
PHYSICAL REVIEW E 92, 063202 (2015)

Anatomy of the Akhmediev breather: Cascading instability, first formation time, and
Fermi-Pasta-Ulam recurrence
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By invoking Bogoliubov’s spectrum, we show that for the nonlinear Schrödinger equation, the modulation
instability (MI) of its n = 1 Fourier mode on a finite background automatically triggers a further cascading
instability, forcing all the higher modes to grow exponentially in locked step with the n = 1 mode. This
fundamental insight, the enslavement of all higher modes to the n = 1 mode, explains the formation of a
triangular-shaped spectrum that generates the Akhmediev breather, predicts its formation time analytically from
the initial modulation amplitude, and shows that the Fermi-Pasta-Ulam (FPU) recurrence is just a matter of energy
conservation with a period twice the breather’s formation time. For higher-order MI with more than one initial
unstable mode, while most evolutions are expected to be chaotic, we show that it is possible to have isolated
cases of “super-recurrence,” where the FPU period is much longer than that of a single unstable mode.
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I. INTRODUCTION

The study of modulation instability (MI) in solutions of the
nonlinear Schrödinger equation on a constant background has
became a cornerstone of modern nonlinear physics, underlying
many of the advances in understanding deep-water wave
propagation [1–3], plasma physics [4], light transmission
in optical fibers [5], and the formation of optical rogue
waves [6,7]. While directly solving the nonlinear Schrödinger
numerically is a relatively simple matter [3], exact solutions
to the nonlinear Schrödinger equation on a finite background,
known as the Akhmediev [8,9] and Kuznetsov-Ma [10,11]
breathers (ABs, KMBs), have provided much insight into the
subsequent evolution of MI in these solutions. In this work,
we seek to provide a more detailed understanding of the
Akhmediev breather’s formation, its fundamental structure,
and its remarkable mode of evolution.

Akhmediev breathers [8,9] are exact solutions to the cubic
nonlinear Schrödinger equation,

i
∂ψ

∂t
+ 1

2

∂2ψ

∂x2
+ |ψ |2ψ = 0, (1)

on a finite background, |ψ(t → ±∞)| → 1. In this work,
we show the following: (i) The modulation instability of the
n = 1 Fourier mode automatically triggers a further cascading
instability, forcing all the higher modes to grow exponentially
in lockstep with the n = 1 mode. This results in a triangular
spectrum [12], which is the signature of the Akhmediev
breather. The remarkable simplicity of the Akhmediev breather
is that, once formed, this triangular spectrum basically evolves
intact, throughout its subsequent evolution, oblivious to any
nonlinear interactions. (ii) By knowing the analytical form
of the Fourier amplitudes from an AB, one can predict the
time of the breather’s first formation. This formation time
corresponds to the maximum compression distance [13] in
an optical fiber, and it is an important design parameter for
breather productions. Our formation time is an improvement
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over that derived in Ref. [13]; it is accurate even for purely real
modulation amplitudes. (iii) Since all higher Fourier modes
are “enslaved” [14] to the n = 1 mode, there is no freedom
for the equal partition of energy and no Fermi-Pasta-Ulam
[15,16] (FPU) paradox. The FPU recurrence is then just
a consequence of bound state energy conservation with a
period twice the breather’s formation time. (iv) In cases of
higher-order modulated instabilities, where there are multiple
initial unstable modes, super FPU recurrences are possible,
but Fourier amplitudes beyond the first AB-like peak are no
longer predicted by the Akhmediev breather.

II. ANATOMY OF THE AKHMEDIEV BREATHER

The Akhmediev breather [8,9]

ψ(t,x) =
[

(1−4a) cosh(λt) +√
2a cos(�x) + iλ sinh(λt)√

2a cos(�x)− cosh(λt)

]
eit

(2)

is an exact solution to (1) parametrized by a single real positive
parameter a, which fixes the wave number � and the growth
factor λ. To make clear the most fundamental aspect of the
solution, it is best to regard a as parametrizing the solution’s
periodic length L:

L = π√
1 − 2a

. (3)

For an AB, a ranges between 0 and 1/2; at a = 1/2, the
Peregrine soliton [17] forms with an infinite periodic length.
Given L, the spacing in k space is �k = 2π/L, so that the
allowed k vectors are just

kn = n�k for n = 0,±1,±2, . . . . (4)

The wave number � of the Akhmediev breather (2) then
corresponds to the fundamental n = 1 mode,

� = �k = 2π/L = 2
√

1 − 2a, (5)

and the growth factor

λ =
√

8a(1 − 2a) (6)
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is due to the instability of this mode, as determined by the
Bogoliubov spectrum [18].

While the general Benjamin-Feir [1] instability has been
known since 1967, the modulation instability of the cubic
nonlinear Schrödinger equation has been known from Bogoli-
ubov’s work on the uniform Bose gas [18,19] since 1947.
This is because a uniform Bose gas can be described by
the Gross-Pitaevskii equation [19,20], which is just the cubic
nonlinear Schrödinger equation with a uniform background.

Bogoliubov’s spectrum [18,19] for the elementary excita-
tions of a uniform Bose gas is given by

εk =
√

Ek(Ek + 2U ), (7)

where Ek = k2/2 is the free-particle energy and U = g|ψ |2.
In the repulsive (defocusing) case of g = +1, all elementary
excitations are stable. In the attractive (focusing) case of g =
−1, all k modes with plane-wave eikx are unstable if Ek +
2U < 0. In the latter case, for a constant background |ψ |2 = 1,
the n = ±1 modes are unstable with imaginary frequencies,

ε±1 = ±i

√
�k2

2

(
2 − �k2

2

)
= ±i

√
8a(1 − 2a) = ±iλ,

(8)

and the modulus of the amplitudes A±1 grows in time as

|A±1| ∝ e∓iε±1t = eλt . (9)

Thus, the instability of the n = ±1 modes determines the
growth factor λ. More generally, since a k mode is unstable for
Ek − 2 < 0, this means that all modes with kn < 2, or n� < 2,
are unstable. For 1 < � < 2, only one mode is unstable. If
� < 1, then there will be more than one unstable mode with
more than one growth factor. The case of � = 1 corresponds to
a = 3/8 = 0.375, hence there will be multiple unstable modes
initially if a > 0.375.

When starting with a constant background of ψ = 1, with
A0 = 1 and An�=0 = 0, any minute perturbation that triggers
the instability of the n = 1 mode will cause it to grow
exponentially, according to (9). This is the standard Benjamin-
Feir [1] scenario. What has not been explicitly stated prior
to this work is that, for the nonlinear Schrödinger equation,
this growth of the n = 1 mode will automatically trigger a
cascading instability of all the higher modes, causing all to
grow exponentially, locked to the fundamental mode. To see
this, let us review how the the Bogoliubov spectrum is obtained
for the fundamental mode and follow up on its effect on all the
higher modes. Starting with A0(0) = A0 = 1, the zero-mode
amplitude satisfying (1) takes the form of a Stokes wave,

A0(t) = A0e
i|A0|2t = eit . (10)

The evolution of A1(t) is obtained by expanding

|ψ |2ψ = |A0(t) + A1(t)ei�kx + A−1(t)e−i�kx |2
× [A0(t) + A1(t)ei�kx + A−1(t)e−i�kx] (11)

and keeping terms only linear in A±1(t). Thus for A1(t) we
have

i∂tA1(t) = E1A1(t) − 2|A0(t)|2A1(t) − A2
0(t)A∗

−1(t)

= (E1 − 2)A1(t) − eit [e−itA−1(t)]∗. (12)

For our purpose here, it is sufficient to assume A−1(t) = A1(t)
and solve (12) via the ansatz

A1(t) = eit (aeiε1t + be−iε1t ), (13)

where a and b are complex constants. Substituting the above
into (12) gives

a = (E1 − 1 − ε1)b and b = (E1 − 1 + ε1)a, (14)

which are consistent only if (E1 − 1 − ε1)(E1 − 1 + ε1) = 1,
thereby yielding the Bogoliubov spectrum for the n = 1 mode,

ε1 =
√

(E1 − 1)2 − 1 =
√

E1(E1 − 2). (15)

For A1(0) = A1, where A1 	 1 is real, we have

A1(t) = eitA1e
λt . (16)

Thus eit is just an overall phase, as in (2). For the evolution
of A±2(t) with A±2(0) = 0, we now expand

|ψ |2ψ = |A0 + A1e
i�kx + A−1e

−i�kx

+A2e
i2�kx + A−2e

−i2�kx |2ψ, (17)

but we only keep terms containing A0(t) and A±1(t). This is
because the amplitudes A±2(t) are just starting from zero, and
they are much smaller than |A0| = 1 and the already growing
A±1. One finds

i∂tA2 = −A2
1(t)A∗

0(t) − 2A0(t)A1(t)A∗
−1(t),

= −3eitA2
1e

2λt , (18)

which, apart from an overall phase, is simply proportional to
|A1(t)|2. Thus A2 is just given by a time integration,

A2(t) = i

∫ [
A2

1(t)A∗
0(t) + 2A0(t)A1(t)A∗

−1(t)
]
dt

= 3i

i + 2λ
eitA2

1e
2λt , (19)

resulting in

|A2(t)| ∝ |A1(t)|2 = A2
1e

2λt . (20)

Repeating similar arguments for A±n (n �= 0), retaining only
O(An

1) terms then yields

|A±n(t)| = Cne
|n|λt . (21)

Therefore, the growth of the entire spectrum is dictated by
the growth of |A1(t)|. If Cn does not grow exponentially
faster than n, then at t < 0, ln[|A±n(t)|] ∝ −|n|, which is a
triangular-shaped spectrum [12] in n.

To check the validity of this cascading scenario, we
solve the nonlinear Schrödinger equation numerically using
a second-order splitting method for the case of a = 3/8,
L = 2π , �k = 1, � = 1, and λ = √

3/2, with an initial profile

ψ(0,x) = A0 + A1e
i�x + A1e

−i�x = A0 + 2A1 cos(�x),

(22)

where A0 =
√

1 − 2A2
1 and A1 = 10−4, so that the wave

function is normalized as in Ref. [8]:

1

L

∫ L

0
|ψ(0,x)|2dx = A2

0 + 2A2
1 = 1. (23)
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FIG. 1. (Color online) Density |ψ(t,x)|2 plot of the numerical
solution of the cubic nonlinear Schrödinger equation (1) using a
second-order splitting method with �t = 0.0001 for a = 3/8 and
the initial profile (22).

The allowed k modes are just integers, k = n = 0,±1,±2,

etc. In Fig. 1, the resulting density profile plot shows that
the breather is first formed at t ∼ 10 and then recurs later
at intervals of t ∼ 20. To verify that the structure formed is
precisely the breather of (2) with a = 3/8, we compare in
Fig. 2 the structure’s spatial profile at the formation time with
|ψ(0,x)|2 of Eq. (2). The agreement is exact.

In Fig. 3, the growth of |Ak(t)| for k = 1–5 is compared to
the cascading prediction (21) that |Ak(t)| = ekλ(t−tc), with the
prefactor Cn absorbed into the shift of the time origin tc. All
k = 1–5 amplitudes can be well-fitted with a single cascading
time of tc = 10.6352,

ln[|Ak(t)|] = |k|λ(t − tc), (24)
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FIG. 2. (Color online) The first breather’s numerical spatial pro-
file from the calculation of Fig. 1 as compared to the analytical form
of |ψ(0,x)|2 from Eq. (2).
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FIG. 3. (Color online) The growth of the k = 1–5 Fourier ampli-
tudes in time. Symbols are numerical results from the calculation of
Fig. 1. Solid lines are kλ(t − tc) with λ = √

3/2 and tc = 10.6352.

where tc is the time needed for A1 to grow from an initial value
of 10−4 to unity at the rate of λ = √

3/2,

tc = − ln(A1)

λ
= 10.6352. (25)

The excellent linear fits to the amplitudes in Fig. 3 are therefore
parameter-free predictions of the cascading instability. It only
fails to describe the growth of the amplitudes near and after
the amplitudes’ peak, at which time the exact dynamics takes
over. The breather’s actual formation time of

t0 = 10.4691 (26)

will be derived in a later section; the cascading time tc is just
a first estimate of t0. Because of the cascading instability, the
growth of the amplitudes is best understood and plotted in
terms of ln(|Ak|) rather than |Ak| or |Ak|2.

Of course, this exponential growth in the amplitudes cannot
continue indefinitely, since it must be constrained by the
unitary condition on the wave function:

|A0|2 + 2
∑
n>1

|An|2 = 1. (27)

If one assumes that the cascading spectrum (21) persists
(setting Cn = 1) even when |A1| can no longer be considered
as “small,” then since |A0| can only be depleted to zero, the
maximum that |A1| can grow to is given by

∑
n>1

(|A1|2)n = 1

2
⇒ max(|A1|) = 1√

3
(28)

and max(|An|) = (1
√

3)n. As we will see in the later sections,
after the amplitudes have reached their maxima, by energy
conservation, they must decline back to their starting values in
a time-symmetric image of their rise.

To see how exactly the Akhmediev breather forms from
this cascading scenario, we now compute the exact amplitudes
An(t) from the solution (2). From Eq. (2) (ignoring the overall
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phase eit ), we have

An(t) = 1

L

∫ L

0
ψ(t,x) cos(n�x)dx,

= 1

2π

∫ 2π

0

(
1 + 2(1 − 2a) cosh(λt) + iλ sinh(λt)√

2a cos(y) − cosh(λt)

)
× cos(ny)dy,

= 1

2π

∫ 2π

0

(
1 + 2(1 − 2a) + iλ tanh(λt)

α cos(y) − 1

)
cos(ny)dy,

(29)

where we have defined

α =
√

2a/ cosh(λt) < 1,

and where

1

2π

∫ 2π

0

cos(ny)

α cos(y) − 1
dy = − 1√

1 − α2

(
1 − √

1 − α2

α

)n

.

(30)
Therefore, one has

A0(t) = 1 − 2(1 − 2a) + iλ tanh(λt)√
1 − α2

, (31)

and for n �= 0,

An(t) = −2(1 − 2a) + iλ tanh(λt)√
1 − α2

(
1 − √

1 − α2

α

)|n|
.

(32)
This derivation agrees with the original results of Akhmediev
and Korneev [8] (up to an overall sign) for a = 1/4, and with
others [21], but not with the amplitudes given in Ref. [12].

Equation (32) means that all amplitudes are phase-locked
to that of A1(t) and their magnitudes simply decrease geomet-
rically with increasing n:

An(t) =
(

1 − √
1 − α2

α

)|n|−1

A1(t). (33)

This affirms the cascading scenario, but the Akhmediev
breather goes further in asserting that all |n| > 1 amplitudes
evolve in locked step with A1(t) at all times. In 1981,
Infeld [14] explained the success of his truncated three-wave
model as due to the “enslavement” of higher modes to the
n = 1 modes. This conjecture is precisely confirmed by the
Akhmediev breather and is the basis for the qualitative success
of all three-wave models [14,22]. This “enslavement” is a
remarkably simple mechanism of nonlinear evolution.

Note that

A0(0) = 1 − 2
√

1 − 2a = 1 − � (34)

and for n �= 0,

An(0) = −2
√

1 − 2a

(
1 − √

1 − 2a√
2a

)|n|
. (35)

Therefore, the depletion of the background is maximal,
A0(0) = 0, only for a = 3/8, � = 1. We now plot ln[|Ak(t −
t0)|] in Fig. 4 using the exact AB amplitudes of (31) and (32).
The exact amplitudes match the numerical data perfectly.
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FIG. 4. (Color online) The growth of the k = 0–5 Fourier am-
plitudes as compared to the exact amplitudes (31) and (32). The
numerical data are the same as those in Fig. 3. The plunging vertical
line depicts the total depletion of A0 (=0) at t = t0.

When the time origin is shifted by t → t − t0, then for
t 	 t0,

α → 2
√

2aeλ(t−t0) → 0

and

|An(t − t0)| → 2
√

1 − 2a(
√

2aeλ(t−t0))|n|. (36)

Therefore, at any a the Akhmediev breather will yield a
growing triangular spectrum, as predicted by the cascading
instability, but with a known prefactor Cn.

III. THE FORMATION TIME

The excellent agreement in Fig. 4 between numerical data
and theoretical results means that one can track ln[|A1(t − t0)|]
back to t = 0 and set it equal to the initial amplitude,

ln A1 = ln[|A1(−t0)|], (37)

and directly determine t0 from the initial amplitude. From
Fig. 4, for small A1 it is clear that ln[|A1(t − t0)|] is in the
linearly growing region. There is no need to use the full
expression (32); the approximation (36)

|A1(−t0)| = λe−λt0 (38)

is sufficient. One then has an analytical form for the formation
time:

t0 = − ln(A1/λ)

λ
= − ln(A1)

λ
+ ln λ

λ
. (39)

Setting A1 = 10−4 gives t0 = 10.6352 − 0.1661 = 10.4691,

in exact agreement with the observed formation time of (26).
The analytical formation time (39) is exact for A1 → 0. It

is surprising to find that (39) remains a good approximation at
a = 3/8 even for A1 as large as ≈0.1. However, at larger values
of A1, there is not enough time for the cascading process to
build up to the triangular spectrum, and the resulting evolution
is no longer described by the Akhmediev breather. Thus, in
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FIG. 5. (Color online) The corrected Akhmediev breather’s first
formation times as functions of a for various initial amplitudes
parametrized as A1 = e−w . Crosses are numerical values; lines are
analytical estimates of (40). From the top to the bottom are results
corresponding to w = 9–2.

order for the Akhmediev breather and (39) to be applicable,
the smaller the initial modulating amplitude, the better.

The above discussion for t0 is only for the case of a =
3/8, � = 1. It turns out that for � �= 1, another correction is
necessary. This is due to the fact that for � �= 1, the numerical
ln[|A1(t)|] will start out either steeper or flatter than the slope
λ. In general, starting with a finite A1 �= 0, unless the initial A1

is very small, ln[|A1(t)|] is not described by the Akhmediev
breather. But if we are using the straight-line portion (38) of
the Akhmediev breather to determine t0 approximately, then
we must use a value of |A1| logarithmically higher or lower
to match the slope. The correction, found empirically, takes a
very simple form:

t0 = − ln[A1/(λ�)]

λ
= − ln(A1)

λ
+ ln λ

λ
+ ln �

λ
. (40)

In Fig. 5, we compare the numerical formation time for various
values of the modulating amplitude A1 and a. At smaller values
of A1, w = 7,8,9, the agreement is excellent even at a >

0.375, where there is more than one initial unstable mode.
Naturally, the analytical estimates fail as one approaches a =
1/2, where the AB scenario is not applicable anymore and the
Peregrine soliton scenario takes over.

At A1 = 0.01, we compare both (39) and (40) in Fig. 6 for
all values of a. The old formula (39) is only correct at one
point, a = 3/8 = 0.375 or � = 1. The corrected formula (40)
is in excellent agreement with numerical results, even at this
relatively large value of A1. If one interprets t as z, the distance
along the optical length, then t0 corresponds to the distance at
which A0 is maximally depleted. This is called the maximum
compression distance by Erkintalo et al. in Ref. [13]. They have
also derived the formation time (39) by an entirely different
expansion method. Our use of the amplitude |A1(t)| from (36)
seemed more direct. Figure 6 should be compared with Fig. 3
in Ref. [13].
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FIG. 6. (Color online) Comparing the original formula (39) and
the corrected formula (40) for the formation time t0 at A1 = 0.01.

IV. FERMI-PASTA-ULAM RECURRENCE

In Fig. 7, we show the continued evolution of the amplitudes
for the case of a = 3/8 after the first peak. One sees that
A1 decreases back to its initial value and repeats its initial
growing pattern. This is the celebrated Fermi-Pasta-Ulam
[15,16] recurrence of the nonlinear Schrödinger equation,
known from the early experimental work of Lake et al. [2]
and the numerical calculations of Yuen and Ferguson [3]. As
discussed earlier, in an AB, all higher amplitudes should rise
and fall in lockstep with A1. However, due to the algorithm’s
error and limited numerical precision, this lockstep is difficult
to maintain when the amplitudes are near zero. (A2 is especially
difficult here because it is neutrally stable with a zero growth
rate. It tends to drift more than other modes.) The exact AB
is of no help in explaining this recurrence since the exact
wave function (2) only describes a single rise and fall of the
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FIG. 7. (Color online) The evolution of the k = 0–5 Fourier
amplitudes (top to bottom) beyond the first peak.
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FIG. 8. (Color online) The kinetic energy (top) and the potential
energy (bottom) of the nonlinear Schrödinger equation with initial
wave function (22). The horizontal straight line nearly identical to
−1/2 is the total energy.

breather. The key to understanding this recurrence is energy
conservation.

In Fig. 8, we plot the kinetic energy T , the potential
energy V , and the total energy E = T + V of the nonlinear
Schrödinger equation (1) as a function of t , where T and V

are defined by

T = 1

L

∫ L

0
dx ψ∗(t,x)

(
− 1

2
∂2
x

)
ψ(t,x) =

∑
k

1

2
k2|Ak(t)|2,

V = −1

2

1

L

∫ L

0
dx |ψ(t,x)|4.

At the peak of the AB, (34) and (35) give A0 = 0 and

|Ak|2 = 1

3k
, (41)

and hence

T = 2
∞∑

k=1

|Ak|2 1

2
k2 =

∞∑
k=1

k2

3k
= 3

2
. (42)

This explains why the kinetic energy peaks at 1.5.
One immediately recognizes that energy patterns in Fig. 8

are typical of a bound-state collision with a hard-wall potential,
like that of a bouncing ball released from rest at a given
height and then falling to the ground. When the ball hits the
ground, its velocity and kinetic energy are at their respective
maxima. When the ball begins to bounce back elastically, its
velocity reverses direction and both its magnitude and the
kinetic energy decrease back to zero. When the ball reaches its
original height with zero kinetic energy, it begins to fall again.
Thus every kinetic energy peak is a moment of impact. The
FPU period is therefore just the period of the bouncing ball,
which is twice as long as the time it takes to fall to the ground.
Hence,

tFPU = 2t0 = 2

(
− ln[A1/(λ�)]

λ

)
. (43)
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FIG. 9. (Color online) The Fermi-Pasta-Ulam recurrence period
tFPU as determined by a second- (stars) and a fourth-order (circles)
splitting scheme with �t = 0.01 to 0.0001 at a = 3/8 for an initial
amplitude of A1 = 10−4. The horizontal red line is the predicted FPU
period of 2t0.

This is clearly seen in the first optical observation of the FPU
recurrence [23].

In the original observation of Yuen and Ferguson [3],
recurrence in the nonlinear Schrödinger equation is likened
to the work of Fermi-Pasta-Ulam [15], because it was thought
that energy is being distributed from A0 to infinitely many
higher Fourier modes. If all these higher modes interact
independently, then the energy will thermalize and it will be
impossible to reassemble back to A0. From the AB, we now
have a simple explanation of this recurrence: All higher modes
are locked-in, to rise and fall with A±1(t) at all times. There is
therefore no infinite number of degrees of freedom to distribute
energy, and no entropy to destroy time-reversal symmetry.
Recurrence is just a matter of simple energy conservation for
basically two degrees of freedom, A0(t) and A1(t), similar to
that of a two-body collision problem.

If one were to numerically determine the period of the
bouncing ball accurately, then the ball must be able to return
to its original height accurately. In other words, energy
conservation is paramount. For the wave function (22), the
sum of kinetic and potential energy initially is

E0 = A2
1 − 1

2 − 4A2
1 + 7A4

1. (44)

Since A4
1 = 10−16, the total energy is near the limit of double-

precision. For A1 < 10−4, the total energy would be beyond the
limit of double-precision and cannot be accurately conserved
numerically (unless higher precision software is used).

To demonstrate the importance of energy conservation, we
plot in Fig. 9 the FPU recurrence period using a second- and
a fourth-order splitting algorithm with �t = 0.01 to 0.0001.
With decreasing �t , as the second algorithm is increasingly
more accurate, its numerical FPU period approaches the
expected value of 2t0 from below, and it does not converge
until �t < 0.002. However, the same converged value can
be obtained by using a fourth-order algorithm at a step size
as large as �t = 0.008. Also, as shown by the second-order
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FIG. 10. (Color online) Density |ψ(t,x)|2 plot for a = 55/128.

algorithm, when energy conservation is less accurate, the FPU
period tends to shorten.

V. HIGHER-ORDER MODULATION INSTABILITY

After understanding simple FPU recurrences in the preced-
ing section, we can now tackle the more complicated case
of higher-order modulated instability, with multiple initial
unstable modes.

Consider the case of a = 55/128 = 0.429 687 5, where the
fundamental wave number �1 = 3/4 and its first harmonic
�2 = 3/2 are both unstable, according to the Bogoliubov
spectrum, with respective growth factors λ1 = 0.6953 and
λ2 = 0.9922. This is the case studied in Ref. [24]. In Fig. 10,
we show the resulting density plot when the initial modulating
amplitude A1 is 0.01. A short simulation with t < 15 would
only show one breather near t ∼ 5 and two breathers near
t ∼ 10. However, the long-time simulation of Fig. 10 reveals
that there is “super-recurrence” with the period tFPU ∼ 40. This
is more clearly shown in Fig. 11, where for clarity we only
plotted the amplitudes of the first three modes. The longer
period of tFPU ≈ 38.4 is clearly visible in the oscillation of the
n = 2 amplitude.

Even for A1 = 0.01, the cascading instability still enslaves
all the higher modes, including the unstable n = 2 mode. This
is because under the cascading instability, the n = 2 mode will
grow at a rate of 2(0.6953) = 1.3906, which is faster than its
own rate of 0.9922. As a consequence, an Akhmediev breather
will form at

t0 = − ln(A1)

λ
+ ln λ

λ
+ ln �

λ

= 6.6233 − 0.5227 − 0.4138 = 5.6868. (45)

This is in reasonable agreement with the observed value of
t0 = 5.759, given the fact that A1 = 0.01 is not small enough
for the analytical formula to hold. This time difference at
a ≈ 0.43 is already noticeable in Fig. 6.

After the first peak, all amplitudes decline, as in an
Akhmediev breather, but since the n = 2 mode is intrinsically

t
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FIG. 11. (Color online) Evolving amplitude plot for a = 55/128
with the super-recurrence period most clearly seen in the oscillation
of the n = 2 amplitude.

unstable, it starts to grow at its own rate while A1 is still
declining. The result is the formation of a twin-peak breather
near t ≈ 9.9, where n = 2 has the largest amplitude. Wabnitz
and Akhmediev [25] have noted that this can be an efficient
way of transferring power from the pump or the background
to the n = 2 mode. After this peak, the amplitudes decline and
rise again to form another Akhmediev breather near t ≈ 19.2.
This peak is at midperiod, and the A1 amplitude retraces
its step back to its starting value at the “super-recurrence”
period of tFPU ≈ 38.4. This period is even more clearly
seen in the n = 2 amplitude, where it is the time at which
A2 declines back to zero. It would be of interest to see
whether this super-recurrence period can be seen analytically
in the solutions obtained by a Darboux transformation in
Ref. [24].

Because of its instability, the amplitude of the n = 2
mode after the first peak is markedly different from that of
an Akhmediev breather. In Fig. 12, we compare an AB at
a = 0.45 with numerical results for A1 = 0.01. This case has
three unstable initial modes. The evolution before the first
peak, because of the cascading instability, remains AB-like;
however, after the peak, numerical results for the intensity of
the n = 1 and 2 mode are below and above that of the AB’s
profile, respectively. This can be compared with Fig. 3 of
Ref. [21]. Hammani et al. [21] are correct in asserting that AB
dynamics remained qualitatively useful in describing various
mode intensities in approaching the first peak. However, their
Fig. 3 also clearly shows that their data after the intensity
peak, while still in agreement with numerical solutions of
the nonlinear Schrödinger equation similar to our Fig. 12,
are no longer quantitatively described by the Akhmediev
breather. Thus, while there are many areas where an AB can
give an excellent account of light propagation and generation
[26], AB dynamics is insufficient to describe higher-order
modulation instabilities beyond the first peak. With more
than two unstable modes, that dynamics quickly becomes
chaotic.
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FIG. 12. (Color online) Comparing the amplitude intensity of the
Akhmediev breather (lines) with numerical results (stars) for a =
0.45.

VI. CONCLUSIONS

In this work, we have explained in detail the anatomy of
producing the Akhmediev breather, which is basically the
result of a cascading instability that enslaves all higher modes

to evolve in lockstep with the n = 1 mode. This at once makes
it plain that FPU recurrence is just a necessary consequence
of energy conservation. By giving an analytical formula for
the breather’s first formation time beyond that of AB, we
have also derived an accurate analytical estimate of the FPU
period. In cases of higher-order modulation instability, where
there are multiple unstable initial modes, we showed that due
to the interplay between and among various unstable modes,
super-recurrences are possible. However, such recurrences are
beyond the simple description of AB (2), and they may require
the use of Darboux transformations [24] to give an analytical
account of such periodicities.

Because of the cascading instability, we were led to plot
not the mode intensities |An|2 themselves but ln(|An|). As is
evident from Figs. 3, 4, 7, and 11, these log plots of amplitudes
give the clearest description of the nonlinear evolution of ABs
of the Schrödinger equation. This will be equally useful for
understanding other modulation-instability-related nonlinear
evolutions. Further work is necessary to understand the higher-
order MI of ABs, as well as the emerging complex dynamics
associated with MI of the Peregrine soliton and of KMBs.
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