperatures [14]. In Fig. 4 our
orbital-free results are plotted using both LDA and PBE
exchange-correlation functionals and are compared with the
the previous Kohn-Sham results of Refs. [15,16]. In each
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FIG. 3. (Color online) Self-diffusion coefficient for aluminum
plasmas at 2.7 and 8.1 g/cm3 and from 0.5 to 10 eV. Again good
agreement is shown with Kohn-Sham calculations at 0.5 and 1 eV. A
smooth fit to the orbital-free calculations is shown.

case, the orbital-free and Kohn-Sham results agree closely,
although the LDA agreement is somewhat better than the PBE
agreement. We believe that this is due to lower accuracy in the
PBE local pseudopotential.

Here, as opposed to the hydrogen case of Fig. 1, there
is significant difference between the exchange-correlation
functionals, and further neither LDA nor PBE agree with the
recent experimental self-diffusion results [17,18] also shown
in Fig. 4 (for more discussion, see Ref. [15]). It is of note
our orbital-free approach captures these differences between
exchange-correlation functionals, which does highlight the
accuracy of our kinetic functional, as the kinetic energy
contribution is typically an order of magnitude larger than
the exchange-correlation contribution [19].
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FIG. 4. (Color online) Self-diffusion coefficient for liquid alu-
minum near melt compared with experimental results. Our results
are close to those for Kohn-Sham for both PBE and LDA. None of
the simulations are in agreement with Experiment no. 1 [17] and
Experiment no. 2 [18] suggesting inaccuracy due to the exchange-
correlation functional (for more discussion, see Ref. [15])
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III. ELECTRONIC TRANSPORT

So far we have been able to express the ionic transport
properties completely within the framework of orbital-free
DFT, which involves the electron density only. However,
when considering electronic transport coefficients, transitions
between quantum states of the system must be considered, and
it is necessary to return to a description in terms of Kohn-Sham
orbitals. To this end, our approach is to first perform an
orbital-free calculation from which ionic configurations and
corresponding electron densities are selected at a subset of
time steps along the simulation. (Recall that in Ref. [1]
we showed that the densities obtained using our orbital-free
approach are in very good agreement with those obtained with
a self-consistent Kohn-Sham calculation.) Then, for each ionic
configuration and electron density, the Kohn-Sham potential
is readily calculated, and the single-particle Kohn-Sham
spectrum of eigenstates is calculated by diagonalization of
the single-particle Kohn-Sham equation [20,21].

The spectrum is then used to calculate the electrical σ and
thermal κ conductivities by evaluating the Kubo-Greenwood
formula (see Ref. [22] and references therein),

σ = L11, κ = 1

T

(
L22 − L2

12

L11

)
, (4)

where the frequency-dependent Onsager coefficients are given
by

Lmn(ω) = 2πe4−m−n

3V m2
eω

∑
kνμ

|〈kν|p̂|kμ〉|2(fkν − fkμ)

×
(

εkν + εkμ

2
− he

)m+n−2

δ(εkμ − εkν − �ω).

(5)

Here p̂ is the momentum operator, k is the specific k-point
in the Brillouin zone, μ and ν label the band index, ε are
the single-particle energies, and f are the single-particle
occupations determined through the Fermi-Dirac distribution.
Additionally e and me are the electron charge and mass and
he is the average electron enthalpy per electron. Lastly is the δ

function, which is approximated by a Lorentzian function (see
details in Appendix A) due to the discreteness of the energy
levels.

Finally, for each ionic configuration, σ and κ are calculated
and then averaged over all sampled configurations to obtain a
converged result. The reflectivity coefficient R is then obtained
from the frequency-dependent electrical conductivity σ (ω)
(see Appendix B).

The main difference of our approach from a full Kohn-Sham
calculation is that we use the density from the orbital-free
calculation in order to calculate the Kohn-Sham potential
and then find the single-particle orbitals and occupation
numbers by a single diagonalization as opposed to a fully
self-consistent Kohn-Sham calculation which may require
10–20 diagonalization steps or more depending on the initial
guess. This then decreases our computation time by at least an
order of magnitude [23].

A. Hydrogen

We have performed calculations for hydrogen plasmas from
1 to 10 g/cm3 and temperatures from 1000 to 2 000 000 K.
As discussed in Ref. [24] convergence with respect to the
number ions, the number of k-points and the width of the
Lorentzian smearing is critical. We have used 96 atoms for all
calculations, except at 2 000 000 K where we used 40 atoms. At
1 000 000 K we performed calculations with 40 and 96 atoms
and found no difference in results. For higher densities and
lower temperatures a 33 k-grid was required, moving to higher
temperatures a 23 grid and finally �-point only calculations
were sufficient. A Lorentzian smearing of 0.1 eV was also
adequate (see Appendix A).

The results for the electrical and thermal conductivities σ

and κ are plotted in Fig. 5. We find that our results agree well
with the previous calculations of Refs. [22] and [24] for both σ

and κ . We also find good agreement with the deuterium results
(at twice mass density) of Ref. [25] for κ . Here though we are
able to complete calculations in the direction of lower densities
and higher temperatures than in those previous works which is
where the Kohn-Sham method becomes more computationally
expensive.
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FIG. 5. (Color online) Electrical (a) and thermal (b) conductivi-
ties for hydrogen at 10, 5, 2, 1 g/cm3 (decreasing from top to bottom
curves) from 1000 to 2 000 000 K. For a baseline comparison we show
the commonly used model results of Kitamura and Ichimaru [26].
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B. Aluminum

We have calculated the electrical and thermal conductivities
and the reflectivity coefficient of warm dense aluminum from
0.1 to 10 eV at solid density (2.7 g/cm3) and at the ambient
liquid melt density of 2.35 g/cm3. Here we found a much
smaller width in the Lorentzian smearing, 0.015 eV, was
required for convergence of the calculations, which all used

 1

 2

 3

 4

 5

 6

10-1 100 101

σ 
 (

10
6 /Ω

 m
)

T  (eV)
(a)

This work 2.7 g/cm3

This work 2.35 g/cm3

Recoules et al.  KS-DFT 2.35 g/cm3

Experiment #1 2.35 g/cm3

Experiment #2 2.35 g/cm3

102

103

104

10-1 100 101

κ 
(W

 / 
K

 m
)

T (eV)
(b)

This work 2.7 g/cm3

This work 2.35 g/cm3

Recoules et al. KS-DFT 2.35 g/cm3

Experiment #1 2.35 g/cm3

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

10-1 100 101

R

T (eV)
(c)

This work 2.7 g/cm3

This work 2.35 g/cm3

Experiment #3 2.35 g/cm3

FIG. 6. (Color online) Electrical conductivity (a), thermal con-
ductivity (b) and reflectivity coefficient (c) of aluminum plasmas at
2.7 and 2.35 g/cm3. Previous Kohn-Sham and experimental results
at the liquid density agree with our calculations.

64 atoms, and a 23 k-grid except at 10 eV, which used only
the �-point. Also the three-electron local pseudopotential used
here limits us to temperatures less than 10 eV.

The results of our calculations are shown in Fig. 6
together with previous results, including three independent
experimental measurements.

Our orbital-free results at 2.35 g/cm3 for σ and κ

are in very good agreement with previous Kohn-Sham
calculations of Recoules et al. [27] and with the experimental
results [28,29]. Similarly, our results for the reflectivity agree
very well with the experimental measurement near 0.1 eV
reported in Ref. [30] (the experimental point is shown with
the error bar representing the dispersion over the experimental
frequency range). By extending the previous Kohn-Sham
calculations to higher temperature, we find a minimum in the
electrical conductivities at about 6 eV, while the reflectivity
coefficients show an exponential decrease with temperature.
Similar trends are seen for σ and R at 2.7 g/cm3. We note
here that the minimum in conductivity is expected as the
aluminum transitions from a lower temperature metal to a
high-temperature plasma [31].

Surprisingly, while our results at 2.35 g/cm3 are in agree-
ment with previous experiments, our electrical conductivities
at 2.7 g/cm3 are inconsistent with the experimental determina-
tion recently reported by Sperling et al. at temperatures 0.2 and
6 eV [2]. This is clearly shown in Fig. 7 where we reproduce
the results of Fig. 6 for the electrical conductivity together
with the result of Sperling et al. and other results discussed
below. The “improved Born model” calculation is also reported
in Sperling et al. and, while it was described there as in
satisfying agreement with the experiment, this model is also in
disagreement with our calculations. Our calculations are also
inconsistent with the recent results of Faussurier et al. [32]
based on an average-atom (AA) model, which find a minimum
around 20–30 eV, significantly higher than the value of ∼6 eV
that we find.

On the other hand, our results are consistent with other
Kohn-Sham calculations at 1 and 2 and 2.35 g/cm3 by
Desjarlais et al. [33] and Recoules et al. [27], which show
a clear trend of increasing conductivity with density in this
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FIG. 7. (Color online) Electrical conductivity of aluminum. Re-
cent experimental results for 2.7 g/cm3 [2] are not consistent with
DFT calculations and other experimental measurements.
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temperature region. To the contrary, the lower temperature
point of Sperling et al. even at the full extent of the error
bars falls between the 1 and 2 g/cm3 DFT calculations. Addi-
tionally, an experimental point from the exploding wire experi-
ments of Benage et al. [34] at 1.95 g/cm3 shows a conductivity
a little lower than suggested by the DFT but within the error.

IV. CONCLUSION

We have applied our recently published orbital-free ap-
proximation of finite-temperature density functional theory
to the calculation of ionic and electronic transport properties
of dense plasmas from cold to hot conditions. We have
shown that our approach retains the level of accuracy of
the orbital-based Kohn-Sham calculations, as was previously
shown for the static properties [1]. Moreover, the reduction
of the temperature bottleneck which exists in the Kohn-Sham
method allows us to calculate these properties at a fraction
of the computational cost of Kohn-Sham calculations, and
further to complete calculations where Kohn-Sham is simply
computationally prohibited.

The present results lend support to orbital-free quantum
molecular dynamics as a viable approach that can significantly
contribute to the theoretical exploration of matter under
extreme conditions, especially when thermodynamic and
transport properties are needed over a wide range of physical
conditions of temperatures and densities. Further work is
needed to develop this approach to its full potential. Indeed, at
present, our own orbital-free method is limited to conditions
where the gradients in the electron density are small enough
to be consistent with the assumption made in the construction
of the density functional (see discussion in Ref. [1]). As a
consequence, its applicability is limited to “simple” enough
systems, such as hydrogen plasmas at large enough densities
(>2 g/cm3), dense aluminum below 10 eV (which can be
modeled with a three-electron pseudopotential), or very hot
plasmas in which case the Thomas-Fermi approximation is
adequate. Consideration of more “difficult” conditions involv-
ing larger density gradients, such as aluminum calculations
to temperatures above 10 eV, or of other elements that
are less free-electron like require further developments of
orbital-free functionals. Potential research areas include the
search for advanced orbital-free functionals of higher order
in the density gradients [35]; the development of accurate
local pseudopotentials, as the transferability of the current
pseudopotentials across densities and temperatures remains
an issue, and for some elements and conditions they have
been simply unattainable; and the development of density
functionals with a density decomposition, such as has been
explored for transition metals at zero temperature [36].

Further, here we have made use of the highly accurate
electron density available in our orbital-free DFT to determine
the Kohn-Sham potential and then obtain the Kohn-Sham or-
bitals by a single diagonalization, which significantly reduces
the computational time for high-temperature calculations of
the electrical and thermal conductivities through the Kubo-
Greenwood linear response theory. Of course, this reliance
on a calculation of Kohn-Sham orbitals for the evaluation of
the conductivities is now the limiting factor. Development of
an orbital-free approach which does not resort to calculating

the Kohn-Sham orbitals but retains the Kubo-Greenwood
accuracy would be a significant advancement for the field,
from computational and aesthetic viewpoints.
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APPENDIX A: CONVERGENCE ISSUES

Here we present some of the convergence issues which were
briefly stated in the main text. One such issue the necessary
smearing of the δ function in Eq. (5), which we approximate
as a Lorentzian, with width �

δ(εkμ − εkν − �ω) ≈ �

π [(εkμ − εkν − �ω)2 + �2]
. (A1)

In Fig. 8 the convergence of the electrical and thermal
conductivities are examined with respect to � for the case
of aluminum at 2.7 g/cm3 and 5 eV.

In the case of hydrogen, we found 96 atoms sufficient down
to our lowest temperatures at all densities. However, a 3 × 3
× 3 k-grid was needed up to 20 000 K at 10 g/cm3, but only
up to 5000 and 2000 K at 5 and 2 g/cm3, and at 1 g/cm3 at
1000 K a 2 × 2 × 2 k-grid was sufficient. We were able to use
only the �-point for temperatures down to 232 000 K at 1 and
2 g/cm3 and down to 1 000 000 K at 5 and 10 g/cm3.

For the hydrogen conductivity calculations we included 450
bands at all densities and 1000 K. While at 1 000 000 K we
used 3000 bands at 10 g/cm3 and 5 000 bands at 1 g/cm3.

In all electrical and thermal conductivity calculations 10
configurations from the molecular dynamics simulation were
averaged over. In some cases averages over 20 configurations
were additionally taken and no change was found compared to
the 10 configuration average. In Fig. 9 we show the 10 single
configurations and averaged result for aluminum at 2.7 g/cm3

and 5 eV.
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FIG. 8. (Color online) Convergence of the electrical and thermal
conductivity for aluminum at 2.7 g/cm3 and T = 5 eV with respect
to the width of the Lorentzian smearing, �. The value of the σ0 and
κ0 relative to the converged values is shown.
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FIG. 9. (Color online) Optical conductivity evaluated at each
ionic configuration and averaged over the 10 configurations at
2.7 g/cm3 and 5 eV.

APPENDIX B: CALCULATION OF THE REFLECTIVITY

Following Ref. [37], with the real part of the frequency-
dependent electrical conductivity σ (ω) from Eq. (4), the

the imaginary part may be calculated through the Kramers-
Kroning relation,

σ2(ω) = −2

π
P

∫
σ1(ν)ω

ν2 − ω2
dν. (B1)

The real and imaginary part of the dielectric function are then
given directly as

ε1(ω) = 1 − σ2(ω)

ε0ω
, ε2(ω) = σ1(ω)

ε0ω
, (B2)

respectively. Then finally the real n and imaginary k parts of
the index of refraction are found through

n(ω) =
√

[|ε(ω)| + ε1(ω)]/2, (B3)

k(ω) =
√

[|ε(ω)| − ε1(ω)]/2, (B4)

and used to determine the reflectivity R = r(ω = 0), where

r(ω) = [1 − n(ω)]2 + k(ω)2

[1 + n(ω)]2 + k(ω)2
. (B5)
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