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Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)]
is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham
density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-
dependent response properties from the coupled perturbed self-consistent field equations as in density-functional
perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling
complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and
metals at high temperatures.
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I. INTRODUCTION

Materials properties such as electric conductivity, magnetic
susceptibility, or electrical polarizabilities are defined from
their response to perturbations that are governed by the
quantum nature of the electrons. The calculation of such
quantum response properties represents a major challenge
because of the high cost involved. In traditional calculations
the computational complexity scales cubically, O(N3), or
worse, with the number of atoms N , even when effective
mean-field models or density-functional theory are used
[1,2]. By using the locality of the electronic solutions it
is possible to reduce the computational cost for sufficiently
large, nonmetallic, materials to scale only linearly, O(N ), with
the system size [3–10]. Initially, the development of linear
scaling electronic structure theory was aimed at calculating
ground-state properties and not until recently has the focus
shifted towards the computationally more demanding task of
calculating the quantum response. A number of approaches
to a quantum perturbation theory with reduced complexity
have now been proposed and analyzed [11–22]. Linear scaling
quantum perturbation theory has so far mainly concerned
properties at zero electronic temperature. Here we extend
the idea behind linear scaling density matrix perturbation
theory [16–19] to calculations of static response properties
valid also at finite electronic temperatures with fractional
occupation of the states. Our proposed canonical density
matrix perturbation theory, which is applicable within effective
single-particle formulations, such as tight-binding, Hartree-
Fock, or Kohn-Sham density-functional theory, can be applied
to calculate temperature-dependent response properties from
the solution of the coupled perturbed self-consistent field
equations [1,23,24] as in density-functional perturbation the-
ory [2,25]. The canonical density matrix perturbation scheme
should be directly applicable in a number of existing program
packages for linear scaling electronic structure calculations,
including CONQUEST [9,26,27], CP2K [28], ERGO [29,30],
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FEMTECK [31,32], FREEON [33], HONPAS [34], LATTE [35,36],
ONETEP [37], OPEN-MX [38], and SIESTA [39]. While originally
motivated by its ability to achieve linear scaling complexity,
our canonical density matrix perturbation theory is quite
general and straightforward to use with high efficiency also
for material systems that are too small to reach the linear
scaling regime. The computational kernel of the algorithm is
centered around generalized matrix-matrix multiplications that
are well known to provide close to peak performance on many
computer platforms using dense algebra, including graphics
processing units [40,41].

The paper is outlined as follows; first, we present the
canonical density matrix perturbation theory. Thereafter we
show how it can be used to calculate temperature-dependent
free-energy response properties, such as static polarizabilities
and hyperpolarizabilities. We discuss the alternative of using
finite-difference schemes and its potential problems. We
conclude by discussing the capability of the canonical density
matrix perturbation theory to reach linear scaling complexity
in the computational cost.

II. CANONICAL DENSITY MATRIX
PERTURBATION THEORY

In our density matrix perturbation theory we will use the
single-particle density matrix and its derivatives to represent
the electronic structure and its response to perturbations. With
the density matrix formulation it is easy to utilize matrix
sparsity from electronic nearsightedness [6,18,42,43] and it
allows direct calculations of observables. The effective single-
particle density matrix, P , at the electronic temperature Te,
can be calculated from the Hamiltonian, H , using a recursive
Fermi operator expansion [44–47],

P =[eβ(H−μI ) + I ]−1 ≈ FM (FM−1(. . .F0(H ) . . .)), (1)

where the inverse temperature β = 1/(kBTe), μ is the chemical
potential, and I is the identity matrix (see the Appendix). Both
H and P are here assumed to be matrix representations in
an orthogonal basis. The expansion can be calculated through
intermediate matrices Xn = Fn(Xn−1) for n = 1,2,3, . . . ,M ,
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where

X0 =F0(H ) = 1

2
I − 2−(M+2)β(H − μI ),

Xn =Fn(Xn−1) = X2
n−1

X2
n−1 + (I − Xn−1)2

. (2)

In the canonical (NVT) ensemble, the chemical potential μ is
chosen such that the density matrix has the correct occupation,
Tr[P ] = Nocc, where Nocc is the number of occupied states.
The recursion scheme above provides a very efficient and
rapidly converging expansion and the number of recursion
steps M can be kept low (M < 20). Because of the particular
form of the Padé polynomial Fn(Xn−1), each iteration involves
a solution of a system of linear equations, which is well
tailored for the linear conjugate gradient method [44,45,47].
The recursive expansion avoids the calculation of individual
eigenvalues and eigenfunctions and is therefore well suited
to reach linear scaling complexity in the computational cost
for sufficiently large nonmetallic problems, which can utilize
thresholded sparse matrix algebra [6].

A canonical density matrix response expansion,

P (λ) = P (0) + λP (1) + λ2P (2) + . . . , (3)

where Tr[P (k)] = 0 for k > 0, with respect to a perturbation
in the Hamiltonian,

H (λ) = H (0) + λH (1) + λ2H (2) + . . . , (4)

can be constructed at finite electronic temperatures, Te > 0,
based on the recursive Fermi operator expansion in Eqs. (1)
and (2) above. The technique is given by a free-energy
generalization of the zero-temperature linear scaling density
matrix perturbation theory [16,17]. The idea is to transfer the
perturbations up to some specific order in each iteration step
in the recursive Fermi-operator expansion, i.e.,

X(k)
n = 1

k!

∂k

∂λk
Fn

(
X

(0)
n−1 + λX

(1)
n−1 + . . .

)∣∣∣∣
λ=0

, (5)

for n = 0,1, . . . ,M , where X
(k)
−1 = H (k). The additional prob-

lem of conserving the number of particles in a canonical
ensemble, which requires Tr[P (k)] = 0 for k > 0, is achieved
by including the corresponding perturbative expansion of the
chemical potential, i.e.,

μ = μ(λ) = μ(0) + λμ(1) + λ2μ(2) + . . . . (6)

The values of μ(k) (k = 0,1,2, . . .) can be found by an iterative
Newton-Raphson optimization of the occupation error with
respect to the chemical potential using the relation(

1

λk

∂P

∂μ(k)

)∣∣∣∣
λ=0

= Pμ = βP (0)(I − P (0)), (7)

which for the approximate expanded density matrix, Eqs. (1)
and (2), is exact in the limit M → ∞. The trace of Pμ, defined
here, gives the change in occupation with respect to a change in
μ. The small deviation from the exact analytic derivative for a
finite expansion order M is in practice insignificant, though for
very low values of M the rate of convergence will be slightly
lower than quadratic in analogy to quasi-Newton schemes.
In combination with low temperatures, low values of M may
also lead to loss of convergence (see Table II). However, in this

case we could typically use regular zero temperature response
theory, or, alternatively, a modified search routine to adjust for
the correct occupation would be needed.

The canonical density matrix perturbation theory based on
Eqs. (1)–(7) above, which is our first key result, is summarized
by Algorithm 1 for up to third-order response. Each inner loop
requires the solution of a system of linear equations, which can
be achieved with the conjugate gradient method using X

(k)
n−1

as initial guesses. The linear conjugate gradient method [48]
is ideal for this purpose, since it efficiently can take advantage
of matrix sparsity to reduce the scaling of the computational
cost [44]. Generalizations and modifications to higher-order
response, grand-canonical schemes (with a fixed value of μ),
or spin-polarized (unrestricted) systems are straightforward. It
is interesting to note that the system matrices on the left-hand
side of the inner loop of Algorithm 1 are all the same, i.e.,
T

(0)
n−1. The same inverse of T

(0)
n−1 would therefore give the

response X(k)
n for all orders k. The conditioning of the response

algorithm should therefore be the same as for the original
zeroth-order expansion. The system matrix T

(0)
n−1 is very well

conditioned with a spectral condition number smaller than
or equal to 2 [47] at any point of the algorithm. In the
limit of low temperature and high n, T

(0)
n−1 → I and in the

opposite limit of high temperatures does the condition number
go to 1 as T

(0)
n−1 → I/2. The well-behaved conditioning is

independent of the condition number of the Hamiltonian used
in the initialization.

III. FREE-ENERGY RESPONSE THEORY

To study the quantum response valid at finite electronic
temperatures, the electronic entropy contribution to the free
energy has to be considered. We will look at two different
situations: (a) non-self-consistent band-energy response as
in regular tight-binding theory using an orthogonal matrix
representation and (b) self-consistent free-energy response
as in density-functional or Hartree-Fock theory using a
nonorthogonal formulation. To clearly separate the two cases
we will use two different notations. For the orthogonal tight-
binding-like formulation we keep using H and P , which is con-
sistent with the previous sections, and for the self-consistent
free-energy response we use F and D for the nonorthogonal
matrix representations and F⊥ and D⊥ for the orthogonalized
representations, as is explained in the sections below.

A. Non-self-consistent tight-binding-like free-energy response

In a simple tight-binding-like formulation, the expansion
terms for the canonical free energy,

�(λ) = Tr[P (λ)H (λ)] − TeS[P (λ)],
(8)

= �(0) + λ�(1) + λ2�(2) + . . . ,

generated by a perturbation in H (λ), Eq. (4), with the electronic
entropy [45,49],

S[P ] = −kBTr[P ln(P ) + (I − P ) ln(I − P )], (9)

are given by

�(m) = 1

m

m∑
k=1

kTr[H (k)P (m−k)]. (10)

063301-2



CANONICAL DENSITY MATRIX PERTURBATION THEORY PHYSICAL REVIEW E 92, 063301 (2015)

Algorithm 1. Canonical density matrix response theory.

M ← Number of recursion steps
μ(0) ← Initial guess

μ(i) ← 0 Initial guess {i = 1,2,3}
β = 1/(kBTe) ← Choose temperature

while Occupation error > Tolerance do

X
(0)
0 = 1

2 I − 2−(2+M)β(H (0) − μ(0)I )

X
(i)
0 = −2−(2+M)β(H (i) − μ(i)I ), {i = 1,2,3}

for n = 1 : M do
solve for X(i)

n , {i = 0,1,2,3}
T

(0)
n−1X

(0)
n = C

(0)
n−1

T
(0)
n−1X

(1)
n = C

(1)
n−1 + B

(1)
n−1X

(0)
n

T
(0)
n−1X

(2)
n = C

(2)
n−1 + B

(2)
n−1X

(0)
n + B

(1)
n−1X

(1)
n

T
(0)
n−1X

(3)
n = C

(3)
n−1 + B

(3)
n−1X

(0)
n + B

(2)
n−1X

(1)
n + B

(1)
n−1X

(2)
n

end for

P (i) = X
(i)
M , {i = 0,1,2,3}

μ(0) = μ(0) + (Ne − Tr[P (0)])/T r[Pμ]

μ(i) = μ(i) − Tr[P (i)]/Tr[Pμ], {i = 1,2,3}
Occupationerror = |Tr[P (0)] − Ne| + ∑3

i=1 |Tr[P (i)]|
end while

using:

Pμ = βP (0)(I − P (0))

T (0)
n = 2X(0)

n (X(0)
n − I ) + I

C(m)
n = ∑

i+j=m X(i)
n X(j )

n , {i,j � 0, m = 0,1,2,3}
B (m)

n = 2(X(m)
n − C(m)

n ), {m = 0,1,2,3}

This expression, with P (k) calculated from our canonical
density matrix perturbation scheme in Algorithm 1, is a
straightforward generalization of the conventional Te = 0 limit
of the “n + 1” rule [19] and follows directly from the fact
that the first-order response term Tr[H (0)P (1)] is canceled by
the response in the entropy [45]. Higher-order derivatives of
order n + 1 therefore contain at most a derivative of order n

in the density matrix. This generalization is possible only by
including the entropy term in Eq. (8), which is required to
provide a variationally correct description of the energetics.
We have not been able to find any explicit density matrix
expressions for Wigner’s 2n + 1 rule [16,18,50–54] that are
valid also at finite temperatures. A more detailed derivation of
Eq. (10) is given in the Appendix.

B. Self-consistent free-energy response

In self-consistent first-principles approaches such as
Hartree-Fock theory [55] (density-functional and self-
consistent tight-binding theory, although different, follow
equivalently) the free energy in the restricted case (without
spin polarization) is given by a constrained minimization of
the functional

�SCF[D] = 2Tr[hD] + Tr[DG(D)] − 2TeS[D⊥], (11)

under the condition that 2Tr[DS] = Ne, where Ne is the
number of electrons (two in each occupied state). Here D⊥ is

the orthogonalized representation of the Hartree-Fock density
matrix D such that D = ZD⊥ZT , and the orthogonalized ef-
fective single-particle Hamiltonian is given by F⊥ = ZT FZ,
where the Fockian F = h + G(D) and Z is the inverse factor
of the basis set overlap matrix S such that ZT SZ = I . The
density matrix, D, is thus given by

D = Z[eβ(F⊥−μI ) + I ]−1ZT , (12)

which can be calculated through the recursive Fermi operator
expansion in Eqs. (1) and (2). Here h is the usual one-electron
term and G(D) is the conventional two-electron part including
the Coulomb J and exchange term K , respectively [55]. In
density-functional theory, the Fockian F is replaced by the
corresponding Kohn-Sham Hamiltonian, where the exchange
term K is substituted with the exchange-correlation potential
term. Notice that to make a clear distinction to the non-self-
consistent response we use the notations D and F for the
self-consistent Hartree-Fock density matrix and Fockian, i.e.,
the effective single-particle Hamiltonian.

With a basis-set independent first-order perturbation in the
one-electron term,

h(λ) = h(0) + λh(1), (13)

for example, due to an external electric field, the self-consistent
response in the density matrix is given by the solution of the
coupled perturbed self-consistent field (SCF) equations as in
density-functional perturbation theory:

F (λ) = h(0) + λh(1) + G(D(0) + λD(1) + . . .),

F⊥(λ) = ZT F (λ)Z, (14)

D(λ) = Z[eβ(F⊥(λ)−μI ) + I ]−1ZT ,

where D and F are expanded in terms of λ, i.e.,

D(λ) = D(0) + λD(1) + λ2D(2) + . . . ,
(15)

F (λ) = F (0) + λF (1) + λ2F (2) + . . . .

The coupled response equations above are solved in each
iteration using the canonical density matrix perturbation theory
as implemented in Algorithm 1 with H and P replaced by F⊥
and D⊥. At self-consistency, the free-energy expansion terms,

�SCF(λ) = �SCF[D(0)] + λ�
(1)
SCF + λ2�

(2)
SCF + . . . , (16)

are given by

�
(m)
SCF = 2

m
Tr[h(1)D(m−1)] m > 0. (17)

This simple and convenient expression for the basis-set inde-
pendent free-energy response, which follows (see Appendix)
from Eq. (10), is another key result of this paper. The
free-energy response theory presented here provides a general
technique to perform reduced complexity calculations of,
for example, temperature-dependent static polarizabilities and
hyperpolarizabilities [17,18].

IV. FINITE-DIFFERENCE APPROXIMATIONS

An alternative to the canonical density matrix perturbation
theory is to perform calculations with finite perturbations
and use finite-difference approximations of the free-energy
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FIG. 1. (Color online) The relative error compared to the “exact”
derivative in Eq. (17) for �

(2)
SCF using 5- and 9-point central difference

schemes for the calculation of the second-order response in the free
energy with respect to an external electric field, i.e., the polarizability.
Either the exact entropy expression was used, Eq. (9), or the highest-
order (m = 4) approximation in Eq. (18). The electronic temperature
Te is about 37 000 K.

derivatives. However, this can be far from trivial because the
numerical errors are sometimes difficult to estimate and con-
trol, in particular for high-temperature hyperpolarizabilities.
Nevertheless, by using finite steps δλ of the perturbations
in h, combined with multipoint high-order finite-difference
schemes, it is sometimes possible to reach good accuracy. This
is illustrated in Fig. 1, which shows the finite-difference error
in the approximation of the second-order free-energy response,
�

(2)
SCF, with respect to an external electric field for a self-

consistent tight-binding model [56–59] as implemented in the
electronic structure program package LATTE [35,36]. Finite-
difference calculations of higher-order hyperpolarizabilities
show similar behavior.

In a finite-difference approximation it is difficult to know a
priori what step size �λ to use for the perturbations λh(1)

in Eq. (13). Errors may be large unless careful numerical
testing is performed. This can be expensive and even when
an optimal step size has been found, the computational cost
is still higher than the analytical approach. For example,
to calculate the second-order response using the five-point
finite-difference scheme has a computational cost of about
5 times a ground-state calculation, whereas the cost for the
density matrix perturbation theory is only about 3 times
larger. This cost estimate does not include the additional
entropy calculations. The calculation of the entropy is difficult
(or impossible) to perform accurately within linear scaling
complexity. Computationally favorable formulations that are
based on approximate expansions of S[P ] in Eq. (9) are
typically poor. For example, when any of the approximate
entropy expressions,

Sm[P ] ≈ −kB

m∑
i=1

ci(m)Tr[P m(P − I )m], (18)

with the coefficients ci(m) in Table I are used, the relative error
of the polarizability in Fig. 1 is increased by over 6 orders
of magnitude for the most accurate 9-point finite-difference

TABLE I. Coefficients for the approximate entropy expression in
Eq. (18). The coefficients are determined from the ansatz in Eq. (18)
with the requirement that the function value and a few of its derivatives
are correct at the midpoint 0.5 of the interval [0,1] in which P has its
eigenvalues.

ci(m) m = 1 m = 2 m = 4

c1(m) 4 ln(2) 8 ln(2) − 2 16 ln(2) − 34/5
c2(m) 16 ln(2) − 8 96 ln(2) − 844/15
c3(m) 256 ln(2) − 2336/15
c4(m) 256 ln(2) − 2368/15

approximation. The accuracy is at best only about 0.5% with
any of the entropy approximations in Eq. (18) and Table I.
Only by avoiding explicit entropy calculations is it possible
to reach a meaningful accuracy. This is possible in a finite-
difference approximation by using the finite differences of the
dipole moments instead of the free energies. Such calculations
(not shown) avoid calculating the explicit entropy term and
the numerical accuracy is similar to the finite-difference
approximations using the free energies with the exact entropy
expression as illustrated in Fig. 1.

V. FIRST-PRINCIPLES RESULTS

A. Polarizabilities and hyperpolarizabilities

Figure 2 shows the calculated temperature-dependent re-
sponse for a single water molecule with respect to static electric
fields. Notice that this example includes artificially high elec-
tronic temperatures up to 100 000 K, where the water molecule
most probably would fall apart because of vibrational motion
that is not accounted for. The calculations were performed
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FIG. 2. (Color online) The temperature-dependent isotropic
second-order response �

(2)
SCF[ 1

3 (xx + yy + zz)] = 1
3 (�(2)

SCF[xx] +
�

(2)
SCF[yy] + �

(2)
SCF[zz]), and the third-order and fourth-order response

in the x direction. The canonical density matrix response Algorithm
1 for restricted Hartree-Fock theory (RHF) with a Gaussian basis
set (cc-pVDZ) was used. The xyz coordinates of the molecule:
{O(0.0,0.0,0.0); H(−1.809,0.0,0.0); H(0.453549,1.751221,0.0)} in
atomic units (a.u.). As a comparison and validation we show 5-point
finite-difference calculations of the free-energy derivatives. At low
electronic temperatures the second-order response corresponds to
1/2 times the isotropic polarizability (see Table II).
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TABLE II. Convergence of the isotropic polarizability αiso = 2 1
3 (�(2)

SCF[xx] + �
(2)
SCF[yy] + �

(2)
SCF[yy]) for three different electronic

temperatures Te (1000 K, 30 000 K, and 100 000 K) as a function of the number of recursion steps (M) in the canonical density matrix
response expansion in Algorithm 1 for a water molecule calculated from restricted Hartree-Fock theory (RHF) with a Gaussian basis set
(cc-pVDZ). The xyz coordinates of the molecule: {O(0.0,0.0,0.0); H(−1.809,0.0,0.0); H(0.453549,1.751221,0.0)} in atomic units (a.u.). As
a comparison and validation we show the Te = 0 K result of the isotropic polarizability, which was calculated by solving the linear response
time-dependent Hartree-Fock (or RPA) equations [64] as implemeted in the ERGO program package [29,30] applied for the zero-frequency
case.

Te (K) M αiso (a.u.) Te (K) M αiso (a.u.) Te (K) M αiso (a.u.)

0 (ERGO) n/a −5.0112528623
1000 6 No convergence 40 000 6 −6.8540449154 100 000 6 −7.5204026148
1000 8 −5.0112527697 40 000 8 −6.8538983381 100 000 8 −7.5198385798
1000 10 −5.0112527697 40 000 10 −6.8538891617 100 000 10 −7.5198033131
1000 12 −5.0112527697 40 000 12 −6.8538885881 100 000 12 −7.5198011089
1000 14 −5.0112527697 40 000 14 −6.8538885522 100 000 14 −7.5198009711
1000 16 −5.0112527697 40 000 16 −6.8538885500 100 000 16 −7.5198009625

with Hartree-Fock theory using the ERGO program package
[29,30]. At lower temperatures the response values correspond
to the isotropic polarizability and hyperpolarizabilities if the
values are multiplied by m!, i.e., the factorial of the response
order. At higher temperatures this interpretation is less accurate
because of the limited basis set description of the thermally
excited states. For relevant temperatures below 10 000 K our
calculations show a very small temperature dependence, which
is consistent with a fairly large highest occupied molecular
orbital–lowest unoccupied molecular orbital (HOMO-LUMO)
gap. For higher temperatures the errors may be significant,
since the Gaussian basis set used here (cc-pVDZ) was not
designed for high-temperature expansions. The calculations
were performed for a single molecule in the gas phase. For
periodic boundary conditions the position and the dipole mo-
ment operator are not well defined. In this case the techniques
developed within the modern theory of polarizability can be
applied [60–63].

The response properties converges quickly as a function of
the number of recursion steps (M) in the canonical density
matrix response expansion in Algorithm 1, which is illustrated
in Table II. At higher temperatures we see a slightly slower
convergence, and at low temperatures and with a small number
of recursion steps there can be problems with convergence of
the occupation, since the chemical potential derivative estimate
Pμ = βP (0)(I − P (0)) is less accurate. In this case we may
prefer to use a regular zero-temperature response calculation.

B. Linear scaling complexity

It is easy to understand the potential for a linear scaling im-
plementation of canonical density matrix perturbation theory.
Due to nearsightedness [6,18,42,43], both the Hamiltonian and
its perturbations, as well as the density matrix and its response,
have sparse matrix representations for nonmetallic materials
when local basis set representations are used. The number
of significant matrix elements above some small numerical
threshold (or machine precision) then scales only linearly
with the number of atoms for sufficiently large systems. In
this case, since all operations in the canonical density matrix
perturbation scheme in Algorithm 1 are based on matrix-matrix
operations, the computational cost scales only linearly with

system size if sparse matrix algebra is used in the calculations.
This is not possible in regular Rayleigh-Schrödinger pertur-
bation theory, which requires the calculation of individual
eigenvalues and eigenfunctions. Figure 3 shows the number
of nonzero elements above threshold as a function of system
size for the density matrix and its first- and second-order
response with respect to an electric dipole perturbation. The
test systems are simple one-dimensional hydrocarbon chains of
various lengths and the calculations where performed based on
Hartree-Fock theory using a small Gaussian (STO-3G) basis.
Gaussian basis sets were not designed for the high-temperature
expansions demonstrated here and we can expect that the
accuracy is limited. The simulations therefore only serve
as a schematic demonstration of the expected behavior. For
example, at higher temperatures the locality, i.e., the matrix
sparsity, is increased similar to what is found for larger
HOMO-LUMO gaps [6], and for higher-order response the
locality decreases, as has been seen in previous studies of the
zero-temperature case [17,18]. Using a larger Gaussian basis
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FIG. 3. (Color online) The sparsity scaling as a function of
system size of the density matrix and its first- and second-order
response with respect to an electric (static) dipole perturbation for
two different electronic temperatures. The graphs show the number
of nonzero elements of the orthogonal density matrix after a numerical
threshold of 10−5.
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set should not change this general behavior of the locality and
the results would still be uncertain. Matrix sparsity may also
suffer and numerical problems may arise due to ill conditioning
from linear dependencies between many Gaussians. However,
this will not affect the conditioning of the canonical density
matrix response algorithm, Algorithm 1, and the low spectral
condition number of T

(0)
n−1, which is always <2, but it would

affect the congruence transformation from the nonorthogonal
atomic orbital representation of F to F⊥. The input data of
the response algorithm would thus be less accurate. Localized
numerical atomic orbital basis sets that have been tailored
specifically for high-temperature expansions (and with low
condition numbers of the overlap matrix) would then be a
more appropriate choice.

VI. SUMMARY

In summary, we have presented a canonical single-particle
density matrix perturbation scheme that enables the calculation
of temperature-dependent quantum response properties. Since
our approach avoids the calculation of individual eigenvalues
and eigenfunctions as well as the entropy, the theory is
well adapted for reduced complexity calculations with a
computational effort that scales only linearly with the system
size. However, we may expect very fast parallel performance
also for smaller systems in the limit of dense matrix algebra,
since the computational kernel is centered around matrix-
matrix multiplications that often can reach close to peak
performance on modern hardware. The perturbation scheme
should be applicable to a number of existing program packages
for linear scaling electronic structure calculations.
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APPENDIX

1. Recursive Fermi operator expansion

There are several techniques to calculate matrix exponen-
tials. For example, if we start with

ex = (ex/n)n =
(

ex/(2n)

e−x/(2n)

)n

, (A1)

then a first-order Taylor expansion gives

ex = lim
n→∞

(
2n + x

2n − x

)n

. (A2)

Using this expansion we can approximate the Fermi-Dirac
distribution function, 	(x), with

	(x) = [ex + 1]−1 = lim
n→∞

(2n − x)n

(2n + x)n + (2n − x)n
, (A3)

such that

	(2n − 4nx) ≈ xn

xn + (1 − x)n
, (A4)

which is accurate for large values of n. The Padé polynomial
function

fn(x) = xn

xn + (1 − x)n
(A5)

can be expanded recursively, since

fm×n(x) = fm(fn(x)). (A6)

This particular property enables a rapid high-order expansions
in only a few iterations in the recursive Fermi-operator
expansion,

	[β(εi − μ)] = 	(2n − 4nxi)

≈ fn(xi) = f2(f2(. . . f2(xi) . . .)), (A7)

where

xi = 1

2
− β

4n
(εi − μ) (A8)

with the recursion repeated m times, i.e., for n = 2m. In 30
steps (m = 30) this gives an expansion order of the Padé
polynomial of over 1 billion, but often less than 10 steps are
needed.

The density matrix at finite electronic temperatures,

P = [eβ(H−μI ) + 1]−1 = 	[β(H − μI )], (A9)

can now be calculated with the recursive grand-canonical
Fermi operator expansion,

P = f2
(
. . . f2

{
f2

[
1
2I − 2−(2+m)β(H − μI )

]}
. . .

)
,(A10)

which forms the starting point in Eq. (2), withFn(X) = f2(X).
The recursive grand-canonical Fermi operator expansion,
derivations, convergence analysis, and tests with various basis
sets have been published previously in Refs. [44–47].

2. Perturbation response for the non-self-consistent
single-particle free energy

To derive Eq. (10) we start by noting that from the definition
of the density matrix response and the perturbations in the
Hamiltonian, Eqs. (3) and (4), we have

∂k

∂λk
P (λ)

∣∣∣∣
λ=0

= P [k] = k!P (k) (A11)

and

∂k

∂λk
H (λ)

∣∣∣∣
λ=0

= H [k] = k!H (k), (A12)

where we use square brackets for the regular Taylor expansion
terms, H [k] and P [k], and round brackets, H (k) and P (k), for
the perturbation expansions as in Eqs. (3) and (4). Thereafter
we can calculate the response terms �(m) from the derivatives
of the free-energy expression in Eq. (8), i.e.,

�(m) = 1

m!

∂m

∂λm
�(λ)

∣∣∣∣
λ=0

. (A13)
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It is easy to see that the first derivative of the entropy term
S[P (λ)] in Eq. (9) is given by

∂

∂λ
S[P (λ)]|λ=0 = −kBTr[( ln(P ) − ln(I − P ))P [1]]

= −kBTr[ln(P (I − P )−1)P [1]]

= −kBTr[ln(e−β(H−μI ))P [1]]

= kBβTr[HP (1)], (A14)

since we have a canonical perturbation Tr[P [1]] = 0 and P =
[eβ(H−μI ) + I ]−1. This means that the first-order response in
the free energy �(λ) is given by

�(1) = ∂

∂λ
�(λ)

∣∣∣∣
λ=0

= Tr[H (1)P (0)] + Tr[H (0)P (1)]

− TekBβTr[HP (1)]

=Tr[H [1]P [0]] = Tr[H (1)P (0)]. (A15)

For the second-order expansion we find that

�(2) = 1
2 Tr[H [1]P [1] + H [2]P [0]]

= 1
2 (Tr[H (1)P (1)] + 2Tr[H (2)P (0)]). (A16)

For the third-order expansion we find that

�(3) = 1
6 Tr[H [1]P [2] + H [2]P [1] + H [3]P [0] + H [2]P [1]]

= 1
6 Tr[2H (1)P (2) + 2H (2)P (1) + 6H (3)P (0) + 2H (2)P (1)]

= 1
3 (Tr[H (1)P (2)] + 2Tr[H (2)P (1)] + 3Tr[H (3)P (0)]).

(A17)

The straightforward mth-order generalization from consecu-
tive derivatives gives Eq. (10).

3. Basis-set independent self-consistent free-energy response

To derive the basis-set independent response of the free
energy in Eq. (17) we first calculate the first-order derivative
of

�SCF[D] = 2Tr[hD] + Tr[DG(D)] − 2TeS[D⊥], (A18)

with respect to λ in Eq. (13), i.e.,

∂

∂λ
�SCF[D]|λ=0

= 2Tr[h(1)D + hD[1]] + 2Tr[D[1]G(D)]

− 2TekBβTr[F⊥D⊥[1]
]

= 2Tr[h(1)D] + 2Tr[(h + G(D))D[1]] − 2Tr[F⊥D⊥[1]
]

= 2Tr[h(1)D[0]] + 2Tr[FD[1]] − 2Tr[ZT FZD⊥[1]
]

= 2Tr[h(1)D[0]] + 2Tr[FD[1]] − 2Tr[FD[1]]

= 2Tr[h(1)D[0]], (A19)

where we have derived the entropy derivative as in Eq. (A14)
above, used the definition of the Fockian, F = h + G(D), and
applied the congruence transformation between the orthogonal
and nonorthogonal representations, e.g., F⊥ = ZT FZ, and
the cyclic permutation under the trace. Subsequent derivatives,
analogous to the previous Appendix subsection above, gives
Eq. (17).
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