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Nonlinear Landau damping and modulation of electrostatic waves in a nonextensive
electron-positron-pair plasma
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The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-
positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis’
q-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Saberian
and Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013)] is rectified and modified. Applying the multiple scale
technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear
Schrödinger (NLS) equation with a nonlocal nonlinear term ∝P

∫ |φ(ξ ′,τ )|2dξ ′φ/(ξ − ξ ′) [where P denotes
the Cauchy principal value, φ is the small-amplitude electrostatic (complex) potential, and ξ and τ are the
stretched coordinates in MST], which appears due to the wave-particle resonance. It is found that a subregion
1/3 < q � 3/5 of superextensivity (q < 1) exists where the carrier-wave frequency can turn over with the group
velocity going to zero and then to negative values. The effects of the nonlocal nonlinear term and the nonextensive
parameter q are examined on the modulational instability of wave envelopes, as well as on the solitary wave
solution of the NLS equation. It is found that the modulated wave packet is always unstable (nonlinear Landau
damping) due to the nonlocal nonlinearity in the NLS equation. Furthermore, the effect of the nonlinear Landau
damping is to slow down the amplitude of the wave envelope, and the corresponding decay rate can be faster the
larger is the number of superthermal particles in pair plasmas.
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I. INTRODUCTION

Electron-positron (EP)-pair plasmas are ubiquitous and
play important roles in many astrophysical situations such
as the early universe [1], Van Allen radiation belts, near the
polar cap of fast rotating neutron stars [2], black holes [3],
pulsars [4], quasars [5], active galactic nuclei [6], and accretion
disks [7], as well as in laboratories [8]. In black holes, pulsars,
and quasars such EP plasmas are emitted in the form of
ultrarelativistic winds or collimated jets by some of their
most energetic objects. Because of the intrinsic and complete
symmetry between the positively charged (e.g., positrons
or positive ions) and negatively charged (e.g., electrons or
negative ions) particles, the dynamics of pair plasmas become
significantly different from that of electron-ion plasmas or
from a purely electronic beam. Over the past few years, a
number of experiments have been performed to create EP
plasmas (see, e.g., Refs. [9,10]). In such experiments, it has
been observed that, because of the fast annihilation and the
formation of positronium atoms, the identification of collective
modes in EP plasmas is practically impossible. To resolve this
issue and to identify the collective modes properly, a number
of experiments have been proposed to create pair-ion plasmas
(see, e.g., Ref. [11,12]). However, most recently, ion-free
high-density (∼1016 cm−3) neutral EP plasmas with unique
characteristics have been produced in the laboratory by using
a compact laser driven setup [8]. It has been reported that, be-
cause of their unique characteristics, together with the charge
neutrality, small divergence, and high average Lorentz factor,
such EP plasmas can exhibit collective behaviors, thereby
opening up the possibility of studying the collective dynamics
of EP plasmas in a controlled laboratory environment.
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The collective oscillations of EP plasmas and associated
wave dynamics together with the formation of solitary waves
and shocks have been extensively studied over the past
two decades (see, e.g., Refs. [13–16]). In other works, the
modulational instability (MI) and the nonlinear evolution of
electrostatic and electromagnetic wave envelopes has also been
studied in EP plasmas (see, e.g., Refs. [17–19]). However, most
of these works are based on hydrodynamic models. Using the
kinetic theory approach, i.e., using Vlasov-Poisson equations,
the effects of Landau damping on various kinds of wave modes
(linear theory), as well as on electrostatic and electromagnetic
solitary waves [governed by the Korteweg-de Vries (KdV)
equation], have also been studied in EP plasmas [14] and
in some other environments (see, e.g., Refs. [20–23] and
references therein).

Many spacecraft observations (e.g., in Earth’s bow shock,
the upper ionosphere of Mars, the vicinity of the Moon,
etc.) [24] and laboratory experiments [25] confirm the presence
of nonthermal and superthermal particles which do not
follow the Maxwellian distribution, but show some deviation
from the thermodynamic equilibrium. The presence of such
nonthermal particles has also been confirmed in astrophysical
environments [26]. Several models for phase-space plasma
distributions with nonthermal or superthermal wings or other
deviations from Maxwellian distribution have been proposed
in recent years. One such distribution, which was first reported
by Renyi [27] and subsequently proposed by Tsallis [28],
is the Boltzmann-Gibbs-Shannon (BGS) entropy, in which
the degree of nonextensivity of the plasma particles is
characterized by the entropic index q. The distribution function
with q < 1 characterizes the system with more superthermal
particles (superextensivity), while the distribution with q >

1 indicates plasmas containing a large number low-speed
particles (subextensivity) compared to the Maxwellian one
(q → 1). Such q-nonextensive distribution has been widely
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considered in a number of works to investigate various
collective plasma modes and nonlinear coherent structures
(see, e.g., Refs. [14,29–31]). It is to be noted that the
κ distribution function and the q-nonextensive distribution
function in Tsallis’ statistics are somewhat equivalent in the
sense that in both these cases, the spectrum of the distribution
functions show similar behaviors. In fact, there is a formal
transformation κ = 1/(1 − q) which can provide the missing
links between these two velocity distribution functions [32].

On the other hand, it is well known that waves in plasmas
can undergo collisionless damping when they resonantly inter-
act with trapped and/or free particles, i.e., when the particle’s
velocity approaches the wave phase velocity or group velocity.
Such collisionless damping was first theoretically predicted by
Landau [33] and later confirmed experimentally by Malmberg
and Wharton [34]. Motivated by these inventions, Ott and
Sudan [20] first theoretically investigated the effects of linear
Landau damping on the nonlinear propagation of ion-acoustic
solitons in electron-ion plasmas through the description of
KdV equations and on the assumption that particle’s trapping
time is much longer than that of Landau damping. Later, Ikezi
and Kiwamoto [35], based on their experimental investigation,
have emphasized the importance of nonlinear Landau damping
in plasmas. Accordingly, Ichikawa [36] investigated the the
effects of nonlinear Landau damping due to resonant particles
having the group velocity of the wave on the modulation
of electrostatic wave envelopes in electron-ion plasmas. In
this work, he assumed that the typical time scale is much
longer than the bouncing period of particles trapped in the
potential trough. It has been shown that the nonlinear wave-
particle resonance leads to the modification of the nonlinear
Schrödinger (NLS) equation with a nonlocal nonlinear term
proportional to a Cauchy principal value integral, as well as
the local (cubic) nonlinear term. Furthermore, in Ref. [36] it
was reported that, in contrast to the ordinary NLS equation,
the nonlinear resonance always leads to MI of wave envelopes
against a plane-wave perturbation regardless of the sign of PQ

being positive or negative, where P is the coefficient of the
group velocity dispersion and Q is the cubic nonlinear term of
the NLS equation.

In this work, our aim is to revisit and extend the work of
Ichikawa [36] in an unmagnetized collisionless EP-pair plasma
in the context of Tsallis’ q-nonextensive statistics. Starting
from a set of Vlasov-Poisson equations and using the reductive
perturbation technique (RPT), we show that the NLS equation
is not only modified by the nonlinear resonant effects but also
by the nonextensive parameter q which contributes to both the
dispersive and the nonlinear (local and nonlocal) terms. It is
found that the nonextensivity significantly modifies the wave
frequency, the group velocity, the nonlinear frequency shift,
and the energy transfer rate for the modulated wave packets
as well as the amplitude of solitary wave solutions of the NLS
equation.

II. BASIC EQUATIONS AND DERIVATION OF
THE NLS EQUATION

This section mainly focuses on the derivation of the NLS
equation. Though the relevant analysis is almost the same as
in Ref. [36], we, however, review the analysis and present the

subsequent derivations and explanations for the expressions
of various plasma modes in more details. We consider the
nonlinear propagation of electrostatic wave packets along the
x axis in a collisionless EP-pair plasma. The basic equations
for the dynamics of EP plasmas are given by the Vlasov and
Poisson equations

∂Fα

∂t
+ v

∂Fα

∂x
− eα

mα

∂φ

∂x

∂Fα

∂v
= 0, (1)

∂2φ

∂x2
= −4π

∑
eα

∫
Fαdv, (2)

where Fα is the distribution function with its unperturbed part
F (0)

α (v), v is the particle velocity, and φ is the electrostatic
potential. Also, the particle charge and mass are given by eα =
−e, mα = me for electrons and eα = e, mα = mp for positrons.
We assume that the equilibrium state (at t = 0) is spatially
uniform field-free EP plasma and that the perturbation from
the equilibrium state is purely electrostatic. Furthermore, we
consider the equilibrium distribution of electrons and positrons
F (0)

α (v) to be the q-distribution function as in the Tsallis’
nonextensive statistics [28]. It is to be mentioned that, due to
the resonance of plasma particles having the group velocity of
the wave, the distribution functions become singular, and so the
direct application of RPT to the Vlasov-Poisson equations (1)
and (2) may not determine uniquely the contributions of the
resonant particles. In order to treat these singularities properly,
we introduce the multiple space-time scales as [36]

x → x + ε−1η + ε−2ζ, t → t + ε−1σ. (3)

We assume that the amplitude of the carrier wave (with wave
number k and the wave frequency ω) is infinitesimally small,
and so for t > 0 a slight deviation [∼o(ε)] from the uniform
equilibrium value will occur. Thus, we expand

Fα(v,x,t) = F (0)
α (v) +

∞∑
n=1

εn

∞∑
l=−∞

f
(n)
α,l (v,η,σ,ζ )

× exp [il(kx − ωt)] (4)

φ(x,t) =
∞∑

n=1

εn

∞∑
l=−∞

φ
(n)
l (η,σ,ζ ) exp [il(kx − ωt)],

where ε is a small (�1) positive parameter measuring the
weakness of the wave amplitude and f

(n)
α,−l = f

(n)∗
α,l , φ

(n)
−l =

φ
(n)∗
l for reality conditions to hold. Here the asterisk denotes

the complex conjugate quantity. We note that the expansion (4)
for Fα is valid only in the nonresonance region where |v −
ω/k| � o(ε) is satisfied. In the resonance region where v ≈
ω/k, the above expansion may not be appropriate to apply
to the Vlasov equations. So the components f

(n)
α,l and φ

(n)
l are

further expanded into multiscale Fourier-Laplace integrals as

f
(n)
α,l (v,η,σ,ζ ) = 1

(2π )2

∫
C

d�

∫ ∞

−∞
dKf̃

(n)
α,l (v,K,�,ζ )

× exp[i(Kη − �σ )],
(5)

φ
(n)
l (η,σ,ζ ) = 1

(2π )2

∫
C

d�

∫ ∞

−∞
dKφ̃

(n)
l (K,�,ζ )

× exp[i(Kη − �σ )],
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where the contour C is parallel to the real axis and lies above
the coordinate of convergence.

We first derive the evolution equation of electrostatic wave
envelopes for arbitrary species of particles with unperturbed
arbitrary velocity distribution function, and then we extend
our analysis in neutral EP plasmas in the context of Tsallis’
q-nonextensive statistics [28]. So we substitute the stretched
coordinates (3) and the expansions (4) into Eqs. (1) and (2) to
obtain, respectively,

il(ω − kv)f (n)
α,l + ilkGαφ

(n)
l

.= ∂

∂σ
f

(n−1)
α,l + v

∂

∂η
f

(n−1)
α,l + v

∂

∂ζ
f

(n−2)
α,l − Gα

∂

∂η
φ

(n−1)
l

−Gα

∂

∂ζ
φ

(n−2)
l − ik

eα

mα

∞∑
s=1

∞∑
l′=−∞

(l − l′)φ(n−s)
l−l′

∂

∂v
f

(s)
α,l′

− eα

mα

∞∑
s=1

∞∑
l′=−∞

(
∂

∂η
φ

(n−s−1)
l−l′ + ∂

∂ζ
φn−s−2

l−l′

)
∂

∂v
f

(s)
α,l′ ,

(6)

(lk)2φ
(n)
l − 2ilk

∂

∂η
φ

(n−1)
l − i2lk

∂

∂ζ
φ

(n−2)
l − ∂2

∂η2
φ

(n−2)
l

− 4π
∑

α

eα

∫
f

(n)
α,l dv = 0, (7)

where we have used the symbol
.= to denote the equality in

the weak sense and disregarded the terms which contain φ
(n−3)
l

and φ
(n−4)
l in Eq. (7).

In the subsequent analysis, we determine the contributions
of the resonant particles having the wave group velocity by
solving the σ evolution of the components f

(n)
α,l and φ

(n)
l as an

initial value problem with the initial condition

f
(n)
α,0(v,η,σ = 0,ζ )

.= 0, n � 1, (8)

in the multiple space-time scheme corresponding to that on
the distribution function

f
(n)
α,0(v,t = 0) = 0. (9)

A. Harmonic modes for n = l = 1: Linear dispersion law

Equating the coefficients of ε from Eqs. (6) and (7) for
n = 1, l = 1, we obtain (for details, see Appendix A) the linear
dispersion law

k + 4π
∑

eα

∫
C

Gα(v)

ω − kv
dv = 0, (10)

together with the linear Landau damping rate given by

γL = π

k

∑
α

eαGα

(ω

k

)/ ∑
α

eα

∫
C

Gα

(ω − kv)2 dv, (11)

where
∫
C

denotes the Cauchy principal value and we have
made the analytical continuation of the integral over v along
the real axis passing infinitesimally above and under the pole
at v = ω/k with the constraint of weakly damped waves and

Gα(v) = eα

mα

∂

∂v
F (0)

α (v). (12)

B. Harmonic modes with l �= 0, n = 1: Some conditions

From Eqs. (6) and (7), we equate the components for l 
= 0
and n = 1 and then use the dispersion relation (10) to obtain
the following conditions (see Appendix B):

f
(1)
α,l

.= 0 and φ
(1)
l = 0 for |l| � 2. (13)

C. Zeroth harmonic modes for n = 1,2; l = 0

Here we examine the second-order terms with n = 2 and
l = 0. Thus, we have from Eq. (6)

∂

∂σ
f

(1)
α,0 + v

∂

∂η
f

(1)
α,0 − Gα

∂

∂η
φ

(1)
0

.= 0, (14)

while the first-order terms with n = 1 and l = 0 of Eq. (7)
yield ∑

eα

∫
f

(1)
α,0dv = 0. (15)

Substituting the Fourier-Laplace integrals given by Eq. (5) into
Eq. (14) and solving it as an initial value problem, we obtain

f̃
(1)
α,0(v,K,�,ζ )

.= − i

� − Kv
f

(1)
α,0(v,K,σ = 0,ζ )

− K

� − Kv
Gαφ̃

(1)
0 (K,�,ζ ), (16)

where we have used an arbitrary constant as
−f

(1)
α,0(v,K,σ = 0,ζ ).
Next, a substitution of Eq. (16) into Eq. (15) gives

φ̃
(1)
0 (K,�,ζ ) = −i

∑
eα

∫
f

(1)
α,0(v,K,σ = 0,ζ )

� − Kv
dv

/ ∑
eα

×
∫

Gα

� − Kv
dv. (17)

Using the initial condition (8) and taking Fourier inversion of
Eqs. (16) and (17), we obtain for n = 1, l = 0 the following
zeroth-order components:

f
(1)
α,0

.= 0, φ
(1)
0 = 0. (18)

The vanishing of f
(1)
α,0 and hence of φ

(1)
0 , in fact, eliminates the

contributions of the modes associated with the singularities
of the integrals in Eq. (17). Thus, in this way the initial con-
dition (8) uniquely defines the present problem to investigate
nonlinear automodulation of (ω,k) modes.

D. Modes with n = 2, l = 1: Compatibility condition

We proceed to examine the the second-order, first harmonic
modes with n = 2 and l = 1. Thus, from Eqs. (6) and (7) we
obtain a compatibility condition (see for details Appendix C),{

∂

∂σ
+ λ

∂

∂η

}
φ

(1)
1 (η,σ ; ζ ) = 0, (19)

where λ is given by

λ =
[

4π
∑

eα

∫
C

Gα

(ω − kv)2
dv

]−1

×
[

1 + 4π
∑

eα

∫
C

v

(ω − kv)2
Gαdv

]
. (20)
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We find that this expression of λ is exactly the same as
the group velocity vg ≡ ∂ω/∂k obtained by differentiating
the dispersion relation (10) with respect to k. Equation (19)
shows that the σ − η variation of φ

(1)
1 can be related to a new

coordinate defined by

ξ = η − λσ = ε(x − λt), (21)

such that

φ
(1)
1 (η,σ ; ζ ) = φ

(1)
1 (ξ ; ζ ). (22)

This indicates that the coordinate ξ in Eq. (21) establishes a
clear relationship between the reductive perturbation theory
and the multiple space-time expansion method.

E. Second harmonic modes with n = l = 2

For the second-order quantities with n = l = 2, we obtain
from Eqs. (6) and (7) the expressions (see Appendix D)

f
(2)
α,2

.= − k

ω − kv + iν

×
[
Gαφ

(2)
2 − eα

2mα

k
∂

∂v

(
Gα

ω − kv + iν

)(
φ

(1)
1

)2
]
,

(23)

φ
(2)
2 = 1

6
A(k,ω)

(
φ

(1)
1

)2
, (24)

where

A(k,ω) = 4π
∑

α

e2
α

mα

∫
C

1

ω − kv

∂

∂v

(
Gα

ω − kv

)
dv. (25)

Note that in Eq. (25) the contributions of the resonance terms
at the phase velocity ω/k are neglected because our basic
assumption [Eq. (11)] for EP plasma oscillations is that the
linear Landau damping is a higher-order effect than second
order.

F. Modes with n = 3, l = 0

From Eqs. (6) and (7) we consider the terms corresponding
to n = 3, l = 0 and use the relations (18) and (19) to obtain a set
of reduced equations which, after use of the Fourier-Laplace
transforms with respect to η and σ and the initial condition (8),
yield

f̃
(2)
α,0

.= k2

[
− W(K,�)

�(c)(K,�)

K

� − Kv
Gα(v) − eα

mα

K

� − Kv
Iα(v)

]
×H (K,�), (26)

φ̃
(2)
0 = k2 H (K,�)

�(c)(K,�)
W(K,�), (27)

where the relevant details and the expressions for
H (K,�), W(K,�), �(c)(K,�), and Iα(v) are given in Ap-
pendix E.

G. Third-order harmonic modes with n = 3, l = 1:
The NLS equation

Considering the terms for n = 3 and l = 1, we obtain from
Eqs. (6) and (7) a set of reduced equations, which, after
few steps (see Appendix F), result in the following modified
NLS equation for the small but finite amplitude perturbation
φ(ξ,τ ) ≡ φ

(1)
1 (ξ,τ ):

i
∂φ

∂τ
+ P

∂2φ

∂ξ 2
+ Q|φ|2φ + R

π
P

∫ |φ(ξ ′,τ )|2
ξ − ξ ′ dξ ′φ + iSφ = 0,

(28)

where P denotes the Cauchy principal value. The coefficients
of the dispersion (group velocity), cubic nonlinear (local),
and nonlocal nonlinear terms, respectively, are P, Q, and
R, given by P ≡ (1/2)∂2ω/∂k2 = β/α, Q = γ /α, and R =
δ/α, where

α = 4π
∑

α

eα

∫
Gα

(ω − kv)2
dv, (29)

β = 4π
∑

α

eα

∫
(v − λ)2

(ω − kv)3
Gαdv, (30)

γ =
(

1

6

A2

k
+ 1

2
B

)
k2 − �(k,ω), (31)

δ = −�(k,ω), (32)

with

B(k,ω) = 4π
∑

α

e3
α

m2
α

∫
1

ω − kv

∂

∂v

×
[

1

ω − kv

∂

∂v

(
Gα

ω − kv

)]
dv. (33)

Furthermore, the coefficient S of Eq. (28), representing the
linear Landau damping rate associated with the resonant
particles having the phase velocity of the carrier wave, is given
by

S = θ (p)γL

ε2
. (34)

In Eq. (28), the coefficient P appears to be due to the group
velocity dispersion of the wave envelope. The most significant
contribution of the resonant particles having the wave group
velocity is the appearance of the nonlocal nonlinear term ∝R.
This resonance contribution also modifies the local nonlinear
coefficient Q, which appears to be due to carrier wave self-
interactions originating from the zeroth harmonic modes (or
slow modes).

III. CONSERVATION LAWS

Before we proceed to the modulation of electrostatic wave
envelopes in q-nonextensive EP plasmas, we verify some
important conservation laws that are associated with the
ordinary NLS equation (here ordinary means in absence of
any nonlocal nonlinearity in the NLS equation). We show
that the nonlocal nonlinear term in Eq. (28) violates these
conservation laws. We note that in absence of the Landau
damping effects, i.e., for R = S = 0, the NLS equation (28)
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possesses an infinite number of conservation laws. The
first three conserving quantities are namely, the mass I1 =∫ |φ|2dξ , the momentum I2 = (2i)−1

∫
(φ∗∂ξφ − φ∂ξφ

∗)dξ ,
and the energy I3 = ∫

(|∂ξφ|2 − (Q/2P )|φ|4)dξ . The similar
quantities, however, for the NLS equation (28) with Landau
damping satisfy the equations(

∂

∂τ
+ 2S

)
I1 = 0, (35)(

∂

∂τ
+ 2S

)
I2 + R

π
P

∫∫
1

ξ − ξ ′ |φ(ξ ′,τ )|2

× ∂

∂ξ
|φ(ξ,τ )|2dξdξ ′ = 0, (36)(

∂

∂τ
+ 2S

)
I3 + i

R

π
P

∫∫
1

ξ − ξ ′ |φ(ξ ′,τ )|2 ∂

∂ξ

×
(

φ
∂2

∂ξ 2
φ∗ − φ∗ ∂2

∂ξ 2
φ

)
dξdξ ′ = 0, (37)

where the terms ∝S and R (the Cauchy principal value
integrals) are due to the linear and nonlinear Landau damping
effects. Next, in Eq. (37) using the fact that the integral
over ξ is a convolution of the functions P[1/(ξ ′ − ξ )] and
∂ξϕ(ξ,τ ), where φ∂2

ξ φ∗ − φ∗∂2
ξ φ = ∂ξ (φ∂ξφ

∗ − φ∗∂ξφ) ≡
∂ξϕ(ξ,τ ), and noting that the Fourier inverse transform of
isgn(s) = −(1/π )P(1/ξ ), we have∫

∂ϕ(ξ,τ )

∂ξ
P 1

ξ ′ − ξ
dξ = 1

2

∫
exp(isξ ′)|s|ϕ̂(s,τ )ds. (38)

So, performing the integral over ξ ′ as a Fourier transform of
|φ(ξ ′,τ )|2, we obtain

P
∫∫

1

ξ − ξ ′ |φ(ξ ′,τ )|2 ∂ϕ(ξ,τ )

∂ξ
dξdξ ′

= 1

2

∫
|s|ϕ̂(s,τ )|φ̂(−s,τ )|2ds, (39)

where “hat” denotes the Fourier transform with respect to ξ

or ξ ′. Furthermore, using ϕ̂(s,τ ) ≡ −2is|φ̂(s,τ )|2 we obtain
from Eq. (37)(

∂

∂τ
+ 2S

)
I3 = −R

π

∫
s2|φ̂(s,τ )|2|φ̂(−s,τ )|2ds. (40)

From this equation we observe that if the linear Landau
damping is a higher-order effect than ε2, the term ∝S can be
neglected, and so the the left-hand side of Eq. (40) represents
the rate of change of the wave energy. Also, the integral on
the right-hand side is positive definite, and to be shown later
that for long wavelength EP plasma oscillations, R is always
positive for 1/3 < q < 1 and q > 1, and negative for q < 1/3.
Furthermore, it has been shown in Ref. [14] and will be shown
in this work also that the relevant results may not be valid for
q < 1/3. Thus, in both the superextensive and the subextensive
EP plasmas we have the inequality (the equality holds for
φ = 0 ∀ ξ )

∂I3

∂τ
� 0, (41)

implying that an initial perturbation (e.g., in the form a soliton)
will decay to zero with time τ , and hence a steady state

solution with |I3| < ∞ of the NLS equation (28) may not
exist in presence of the nonlinear Landau damping term in
nonextensive EP plasmas.

IV. ELECTROSTATIC ENVELOPES WITH
NONEXTENSIVE STATIONARY STATE

The NLS equation (28) in Sec. II G has been derived
in a general way to describe the evolution of electrostatic
waves in plasmas with arbitrary species α and with arbi-
trary velocity distribution function for equilibrium plasma
state. However, the main purpose of the present work is to
investigate the dispersion properties of carrier-wave modes,
the linear Landau damping rate associated with the resonant
particles with the phase velocity, the MI and nonlinear
Landau damping due to resonant particles having the group
velocity, and the nonlinear evolution of wave envelopes in EP
plasmas with q-nonextensive stationary states. In the latter,
the q-distribution function in one space dimension is given
by [37–39]

F (0)
α (v) = Aα,q

[
1 − (qα − 1)

mαv2

2kBTα

]1/(qα−1)

, (42)

where mα and Tα are, respectively, the mass and temperature of
α-species particles (α = e,p, respectively, stand for electrons
and positrons) and kB is the Boltzmann constant. The spectral
index qα gives a measure that determines the slope of the
energy spectrum of nonthermal particles. It also measures the
deviation from the thermal equilibrium state (qα → 1). We
consider a fully symmetric and charge-neutral EP plasma in
which Te = Tp = T and me = mp = m. Such assumptions are
justified with the experimental works in pure pair plasmas
with particles having the same dynamics [11,12]. Also, in
the creation of a pure EP plasma, the whole system reaches
a common thermal state with equal particle temperature. So
the spectral index for electrons and positrons are taken as the
same, i.e., qe = qp = q [14]. The normalization constant Aα,q

is given by Aα,q = Lq

√
mα/2πkBTα = Lq/

√
2πvt , where

vt = √
kBT /m is the particle’s thermal velocity and Lq is

defined by

Lq =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, q → 1,

�
(

1
1−q

)
�

(
1

1−q
− 1

2

)√
1 − q, −1 < q < 1,

(
1+q

2

)
�

(
1
2 + 1

q−1

)
�

(
1

q−1

) √
q − 1, q > 1.

(43)

Note that in the extensive limit q → 1, the
distribution function (42) reduces to that of the
standard Maxwell-Boltzmann distribution F (0)

α (v) =√
mα/2πkBTα exp (−mαv2/2kBTα). However, in the

present work the case of q → 1 may not be recovered
directly because of simplifications of some expressions
in the subsequent analysis, e.g., for long-wavelength
perturbations. The distribution function with q < 1 represents
the superextensivity, i.e., presence of more (compared to
the Maxwellian) particles with velocities larger than their
thermal velocities (superthermal particles), whereas the case
of subextensive distribution is represented by q > 1, meaning
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that there is a large number of particles with velocities lower
than their thermal velocities. Furthermore, because of the
long-range nature of Coulomb forces between the plasma
particles and the presence of many superthermal particles in
astrophysical environments [26], a q distribution with q < 1
is strongly suggested in real plasma systems or superthermal
plasmas. For more about the behaviors of the distribution
function F (0)

α (v) for different values of q, the readers are
referred to, e.g., Ref. [14].

In what follows, we consider the nonlinear propagation
of high-frequency (ω > ωp) and long-wavelength [k � kd ,

where kd = (8πn0e
2/kBT )

1/2
is the Debye wave number

and ne0 = np0 = n0 is the equilibrium plasma number den-
sity] oscillations in q-nonextensive plasmas whose phase
velocity greatly exceeds the thermal velocities of electrons
and positrons, i.e., ωr/k � vt > v. In this case, the linear
dispersion laws and the coefficients of the modified NLS
equation (28) can be simplified. To this end, we evaluate the
Cauchy principal value integral in Eq. (A4) with the following
expansion for the integrand [14]∫ vmax

−vmax

∂
∂v

[
F (0)

e (v) + F (0)
p (v)

]
(ωr/k) − v

dv

= k

ωr

∫ vmax

−vmax

[
∂F (0)

e (v)

∂v
+ ∂F (0)

p (v)

∂v

]

×
(

1 + k

ωr

v + k2

ωr
2
v2 + k3

ωr
3
v3 + · · ·

)
dv, (44)

where the integration limits are taken as ±vmax = ±∞ for
q < 1 and ±√

2kBT /m(q − 1) for q > 1. These limits are
considered due to the fact that for q > 1, the distribution
function (42) has a thermal cutoff, which limits the velocity
of particles to a maximum value, i.e., v < vmax. However,
such cutoff is absent when q < 1. In this case, the velocity of
particles remains unbounded (for details, see, e.g., Ref. [14]).

Next, to evaluate the integrals in Eq. (44) we note that the
q-distribution function F (0)

α (v) is an even function of v, while
∂F (0)

α (v)/∂v is an odd function of v. Thus, one can evaluate
the integrals as follows:∫ vmax

−vmax

vm ∂F (0)
α (v)

∂v
dv = 0, for m = 0,2,4,∫ vmax

−vmax

v
∂F (0)

α (v)

∂v
dv =−1,

∫ vmax

−vmax

v3 ∂F (0)
α (v)

∂v
dv=− 6v2

t

3q − 1
,∫ vmax

−vmax

v5 ∂F (0)
α (v)

∂v
dv = − 60v4

t

(3q − 1)(5q − 3)
. (45)

We have evaluated the above integrals by parts and the average
value of v2 as

〈v2〉 ≡
∫ vmax

−vmax

v2F (0)
α (v)dv = 2v2

t

3q − 1
. (46)

We mention that, for q > 1, the above integrals, in which
the limits are ±vmax, are obtained by reducing the integrals
to beta functions of the form B(m,n) with m,n > 0 and
finally to gamma functions using the relation B(m,n) =
�(m)�(n)/�(m + n). Similar integrals can also be evaluated
for −1 < q < 1 in which the limits are ±∞ by using

the relation B(m,n) = ∫ ∞
0

xn−1

(1+x)m+n dx and the above relation
between beta and gamma functions. However, in each of these
cases of superextensive and subextensive plasmas, we obtain
the same results by means of Eq. (43), except the factors√

1 − q for −1 < q < 1 and
√

q − 1 for q > 1. From Eq. (46)
we also note that the values of q(< 1) are further restricted
to the region 1/3 < q < 1, because, otherwise, the average
value of v2 may diverge. In particular, in the limit q → 1,
Eq. (46) reduces to the well known energy equipartition
relation 〈 1

2mv2〉 = 1
2kBT . Thus, our results may be valid for

both the superextensive (1/3 < q < 1) and the subextensive
(q > 1) distributions of electrons and positrons in plasmas.

Now we use the results as in Eqs. (45) and (46) and
in the region of small wave numbers (1 � χ2 ≡ k2/k2

d ) to
obtain from Eq. (A4) the following dispersion relation for
electrostatic carrier waves in a nonextensive EP plasma,

ωr
2 = ωp

2

[
1 + 3χ2 2

3q − 1
+ 60χ4 1

(3q − 1)(5q − 3)

]
,

(47)

together with the linear Landau damping rate, obtained from
Eq. (11), as

γL =−
√

π

8

ωpLq

χ3

[
1−(q−1)

(
1

2χ2
+ 3

3q − 1

)](2−q)/(q−1)

,

(48)

where ωp =
√

8πn0e2/m is the plasma oscillation frequency
in a charge neutral EP plasma. In the same way, the group
velocity expression (20) reduces to

λ = 6ωpχ

(3q − 1)kd

[
1 + 45q − 11

(3q − 1)(5q − 3)
χ2

]
. (49)

The dispersion relation (47) exactly agrees with that obtained
in Ref. [14] up to the second-order correction term ∝χ2.
However, we observe some interesting features by retaining
the term ∝χ4 in Eq. (47), which was overlooked in Ref. [14].
These interesting features, as can be seen from Fig. 1, are
that the carrier-wave dispersion curve and hence the group
velocity of the wave envelope can turn over through the χ

axis, going to zero values and then to negative values. These
reduction of the wave frequency and the group velocity occurs
in the superextensive subregion 0.47 � q � 3/5. Beyond this
region, i.e., for q > 3/5, both ωr and λ increase with increasing
values of χ . Furthermore, it is observed that as one goes from
the superextensive subregime 3/5 � q � 1 to subextensive
one with q > 1, the wave frequency and hence the group
velocity are seen to get reduced. This is expected since
the more the superthermal particles the larger is the phase
velocity, in agreement with the previous results [14]. However,
some disagreements are also there for the linear Landau
damping rate γL. Here we mention that though its analytic
expression is the same as obtained in Ref. [14], the features
we observe here are quite distinct. In fact, the possibility of
growing instability, as shown in Ref. [14], cannot be made in
the superextensive or subextensive plasma regions. From the
mathematical expression of γL one can check that it is always
negative regardless of the values of q and χ in 1/3 < q < 1
(or q > 1) and o � χ � 1, respectively. These are clear from
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FIG. 1. (Color online) The real part of the carrier-wave frequency ωr/ωp [panel (a); Eq. (47)] and the group velocity λ/vt [panel (b);
Eq. (49)] of the wave envelope are plotted against the carrier-wave number χ ≡ k/kd for different values of the nonextensive parameters as in
the figure. It is seen that the carrier-wave dispersion curve can turn over with the group velocity of the wave envelope going to zero and then
to negative values (see the solid and dashed lines) in the subregion 0.47 � q < 3/5 of the superextensive region 1/3 < q < 1. In the region
1/3 < 1 � 0.47, the values of λ/vt greater than unity are inadmissible, while in the other regime q > 3/5, both the frequency and the group
velocity assume only the positive values.

Fig. 2. Physically, since the phase velocity of the carrier wave
is assumed to be larger than the particle’s velocity, the wave
modes may lose energy to the particles instead of gaining
energy from them and thus be damped. From Fig. 2, we also
find that there are two subregions of χ , namely 0 � χ � χ0 and
χ0 � χ � 1. In the former, the damping rate increases, while
in the latter the same decreases with increasing values of χ

(see the left panel). Furthermore, the damping rate is seen to be
higher in plasmas with more superthermal particles and with
wavelength in (0 � χ � χ0). However, the same can be true
with a higher number of low-speed particles (or with increasing
values of q) in the regime χ0 � χ � 1. These are also clear
from the right panel of Fig. 2. Here, as q increases, the damping
rate increases; however, it gets reduced at long-wavelength
perturbations (see the dashed line).

Next, we calculate the various terms (in the limit χ2 � 1)
which appear in the coefficients of the NLS equation (28) for
the q distribution (42) as

α = − 2k

ωp

(
1 + 3

3q − 1
χ2

)
, (50)

β = − 6

kd (3q − 1)
χ

[
1 + 50q − 11

(3q − 1)(5q − 3)
χ2

]
, (51)

A = 0, W = 0, U = 0, (52)

B = −15

(
e

m

)2
k3

ωp
4

(
1 + 24

3q − 1
χ2

)
, (53)
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(a)

q=0.5
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q=0.8
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−0.02

0

q
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(b)

χ=0.1
χ=0.06

FIG. 2. (Color online) The imaginary part of the carrier-wave frequency γL/ωp [the linear Landau damping rate given by Eq. (48)] is
plotted against χ ≡ k/kd (a) and the nonextensive parameter q (b) for different values of q and χ as in the figure. From the left panel it is seen
that in one subregion 0 � χ � χ0, the damping rate increases with χ , while in the other χ0 � χ � 1 it reduces with χ . Furthermore, the lower
is the percentage of superthermal particles, the higher is the Landau damping rate. Panel (b) shows that the damping rate becomes weaker in
the limit of long-wavelength (χ � 1) oscillations.
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� = − 2Lqk
2
d

3
√

π (1 − q)

(
2q − 3

q − 1

)
×

[
1 − 54(3q2 − 5q + 3)(q − 1)

(3q − 1)2(2q − 3)
χ2

]
, (54)

�=−
(

π

2

)1/2

k2
d

6Lq

3q − 1
χ

[
1 − 90q2 − 189q + 97

(3q − 1)2(5q − 3)
χ2

]
,

(55)

C =
(

e

KBT

)2 1

k2
d

2Lq√
π (1 − q)

4q − 5

3q − 3

×
{

1 +
[

2(216q2 − 177q + 53)

(3q − 1)2(4q − 5)

−
√

π (1 − q)

Lq

45(q − 1)

4q − 5

]
χ2

}
, (56)

D = −
(

e

KBT

)2 1

k2
d

(
π

2

)1/2 6Lq

3q − 1
χ

×
[

1 + 90q2 + 21q − 61

(3q − 1)2(5q − 3)
χ2

]
. (57)

Thus, the coefficient P of the NLS equation (28) reduces to

P = 3ωp

(3q − 1)k2
d

[
1 + 3(45q − 11)

(3q − 1)(5q − 3)
χ2

]
. (58)

To reduce the other coefficients, namely Q and R, we first
obtain the expressions for �(k,ω) and �(k,ω) in the limit
χ2 � 1. So, we calculate, respectively, the resonant and
nonresonant contributions to �(k,ω) as

1

�

k3

�2 + �2
(�W − �U )2 = 0, (59)

−k3

(
W 2

�
+ C

)
=

(
e

kBT

)2 2kLq√
π (1 − q)

4q − 5

3(1 − q)
χ2. (60)

Thus, it turns out that the resonant contribution to the nonlinear
coupling coefficient Q, being smaller, can be disregarded to
obtain

Q = 1

2

(
e

kBT

)2 2Lq√
π (1 − q)

4q − 5

3(1 − q)
ωpχ2. (61)

However, the contribution from the group velocity resonance
through �(k,ω) gives rise to the coefficient R as

R = 3Lq

3q − 1

(
e

kBT

)2(
π

2

)1/2

ωpχ3. (62)

Note that the above expressions for P, Q, and R are obtained
for 1/3 < q < 1. The similar expressions for q > 1 can also
be obtained by replacing the factor (1 − q) with (q − 1) under
the square root in the expressions for �, C, and Q. In Sec. V,
we find that, though the condition for the MI does not depend

on the sign of PQ, but on the presence of R, the sign of PQ is
important for determining the values of the frequency shift and
the energy transfer rate (in particular, their maximum values),
as well as their values in some particular cases, namely when
the wave intensity exceeds or smaller than a critical value
which depends on P, Q, and the wave number of modulation.
On the other hand, in Sec. III we have seen that whether a
steady state solution of the NLS equation exists or not depends
on the coefficient R. Furthermore, in Sec. VI we also examine
the effect of R on solitary wave solution of the NLS equation.
Thus, it is useful to investigate the properties of P, Q,
and R.

Inspecting the expressions for P, Q, and R, which ex-
plicitly depend on the nonextensive parameter q and the
nondimensional wave number χ (0 � χ � 1), we find that, for
superextensive plasmas with 1/3 < q � 1, we have Q < 0.
However, when q > 1, i.e., for subextensive plasmas, we have
Q > 0 (Q < 0) in 1 < q < 5/4 (q > 5/4) and for 0 � χ � 1.
Also, R > 0 in both the superextensive and subextensive
regimes, i.e., 1/3 < q � 1 and q > 1, with 0 � χ � 1. Fur-
thermore, P , which has singularity at q = 3/5, is positive
for q > 3/5, i.e., for 3/5 < q � 1 (superextensive) and q >

1 (subextensive). However, in the superextensive subregion
1/3 < q < 3/5, P can be negative or positive depending on the
range of values of χ in 0 � χ � 1 (see the left panel of Fig. 3).
The regions for P and PQ are shown as contour plots in the
χ -q planes in Fig. 3. We find that in the superextensive regime,
PQ is negative for 3/5 � q � 1; however, it can be positive
or negative in the subregime 1/3 < q � 3/5 depending on the
values of χ in 0 � χ � 1 (see the middle panel). From right
panel (third from left) we find that in subextensive plasmas,
PQ < 0 for q � 5/4 and for 0 � χ � 1 except in some small
regions of q(> 5/4) and χ in which PQ > 0. The latter is
also true for 1 < q � 5/4 and 0 � χ � 1. We also note that
P,PQ are undefined at q = 3/5.

V. THE NONLINEAR LANDAU DAMPING
AND MODULATIONAL INSTABILITY

Here we follow the same analysis as in Ref. [36]. Though
the relevant analysis is standard, however, we repeat it here
for the sake of the readers. It is well known that when
the group velocity dispersive coefficient (P ) and the local
nonlinear (cubic) term (Q) of an ordinary NLS equation
have the same sign, i.e., PQ > 0, its plane-wave solution
exhibits instability against a plane-wave perturbation of its
amplitude and phase [40]. However, the present modified NLS
equation (28) contains, in addition to the usual dispersive
and nonlinear terms, the nonlocal nonlinear term which is
associated with the resonant particles having the group velocity
of the wave. Thus, it is of interest to examine how the nonlocal
term contributes to the MI and describes the nonlinear Landau
damping process. Here we assume that, before modulation,
the NLS equation (28) has a plane-wave solution of the
form [36,40]

φ = ρ1/2 exp

(
i

∫ ξ σ

2P
dξ

)
, (63)
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FIG. 3. The regions for P > 0, PQ > 0 (shaded or gray) and P < 0, PQ < 0 (blank or white) are shown in the χ − q (χ ≡ k/kd ) plane.
From panel (a) it is seen that P > 0 for q � 3/5, i.e., in the regimes 3/5 � q � 1 (superextensive) and q > 1 (subextensive). However, in
the other superextensive regime 1/3 < q < 3/5, it can be positive or negative depending on the values of χ in 0 � χ � 0.1. Panel (b) shows
that in the superextensive regime, PQ is negative for 3/5 � q � 1; however, it can be positive or negative in the subregime 1/3 < q � 3/5
depending on the values of χ in 0 � χ � 1. From panel (c) we find that in subextensive plasmas, PQ < 0 for q � 5/4 and for 0 � χ � 1
except in some small regions of q(> 5/4) and χ in which PQ > 0. The latter is also true for 1 < q � 5/4 and 0 � χ � 1. Note that P,PQ

are undefined at q = 3/5.

where ρ and σ are real functions of ξ and τ . Substituting the
solution (63) into Eq. (28) we get

∂

∂τ
ρ + ∂

∂ξ
(ρσ ) = −2sρ, (64)

∂

∂τ
σ + σ

∂

∂ξ
ρ = 2PQ

∂

∂ξ
ρ + 2PR

π
P ∂

∂ξ

∫
ρ(ξ ′)
ξ − ξ ′ dξ ′

+P 2 ∂

∂ξ

[
ρ−1/2 ∂

∂ξ

(
ρ−1/2 ∂

∂ξ
ρ

)]
. (65)

As before, we assume that the linear Landau damping term
is higher order than ε2 and linearize Eqs. (64) and (65) by
splitting up ρ and σ into their equilibrium (with suffix 0) and
perturbation (with suffix 1) parts as

ρ = ρ0 + ρ1 cos (Kξ − �τ ) + ρ2 sin (Kξ − �τ ), (66)
σ = σ1 cos (Kξ − �τ ) + σ2 sin (Kξ − �τ ), (67)

where � and K are, respectively, the wave frequency and the
wave number of modulation. Now, under the perturbations (66)
and (67), the solution (63) can be expressed as

φ(x,t) = 1
2

√
ρ0 cos (k0x − ω0t)

+A1(K) cos [(k0 + εK)x − (ω0 + ελK + ε2�)t]

+A2(K) sin [(k0 + εK)x − (ω0 + ελK + ε2�)t]

+ similar terms with K → −K and � → −�,

(68)

where

Aj (K) = i

4
√

ρ0
+

√
ρ0

4PK
σj , j = 1,2. (69)

It follows that, due to the linearization of Eqs. (64) and (65),
the electric potential φ [Eq. (68)] describes the three-wave

interaction of the unperturbed carrier wave (k0,ω0) and two
side bands with wave numbers and frequencies k0 ± ε|K|
and ω0 ± ελ|K| ± ε2�. Now, substituting the perturbation
expansions (66) and (67) into Eqs. (64) and (65), and assuming
the smallness of the Landau damping coefficient, i.e., S = 0,
we obtain after eliminating σ1 and σ2 the equation(

�2 + 2ρ0PQK2 − P 2K4 −2ρ0PRsgn(K)K2

2ρ0PRsgn(K)K2 �2 + 2ρ0PQK2 − P 2K4

)

×
(

ρ1

ρ2

)
= 0, (70)

where the coupling between ρ1 and ρ2 appears due to the
nonlocal nonlinear term (the second term on the right-hand
side) in Eq. (65). Thus, for nonzero values of ρ1 and ρ2 we
obtain the following dispersion relation for electrostatic wave
envelopes in collisionless nonextensive EP plasmas:

(�2 + 2ρ0PQK2 − P 2K4)2 = −(2ρ0PRK2)2. (71)

The negative sign on the right-hand side of Eq. (71) shows that
whatever be the signs of P and Q, the Langmuir wave packet
is always unstable due to the nonzero coefficient R associated
with the resonant particles having the wave group velocity.
Since Eq. (71) is, in general, complex in �, we seek a general
solution of it by considering � = �r + i�, with �r,� being
real, and obtain

�r = ± 1√
2

[{(P 2K2 − 2ρ0PQ)2 + (2ρ0PR)2}1/2

+ (P 2K2 − 2ρ0PQ)
]1/2|K|, (72)

� = ∓ 1√
2

[{(P 2K2 − 2ρ0PQ)2 + (2ρ0PR)2}1/2

− (P 2K2 − 2ρ0PQ)
]1/2|K|, (73)

063110-9



DEBJANI CHATTERJEE AND A. P. MISRA PHYSICAL REVIEW E 92, 063110 (2015)

where we consider the upper (lower) sign for K > 0
(K < 0).

In what follows, we consider two different limits of the wave
amplitude. In the small-amplitude limit with ρ0 � |P/2Q|K2,
Eqs. (72) and (73) reduce to

�r ≈ ±PK2, � ≈ ∓ρ0R. (74)

Since a linear dispersion relation can be expanded
as ω(k) = ω(k0) + ω′(k0)(k − k0) + (1/2)ω′′(k0)(k − k0)2 +
· · · , we take the upper sign for K > 0 and the lower
sign for K < 0 in Eq. (74). Thus, for K > 0, we have
�r = PK2,� = −ρ0R in which the imaginary part (∝ R) is
solely due to the resonant particles having the group velocity
of the wave envelope. It follows that the Langmuir wave
packets under the modulation are unstable. Since R > 0 for
both superextensive (1/3 < q < 1) and subextensive (q > 1)
plasmas, this instability is a kind of decay, and, of course,
independent of P and Q. Thus, in the small-amplitude limit as
above, i.e., when the wave intensity ρ0 is well below a critical
value, the real part of � relates the group velocity dispersion,
while the imaginary part of � describes the nonlinear Landau
damping process. In the latter, the wave energy is transferred
from the higher frequency side bands to lower frequency ones.
From Eq. (74) we also find that the frequency shift can be
positive or negative depending on the values of q and χ as
in Fig. 3. For example, �r > 0 in the regimes 3/5 � q � 1
(superextensive) and q > 1 (subextensive). However, in the
other superextensive regime 1/3 < q < 3/5, it can be positive
or negative depending on the values of χ in 0 � χ � 0.1.
Furthermore, for a fixed wave number of modulation K ,
the frequency shift gets significantly reduced in the region
0.47 � q � 3/5. This is a consequence of the results to the fact
that in this region, the carrier-wave frequency turn over with
the group velocity going to zero values and then to negative
values (see Fig. 1). In the other region of q, i.e., for q > 3/5,
the frequency |ωr increases with χ .

In the large amplitude limit with ρ0 � |P/2Q|K2, the
frequency shift �r and the transfer rate � can be obtained
as

�r = ±
√

ρ0(−PQ)K2[
√

1 + (R/Q)2 + 1]1/2, (75)

� = ∓
√

ρ0(−PQ)K2[
√

1 + (R/Q)2 − 1]1/2, (76)

which require PQ < 0. Thus, it turns out that when the wave
intensity ρ0 greatly exceeds a critical value, the frequency
shift and the energy transfer rate can be obtained only in
the regions of PQ < 0 as in the middle and right panels
of Fig. 3 both in superextensive and subextensive plasmas.
Furthermore, we note that �r and � are proportional to

√
ρ0

instead of ρ0 as in the small-amplitude case. In particular, for
R = 0 or when the cubic nonlinearity (local) greatly dominates
over the local nonlinear term, the modulated wave becomes
unstable for K < Kc ≡ √

2ρ0|Q/P | as in the ordinary NLS
equation.

Next, from Eq. (73) we also find that for a given value of
ρ0, the maximum value of the growth rate � can be achieved

at the wave number Km and for PQ > 0, where

Km
2 = ρ0

(
Q2 + R2

PQ

)
. (77)

The corresponding maximum values of �r and � are thus
obtained from Eqs. (72) and (73) as

�m = ± R

Q
(Q2 + R2)1/2ρ0, (78)

�m = ∓(Q2 + R2)1/2ρ0. (79)

It follows that the maximum values of the frequency shift and
the energy transfer rate for modulated waves can be achieved
only in the regions of q and χ where PQ > 0. Figure 3 (middle
and right panels) confirms that a wide range of values of χ as
well as q, both for superthermal and subextensive plasmas,
exist for which PQ > 0. From the above results we also
conclude that, in contrast to the ordinary NLS equation (as
in fluid theory), in which the MI occurs only for PQ > 0, the
modulated Langmuir wave packets in q-nonextensive plasmas
always becomes unstable by the effects of resonant particles
having the group velocity of the wave irrespective of the sign
of PQ > 0 or PQ < 0. In the former, the maximum values
of the frequency shift and the growth rate are achieved for
arbitrary amplitude of the pump (unperturbed) wave, which
may not be obtained in Maxwellian plasmas [36], whereas the
latter gives asymptotic values of the same for larger values of
the wave intensity.

In a general manner, we numerically examine the properties
of �r and � given by Eqs. (72) and (73) for different values
of the nonextensive parameter q. The results are displayed in
Fig. 4 for both superextensive and subextensive plasmas. From
the top panel of this figure, we find that, corresponding to the
superextensive regime 0.47 � q � 3/5 where the carrier-wave
frequency turns over with the group velocity (Fig. 1), two
subregions of χ exist, in one of which �r decreases having
cutoffs at lower χ , while it increases with increasing values
of q and χ . In the other region of q, namely, q > 3/5, the
frequency shift is seen to increase with χ without any cutoff,
while it decreases with increasing values of q. For the damping
rate �, some different features are observed (see the lower
panel). Here, as q increases, the values of |�| decrease; i.e.,
the higher the number of superthermal particles, the higher is
the rate of energy transfer from high-frequency side bands to
low-frequency ones.

VI. NONLINEAR LANDAU DAMPING OF SOLITARY
WAVE SOLUTION

In absence of both the linear and nonlinear Landau damping
effects, i.e., for R = S = 0, the modified NLS equation (28)
reduces to the following ordinary NLS equation:

i
∂φ

∂τ
+ P

∂2φ

∂ξ 2
+ Q|φ|2φ = 0. (80)

In the case where the MI occurs for PQ > 0, a stationary
solution (bright soliton) of Eq. (80) can be obtained as [41]

φ = φ0 exp (iθ ), (81)
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FIG. 4. (Color online) The nondimensional frequency shift �r/ωp (a) and the energy transfer rate �/ωp (b), given by Eqs. (72) and (73),
are shown with respect to the nondimensional carrier-wave number χ ≡ k/kd in superextensive (0.47 � q < 1) and subextensive (q > 1)
plasmas. In the superextensive subregion (0.47 � q < 3/5) where the group velocity of the wave envelope vanishes (Fig. 1), the frequency
shift and the energy transfer rates are also seen to have cutoffs.

where the amplitude φ0 and the phase θ are given by

φ0 =
√

φ̃0sech

(
ξ − v0τ

L

)
, (82)

θ = 1

2P

[
v0ξ +

(
� − v2

0

2

)
τ

]
, (83)

with Lφ̃0 = √
2|P/Q| being a constant and z = (ξ − v0τ )/L

denoting the transformation in the moving (with velocity v0)
frame of reference.

In this section our aim is to determine the effect of a small
amount of the nonlinear Landau damping (R) associated with
the resonant particles having the group velocity of the wave
envelope on the soliton solution (81). Here we disregard the
small effect of the linear Landau damping rate ∝S which has
been assumed to be higher order than ε2. From Eq. (41) it is
evident that an initial perturbation of the form (81) will decay
to zero. Thus, one might expect that the amplitude φ̃0 is no
longer a constant but can decrease slowly with time, i.e., φ̃0 =
φ̃0(z,τ ). We consider |P |,|Q| � |R| ∼ ε � S ∼ ε2+p,p > 0
and do the perturbation analysis of the NLS equation (28)
with R as the small parameter. It can be easily verified that this
assumption is valid for both superextensive and subextensive
regions of q as mentioned before. We follow the similar
approach as has been applied in different studies, however, to
KdV equations (see, e.g., Refs. [21,22] and references therein).
Now, under the transformation z = (ξ − v0τ )/L, Eq. (28)
reduces to

i
∂φ

∂τ
− i

v0

L

∂φ

∂z
+ P

L2

∂2φ

∂z2
+ Q|φ|2φ

+ r

π
P

∫ |φ(z′)|2
z − z′ dz′φ = 0, (84)

where we rewrite R ≡ r to denote R as small (we replace again
r by R in the final solution) and ∂φ/∂z′ = ∂φ/∂z at z = z′.

In what follows, to investigate the solution of Eq. (84) we
generalize the multiple time scale analysis with respect to r;

i.e., we consider the solution as

φ(z,τ ) = φ(0) + rφ(1) + r2φ(2) + · · · , (85)

where φ(i),i = 0,1,2,3, . . ., are functions of τ = τ0,τ1,τ2, . . ..
Substituting Eq. (85) into Eq. (84) and equating the coefficients
of the zeroth and first orders of r , we successively obtain

i
∂φ(0)

∂τ
− i

v0

L

∂φ(0)

∂z
+ P

L2

∂2φ(0)

∂z2
+ Q|φ(0)|2φ(0) = 0, (86)

i
∂φ(1)

∂τ
+

(
∂

∂z
�1 + Q|φ(0)|2

)
φ(1)+Q

(
φ(0))2

φ(1)∗ =�2φ
(0),

(87)

where �1 and �2 are given by

�1 = P

L2

∂

∂z
− i

v0

L
,

(88)

�2 = −
[
i

∂

∂τ1
+ 1

π
P

∫ |φ(0)(z′)|2
z − z′ dz′

]
.

It can easily be shown that under the boundary
conditions, namely φ(0), ∂φ(0)/∂z, ∂2φ(0)/∂z2 → 0 as z →
∞, Eq. (86) possesses a solution of the form φ(0) =√

φ̃0sechz exp (iθ1z) ⇐⇒ ∂φ(0)/∂τ = 0 for some real
values of θ1. Now, for the existence of the solution of Eq. (87),
it is necessary that �φ(0) be orthogonal to all solutions g(z)
of L+[g] = 0 which satisfy g(±∞) = 0, where L+ is the
operator adjoint to L defined by∫ ∞

−∞
ψ1(z)L[ψ2(z)]dz =

∫ ∞

−∞
ψ2(z)L+[ψ1(z)]dz, (89)

with ψ1(±∞) = ψ2(±∞) = 0, and the only solution of
L+[g] = 0 is g(z) = sechz. Thus, we have∫ ∞

−∞
�2φ

(0)sechzdz = 0, (90)
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which gives

i

2
√

φ̃0

∂φ̃0

∂τ1

[√
2πθ1 sinh (πθ1/2)

1 − cosh (πθ1)

]

− 1

π
φ̃

3/2
0 P

∫ ∞

−∞

∫ ∞

−∞

(
sech2z′

z − z′

)
sech2z exp(iθ1z)dzdz′ =0.

(91)

Equation (91) is a first-order differential equation for the wave
amplitude φ̃0. So, its solution can be obtained as

φ̃0 = φ̃00

(
1 − i

τ

τ0

)−1

, (92)

where φ̃0 = φ̃00 at τ = 0 and τ0 is given by (rewriting now r

as R)

τ−1
0 =

√
2Rφ̃00

π3/2θ1

[
cosh (πθ1) − 1

sinh (πθ1/2)

]
P

∫ ∞

−∞

∫ ∞

−∞

(
sech2z′

z − z′

)
× sech2z exp(iθ1z)dzdz′. (93)

Thus, when PQ > 0, an approximate solitary wave solution
of the NLS equation (28) with a small effect of the nonlinear
Landau damping is given by

φ =
√

φ̃00

(
1 − i

τ

τ0

)−1/2

sechz exp(iθ ), (94)

where θ = [vξ + (� − v2
0/2)τ ]/2P .

On the other hand, when PQ < 0, a stationary solution
(dark soliton) of Eq. (80) can be taken as [41]

φ = φ0 exp(iθ ), (95)

where φ0 and θ are different from those given by Eqs. (82)
and (83), i.e.,

φ0 = φ̃0 tanh

(
ξ − v0τ

L

)
, (96)

θ = 1

2P

[
v0ξ +

(
2PQφ̃2

0 − v2
0

2

)
τ

]
, (97)

with Lφ̃0 = √|2P/Q| = a constant.

Proceeding in the same way as above up to Eq. (87), it can be
easily verified that φ(0) = φ̃0 tanh z exp (iθ2z), for some θ2, is
a solution of Eq. (86) if and only if ∂φ(0)/∂τ = 0. Also, for the
existence of a solution of Eq. (87) we have the same necessary
condition but with different g(z) = tanh z. The condition gives∫ ∞

−∞
�2φ

(0) tanh zdz = 0, (98)

from which we obtain

i
√

2π
∂φ̃0

∂τ1

[
δ(t) + θ2 sinh (πθ2/2)

1 − cosh(πθ2)

]
+ 1

π
φ̃3

0P
∫ ∞

−∞

∫ ∞

−∞

(
tanh2 z′

z − z′

)
tanh2 z

× exp(iθ2z)dzdz′ = 0, (99)

where φ̃0 = φ̃00 at τ = 0. As before, the solution of Eq. (99)
in the case of PQ < 0 is given by

φ̃0 = φ̃00

(
1 − i

τ

τ0

)−1/2

, (100)

where (rewriting r as R)

τ−1
0 =

(
2

π

)3/2
Rφ̃2

00[1 − cosh(πθ2)]

δ(τ )(1 − cosh πθ2) + θ2 sinh
(

πθ2
2

)P
×

∫ ∞

−∞

∫ ∞

−∞

(
tanh2 z′

z − z′

)
tanh2 z exp(iθ2z)dzdz′,

(101)

with δ(τ ) denoting the Dirac δ function. Thus, when PQ < 0
an approximate solitary wave solution of the NLS equa-
tion (28) with a small effect of the nonlinear Landau damping
is given by

φ = φ̃00

(
1 − i

τ

τ0

)−1/2

tanhz exp(iθ ), (102)

where θ is given by Eq. (97).
From Eqs. (94) and (102), it is evident that the absolute

value (|φ|) of the wave amplitude decays slowly with time τ

with a small effect of the nonlinear Landau damping. Figure 5
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FIG. 5. (Color online) The nondimensional decay rate |φ̃0/φ̃00| is shown for both superextensive (solid and dashed lines) and subextensive
(dotted line) plasmas. It is seen that the faster the decay of the wave amplitude, the larger is the percentage of superthermal particles in plasmas.
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exhibits a qualitative plot of the absolute value of φ given
by Eq. (94) in plasmas with superextensive and subextensive
velocity distributions. It is seen that the faster the decay of the
wave amplitude, the larger is the percentage of superthermal
particles in plasmas.

VII. CONCLUSION

We have investigated the amplitude modulation and
the nonlinear evolution of electrostatic wave envelopes in
a collisionless EP-pair plasma in the context of Tsallis’
q-nonextensive statistics. Starting from a set of Vlasov-
Poisson equations and applying the RPT, the dynamics of the
wave envelopes is shown to be governed by a NLS equation
with a nonlocal nonlinear term arising from resonant particles
having the group velocity of the wave envelope. Such wave-
particle resonance also modifies the local nonlinear (cubic)
coupling coefficient of the NLS equation. Furthermore, the
nonextensive parameter q, which measures the excess of su-
perthermal particles in plasmas, is shown to modify the disper-
sive (group velocity), local nonlinear (cubic), and the nonlocal
nonlinear terms significantly. An interesting effect of q is that
a subregion (0.47 � q � 3/5) of the superextensivity (1/3 <

q < 1) exists where the carrier-wave dispersion curve (ωr ) can
turn over with the group velocity (λ) going to zero and then to
negative values (Fig. 1). Such features of the dispersion curve
have not been reported in the previous work [14], where the
same plasma model has been considered to investigate linear
Landau damping of Langmuir oscillations in q-nonextensive
EP plasmas. In Ref. [14] these effects were absent due to
truncation of the wave frequency up to χ2. Furthermore, our
results in the linear theory show that the electrostatic wave
is always damped due to resonant particles having phase
velocity of the wave in both superextensive and subextensive
regimes and also for long-wavelength perturbations. These
are also in disagreement with the results of Ref. [14] where
the possibility of growing instability has been predicted.
We, however, stress that such a growing instability should
not appear for high-frequency oscillations in q-nonextensive
EP-pair plasmas. This is due to the fact that since the wave
phase velocity is assumed to be larger than the particle’s
velocity, the wave modes can be damped by losing their energy
to the particles. It is found that for a fixed q, two subregions of
χ exist, in one of which the linear damping rate γL becomes
higher, while in the other it gets reduced with increasing values
of χ . On the other hand, for a fixed χ , the absolute value of γL

increases with increasing values of q; however, its value gets
reduced in larger wavelengths of perturbations.

In the nonlinear regime, we have verified the conservation
laws as applicable for a NLS equation. It is found that,
unlike the ordinary NLS equation, the nonlocal nonlinear term,
associated with the nonlinear wave-particle resonance, violates
the conservation laws, leading to a decay of the wave amplitude
with time and thereby forbidding the existence of a steady state
solution of the modified NLS equation (28). We show that the
modulated wave packet is always unstable (regardless of the
sign of P and Q) due to the nonlocal nonlinear term which
can describe the nonlinear Landau damping process in which
the wave energy is transferred from higher to lower frequency
sidebands.

The frequency shift (�r ) and the energy transfer rate (�) for
the modulated waves are also examined by the parameter q in a
general way as well as in the limits of small (ρ0 � ρc) and large
(ρ0 � ρc) amplitudes, where ρc = |P/2Q|K2 is some critical
value of the pump wave intensity ρ0. It is found that both
�r and � attain their maximum values only when PQ > 0.
Such maxima of �r and � may not exist in pair plasmas
or electron-ion plasmas with Maxwellian distributions [36].
However, they assume some asymptotic values in the limit
ρ0 � ρc and when PQ < 0, which are ∝√

ρ0 instead of
ρ0 as in the opposite limit ρ0 � ρc. The regions of q and
χ for which P,PQ > 0 and P,PQ < 0 are also obtained
in both superextensive (q < 1) and subextensive (q > 1)
regimes.

The general expressions of both �r and � are also studied
by the effects of q. It is found that, corresponding to the
superextensive regime 0.47 � q � 3/5 where the carrier-wave
frequency vanishes with the group velocity (Fig. 1), two
subregions of χ exist, in one of which a significant reduction
of �r occurs having cutoffs at lower χ , while it gets enhanced
with increasing values of q and χ . The existence of such
cutoffs are the consequences of the turnover effects of the
carrier-wave frequency as well as the group velocity of the
wave envelope. In the other region of q, namely q > 3/5, the
frequency shift is seen to increase with χ (having no cutoff),
while it decreases with increasing values of q. However, quite
distinct features are observed for the energy transfer rate �.
Here, as q(>1/3) increases, the values of |�| decrease, i.e.,
the higher the percentage of superthermal particles, the higher
is the rate of energy transfer from high-frequency side bands
to low-frequency ones.

We have also studied the effects of a small amount of
the nonlinear Landau damping (∝R) on the solitary wave
solution of the ordinary NLS equation by assuming that the
linear Landau damping ∝γL rate is higher order than ε2. It is
found that the wave amplitude decays with time and the decay
rate can be faster the larger is the number of superthermal
particles in EP plasmas. To conclude, the results should be
useful for the evolution of nonlinear wave envelopes and
associated wave damping in collisionless pure EP plasmas or
pure pair-ion plasmas such those in laboratory [25], space [24],
and astrophysical [26] environments.
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APPENDIX A: MODES WITH n = l = 1

Equating the coefficients of ε from Eqs. (6) and (7) for
n = 1, l = 1, we successively obtain

f
(1)
α,1 = −kφ

(1)
1

Gα(v)

ω − kv
, k2φ

(1)
1 = 4π

∑
eα

∫
C

f
(1)
α,1dv.

(A1)
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For nonzero perturbations, Eq. (A1) yields the following linear
dispersion law:

k + 4π
∑

eα

∫
C

Gα(v)

ω − kv
dv = 0. (A2)

The small parameter ε, which measures the amplitude of the
wave, can be related to the linear Landau damping rate γL of
the plasma wave as γL ∼ ωrε

2+p, where p is a non-negative
integer and ωr is the real part of ω = ωr + iγL. Next, from
Eq. (10) we have the plasma dielectric function

D(k,ω) ≡ 1 − 4πe2

mk2

∫ ∂
∂v

[
F (0)

e (v) + F (0)
p (v)

]
v − ω/k

= 0, (A3)

where for pair plasmas or EP plasmas me = mp = m. If γL �
ωr , i.e., γL ∼ ωrε

2+p, then the dielectric function D(k,ω) can
be Taylor expanded in the smallness of γL to obtain its real
(with suffix r) and imaginary (with suffix i) parts as [14]

Dr (k,ωr ) = 1 − 4πe2

mk2

∫
C

∂
∂v

[
F (0)

e (v) + F (0)
p (v)

]
v − ωr/k

, (A4)

Di(k,ωr ) = −π

(
4πe2

mk2

)[
∂

∂v

{
F (0)

e (v) + F (0)
p (v)

}]
v=ωr/k

.

(A5)

Next, neglecting the terms of order (γL/ωr )2 and higher in
Eqs. (A4) and (A5), the expressions for ωr and γL can be
obtained from the following relations:

Dr (k,ωr ) = 0, (A6)

γL = − Di(k,ωr )

∂Dr (k,ωr )/∂ωr

≡ π

k

∑
α

eαGα

(ω

k

)/ ∑
α

eα

∫
C

Gα

(ω − kv)2 dv. (A7)

APPENDIX B: MODES WITH n = 1,l �= 0

We equate the components for l 
= 0 and n = 1. Thus, from
Eq. (6) we have

il(ω − kv)f (1)
α,l + ilkGαφ

(1)
l = 0. (B1)

This gives

f
(1)
α,l

.= − Gα

ω − kv + iν
kφ

(1)
l , (B2)

where ν = ±|ν| for l ≶ 0 has been introduced to anticipate that
the solution in the linear approximation decays with Landau
damping rate.

Similarly, for l 
= 0 and n = 1 equating the coefficients of
ε from Eq. (7) we obtain

l2k2φ
(1)
l − 4π

∑
eα

∫
f

(1)
α,l dv = 0. (B3)

Next, substituting Eq. (B2) into Eq. (B3) and noting that∫
R

dv ∼
∫

C

dv ± iπ

∫
dvδ(ω − kv) ∼

∫
C

dv ± o(ε2+p),

(B4)

we obtain(
l2k + 4π

∑
eα

∫
C

Gα

ω − kv
dv

)
φ

(1)
l = 0, (B5)

where the contour C enables us to remove ν in the denominator
of Eq. (B5). Thus, by means of the dispersion relation (10),
one must have

f
(1)
α,l

.= 0 and φ
(1)
l = 0 for |l| � 2. (B6)

APPENDIX C: EXPRESSIONS FOR n = 2 AND l = 1

We consider the second-order, first harmonic modes with
n = 2 and l = 1. Thus, from Eq. (6) we have

i(ω−kv)f (2)
α,1 + ikGαφ

(2)
1 = ∂

∂σ
f

(1)
α,1 + v

∂

∂η
f

(1)
α,1 −Gα

∂

∂η
φ

(1)
1 ,

(C1)

which gives

f
(2)
α,1

.= − 1

ω − kv + iν

×
[
kGαφ

(2)
1 + i

(
∂

∂σ
f

(1)
α,1 + v

∂

∂η
f

(1)
α,1 − Gα

∂

∂η
φ

(1)
1

)]
.

(C2)

Also, from Eq. (7) we have for n = 2 and l = 1 the following
equation:

k2φ
(2)
1 − 2ik

∂

∂η
φ

(1)
1 − 4π

∑
eα

∫
C

f
(2)
α,1dv = 0. (C3)

This equation can be reduced by substituting from Eq. (C2) the
expression of f

(2)
α,1 into it and using the dispersion relation (A2)

and the expression (B2), to

∂

∂η
φ

(1)
1 + 4π

∑
eα

∫
C

Gα

(ω − kv)2

[
∂

∂σ
φ

(1)
1 + v

∂

∂η
φ

(1)
1

]
dv

= 0. (C4)

Equation (C4) can be written in the form{
∂

∂σ
+ λ

∂

∂η

}
φ

(1)
1 (η,σ ; ζ ) = 0. (C5)

APPENDIX D: SECOND-ORDER HARMONIC MODES
FOR n = l = 2

For n = l = 2 we have from Eqs. (6)

2i(ω − kv)f (2)
α,2 + 2ikGαφ

(2)
2

.= ∂

∂σ
f

(1)
α,2 + v

∂

∂η
f

(1)
α,2 − Gα

∂

∂η
φ

(1)
2 − ik

eα

mα

φ
(1)
1

∂

∂v
f

(1)
α,1,

(D1)

which by means of Eqs. (B2) and (B6) yields

f
(2)
α,2

.= − k

ω − kv + iν

×
[
Gαφ

(2)
2 − eα

2mα

k
∂

∂v

(
Gα

ω − kv + iν

)(
φ

(1)
1

)2
]
.

(D2)
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Next, the expression for φ
(2)
2 is obtained from Eq. (7) for n = l = 2 and using the relation (D2) as

4k2φ
(2)
2 − 4ik

∂

∂η
φ

(1)
2 − 4π

∑
eα

∫
f

(2)
α,2dv = 0, (D3)

i.e.,

φ
(2)
2 = 1

6A(k,ω)
(
φ

(1)
1

)2
. (D4)

APPENDIX E: HARMONIC MODES WITH n = 3,l = 0

For n = 3 and l = 0 we have from Eq. (6)

∂

∂σ
f

(2)
α,0 + v

∂

∂η
f

(2)
α,0 − Gα

∂

∂η
φ

(2)
0 = −ik

eα

mα

φ
(2)
−1

∂

∂v
f

(1)
α,1 + ik

eα

mα

φ
(2)
1

∂

∂v
f

(1)
α,−1

−ik
eα

mα

φ
(1)
−1

∂

∂v
f

(2)
α,1 + ik

eα

mα

φ
(1)
1

∂

∂v
f

(2)
α,−1 + eα

mα

∂

∂η
φ

(1)
−1

∂

∂v
f

(1)
α,1 + eα

mα

∂

∂η
φ

(1)
1

∂

∂v
f

(1)
α,−1, (E1)

where we have used the relations (18). This equation can further be reduced after a few steps using Eqs. (B2), (C2), and (C5) to
the equation

∂

∂σ
f

(2)
α,0 + v

∂

∂η
f

(2)
α,0 − Gα

∂

∂η
φ

(2)
0

.= eα

mα

k2Iα(v)
∂

∂η

∣∣φ(1)
1

∣∣2
, (E2)

where

Iα(v) = ∂

∂v

{
v − λ

(ω − kv)2
Gα

}
. (E3)

Next, taking the Fourier-Laplace transform of Eq. (E2) with respect to η and σ and using the initial condition (8), we obtain

f̃
(2)
α,0(v,K,�,ζ )

.= − K

� − Kv
Gα(v)φ̃(2)

0 (K,�,ζ ) − k2 eα

mα

K

� − Kv
Iα(v)H (K,�), (E4)

where H (K,�) is defined as ∣∣φ(1)
1 (η − λσ,ζ )

∣∣2 = 1

(2π )2

∫
d�

∫
dKH (K,�) exp[i(Kη − �σ )], (E5)

with

H (K,�) = 2πδ(� − Kλ)
∫

dK ′φ(1)∗
1 (K ′)φ(1)

1 (K + K ′). (E6)

Now, for n = 2, l = 0 Eq. (7) reduces to

4π
∑

eα

∫
f̃

(2)
α,0 = 0. (E7)

Thus, we obtain from Eq. (E4) the relation

φ̃
(2)
0 = k2 H (K,�)

�(c)(K,�)
W(K,�), (E8)

where

W(K,�) = 4π
∑

α

e2
α

mα

∫
K

(ω − kv)2(� − Kv)
Gαdv, (E9)

�(c)(K,�) = −4πK
∑

α

eα

∫
Gα

� − Kv
dv, (E10)

Next, a substitution of Eq. (E8) back into Eq. (E4) results in a slow beat wave solution given by

f̃
(2)
α,0

.= k2

[
− W(K,�)

�(c)(K,�)

K

� − Kv
Gα(v) − eα

mα

K

� − Kv
Iα(v)

]
H (K,�). (E11)
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APPENDIX F: MODES WITH n = 3, l = 1 AND THE NLS EQUATION

We can now use the expressions for the lower-order quantities so obtained to determine the components for n = 3 and l = 1.
Thus, we have from Eq. (6)

f
(3)
α,1

.= −k
Gα

ω − kv
φ

(3)
1 + i

Gα

ω − kv

∂

∂η
φ

(2)
1 + i

Gα

ω − kv

∂

∂ζ
φ

(1)
1

− i
1

(ω − kv)2

{
−kGα

(
∂

∂σ
+ v

∂

∂η

)
φ

(2)
1 − i

(
∂

∂σ
+ v

∂

∂η

)[
∂

∂σ
f

(1)
α,1 + v

∂

∂η
f

(1)
α,1 − Gα

∂

∂η
φ

(1)
1

]}
+ ik

Gα

(ω − kv)2
v

∂

∂ζ
φ

(1)
1 + 2

eα

mα

k2

ω − kv

∂

∂v

{
Gα

ω − kv

}
φ

(1)
−1φ

(2)
2

− eα

mα

k2

ω − kv

∂

∂v

{
Gα

ω − kv
φ

(2)
2 − eα

2mα

k

ω − kv

∂

∂v

(
Gα

ω − kv

)
φ

(1)
1 φ

(1)
1

}
φ

(1)
−1 − eα

mα

k

ω − kv

∂

∂v
f

(2)
α,0φ

(1)
1 . (F1)

This expression for f
(3)
α,1 is then substituted in Eq. (7) for n = 3, l = 1 to obtain the equation

−ik4π
∑

α

∫
Gα

(ω − kv)2
dvλ

∂

∂ζ
φ

(1)
1 − ∂2

∂η2
φ

(1)
1

+ 4π
∑

α

eα

∫
1

(ω − kv)2

{
∂

∂σ
+ v

∂

∂η

}{
∂

∂σ
f

(1)
α,1 + v

∂

∂η
f

(1)
α,1 − Gα

∂

∂η
φ

(1)
1

}
dv

− k24π
∑

α

e2
α

mα

∫
1

ω − kv

∂

∂v

{
Gα

ω − kv

}
dvφ

(1)
−1φ

(2)
2

− k3

2
4π

∑
α

e3
α

m2
α

∫
1

ω − kv

∂

∂v

{
1

ω − kv

∂

∂v

(
Gα

ω − kv

)}
dv|φ(1)

1 |2φ(1)
1

+K4π
∑

α

e2
α

mα

∫
1

ω − kv

∂

∂v
f

(2)
α,0dvφ

(1)
1 + i

θ (p)

2ε2
4π

∑
α

eα

∫
�

Gα

ω − kv
dvkφ

(1)
1 = 0, (F2)

where θ (p) is unity for p = 0 and vanishes otherwise, and � denotes the path of integration around v = ω/k in the anticlockwise
sense. Note that this integral results from the term

∫
R

f
(1)
α,1dv − ∫

C
f

(1)
α,1dv representing the Landau damping term.

Now, substituting the expression (E11) into the coefficient of φ
(1)
1 of the sixth term of Eq. (F2), we obtain the term as

K4π
∑

α

e2
α

mα

∫
1

ω − kv

∂

∂v
f

(2)
α,0dv = k4 1

(2π )2

∫
d�

∫
dKH (K,�) exp[i(kη − �σ )]

× [W(K,�)2/�(c)(K,�) + C(K,�)], (F3)

where

C(K,�) = 4π
∑

α

eα
3

m2
α

∫
c

K

(ω − kv)2(� − kv)
Iα(v,K,�)dv. (F4)

By deforming the contour C to the Landau contour with real �, we have

1

� − kv + iν
= 1

� − kv
− iπ

1

|K|δ
(

v − �

K

)
. (F5)

Thus, using the relation (E6) for H (K,�), the functions defined by Eqs. (E9), (E10), and (F4) can, respectively, be expressed as

W(K,�) = −W (k,ω; λ) − iU (k,ω; λ)
K

|K| , (F6)

with

W (k,ω; λ) = 4π
∑ e2

α

mα

∫
1

(ω − kv)2

Gα

v − λ
dv, (F7)

U (k,ω; λ) = 4π2
∑

α

e2
α

mα

Gα(λ)

(ω − kλ)2
. (F8)
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Similarly,

C(K,�) = C(k,ω; λ) − iD(k,ω; λ)
K

|K| , (F9)

with

C(k,ω; λ) = −4π
∑

α

e3
α

m2
α

∫
1

(ω − kv)2

Iα(v)

v − λ
dv, (F10)

D(k,ω; λ) = 4π2
∑

α

e3
α

m2
α

Iα(λ)

(ω − kλ)2
. (F11)

Also, we have

�(c)(K,�) = �(λ) + i�(λ)
K

|K| , (F12)

where

�(λ) = 4π
∑

α

eα

∫
Gα(v)

v − λ
dv, (F13)

�(λ) = 4π2
∑

α

eαGα(λ). (F14)

We note that the group velocity λ = ∂ω/∂k is independent of K and � and we have the relation

1

(2π )2

∫
d�

∫
dK exp i(Kη − �σ )

K

|K|H (K,�) = i
P
π

∫
dξ ′

∣∣φ(1)
1 (ξ ′,λ)

∣∣2

ξ − ξ ′ (F15)

in terms of the constrained coordinate (21). Thus, we finally obtain the term given by Eq. (F3) as

k4π
∑

α

e2
α

mα

∫
1

ω − kv

∂

∂v
f

(2)
α,0dvφ

(1)
1 = k�(k,ω)

∣∣φ(1)
1

∣∣2
φ

(1)
1 + k�(k,ω)

P
π

∫ ∣∣φ(1)
1 (ξ ′,τ )

∣∣2

ξ − ξ ′ dξ ′φ(1)
1 , (F16)

where the symbols used are

�(k,ω) = k3

[
�

�2 + �2
(W 2 − U 2) + 2

�

�2 + �2
WU + C

]
, (F17)

�(k,ω) = k3

[
�

�2 + �2
(W 2 − U 2) − 2

�

�2 + �2
WU + D

]
. (F18)

Here the functions U, D, and � represent contributions of the resonant particles having the group velocity of the wave envelope
in EP plasmas. Now, the third term in Eq. (F2) can be reduced by eliminating f

(1)
α,1 with the help of Eq. (B2) as

−4π
∑

α

eα

∫
v − λ

(ω − kv)2
Gαdv

∂2

∂η2
φ

(1)
1 − k4π

∑
α

eα

∫
(v − λ)2

(ω − kv)3
Gαdv

∂2

∂η2
φ

(1)
1 , (F19)

in which the first term of it cancels the second term of Eq. (F2) by means of the expression of the group velocity (20). Furthermore,
inspecting the first term of Eq. (F2) we find that the derivative λ∂/∂ξ can be transformed into the derivative ∂/∂τ by redefining
the variable ζ = λτ . Finally, substitutions of Eqs. (24) and (F16) into Eq. (F2) give

i
∂φ

∂τ
+ P

∂2φ

∂ξ 2
+ Q|φ|2φ + R

π
P

∫ |φ(ξ ′,τ )|2
ξ − ξ ′ dξ ′φ + iSφ = 0. (F20)

[1] W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973), p. 763; G. W. Gibbons, S. W.
Hawking, and S. Siklos, The Very Early Universe (Cambridge
University Press, Cambridge, UK, 1983).

[2] A. P. Lightman, Astrophys. J. 253, 842 (1982); M. L. Burns
and R. V. E. Lovelace, ibid. 262, 87 (1982); A. P. Lightman and
A. A. Zdziarski, ibid. 319, 643 (1987); M. Y. Yu, P. K. Shukla,
and L. Stenflo, ibid. 309, L63 (1986).

[3] R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron. Soc.
179, 433 (1977).

[4] P. Goldreich and W. H. Julian, Astrophys. J. 157, 869
(1969).

[5] J. F. C. Wardle et al., Nature (London) 395, 457 (1998).
[6] M. C. Begelman, R. D. Blandford, and M. D. Rees, Rev. Mod.

Phys. 56, 255 (1984); H. R. Miller and P. J. Witta, in Active
Galactic Nuclei (Springer, Berlin, 1987), p. 202.

063110-17

http://dx.doi.org/10.1086/159686
http://dx.doi.org/10.1086/159686
http://dx.doi.org/10.1086/159686
http://dx.doi.org/10.1086/159686
http://dx.doi.org/10.1086/160399
http://dx.doi.org/10.1086/160399
http://dx.doi.org/10.1086/160399
http://dx.doi.org/10.1086/160399
http://dx.doi.org/10.1086/165485
http://dx.doi.org/10.1086/165485
http://dx.doi.org/10.1086/165485
http://dx.doi.org/10.1086/165485
http://dx.doi.org/10.1086/184761
http://dx.doi.org/10.1086/184761
http://dx.doi.org/10.1086/184761
http://dx.doi.org/10.1086/184761
http://dx.doi.org/10.1093/mnras/179.3.433
http://dx.doi.org/10.1093/mnras/179.3.433
http://dx.doi.org/10.1093/mnras/179.3.433
http://dx.doi.org/10.1093/mnras/179.3.433
http://dx.doi.org/10.1086/150119
http://dx.doi.org/10.1086/150119
http://dx.doi.org/10.1086/150119
http://dx.doi.org/10.1086/150119
http://dx.doi.org/10.1038/26675
http://dx.doi.org/10.1038/26675
http://dx.doi.org/10.1038/26675
http://dx.doi.org/10.1038/26675
http://dx.doi.org/10.1103/RevModPhys.56.255
http://dx.doi.org/10.1103/RevModPhys.56.255
http://dx.doi.org/10.1103/RevModPhys.56.255
http://dx.doi.org/10.1103/RevModPhys.56.255


DEBJANI CHATTERJEE AND A. P. MISRA PHYSICAL REVIEW E 92, 063110 (2015)

[7] J. R. Orsoz, R. A. Remillard, C. D. Bailyn, and J. E. McClintock,
Astrophys. J. Lett. 478, L83 (1997).

[8] G. Sarri et al., Nat. Commun. 6, 6747 (2015).
[9] C. M. Surko, M. Leventhal, and A. Passner, Phys. Rev. Lett.

62, 901 (1989); R. G. Greaves and C. M. Surko, ibid. 75, 3846
(1995).

[10] H. Boehmer, M. Adams, and N. Rynn, Phys. Plasmas 2, 4369
(1995).

[11] W. Oohara and R. Hatakeyama, Phys. Rev. Lett. 91, 205005
(2003).

[12] W. Oohara, D. Date, and R. Hatakeyama, Phys. Rev. Lett. 95,
175003 (2005).

[13] C.-S. Jao and L.-N. Hau, Phys. Rev. E 89, 053104 (2014).
[14] E. Saberian and A. Esfandyari-Kalejahi, Phys. Rev. E 87, 053112

(2013).
[15] A. P. Misra and A. R. Chowdhury, Phys. Rev. E 70, 058401

(2004).
[16] D. Liu et al., Phys. Plasmas 21, 022108 (2014).
[17] U. A. Mofiz, Phys. Rev. A 42, 960 (1990).
[18] F. A. Asenjo, F. A. Borotto, A. C.-L. Chian, V. Munoz, J. A.

Valdivia, and E. L. Rempel, Phys. Rev. E 85, 046406 (2012).
[19] N. S. Javan, Phys. Plasmas 19, 122107 (2012).
[20] E. Ott and R. N. Sudan, Phys. Fluids 12, 2388 (1969); 13, 1432

(1970).
[21] A. Barman and A. P. Misra, Phys. Plasmas 21, 073708 (2014).
[22] A. P. Misra and A. Barman, Phys. Plasmas 22, 073708 (2015).
[23] G. Brodin, J. Zamanian, and J. T. Mendonca, Phys. Scr. 90,

068020 (2015).
[24] M. D. Montgomery, S. J. Bame, and A. J. Hundhausen, J.

Geophys. Res. 73, 4999 (1968); M. Maksimovic, V. Pierrard,

and P. Riley, Geophys. Res. Lett. 24, 1151 (1997); I. Zouganelis,
J. Geophys. Res. 113, A08111 (2008).

[25] J. M. Liu, J. S. DeGroot, J. P. Matte, T. W. Johnston, and R. P.
Drake, Phys. Rev. Lett. 72, 2717 (1994).

[26] V. Pierrard and M. Lazar, Solar Phys. 267, 153 (2010), and
references therein.

[27] A. Renyi, Acta Math. Acad. Sci. Hung. 6, 285 (1955).
[28] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
[29] F. Caruso and C. Tsallis, Phys. Rev. E 78, 021102 (2008).
[30] F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, Phys. Rev.

Lett. 106, 140601 (2011).
[31] S. Guo, L. Mei, and A. Sun, Ann. Phys. 332, 38 (2013).
[32] M. P. Leubner, Astrophys. Space Sci. 282, 573 (2002).
[33] L. Landau, Zh. Eksp. Teor. Fiz. 16, 574 (1946) [J. Phys. USSR

10, 25 (1946)].
[34] J. H. Malmberg and C. B. Wharton, Phys. Rev. Lett. 13, 184

(1964).
[35] H. Ikezi and Y. Kiwamoto, Phys. Rev. Lett. 27, 718

(1971).
[36] Y. H. Ichikawa, Suppl. Prog. Theor. Phys. 55, 212 (1974).
[37] R. Silva, Jr., A. R. Plastino, and J. A. S. Lima, Phys. Lett. A 249,

401 (1998).
[38] E. M. F. Curado, Braz. J. Phys. 29, 36 (1999); S. Abe, Phys. A

(Amsterdam, Neth.) 269, 403 (1999).
[39] J. A. S. Lima, R. Silva, and A. R. Plastino, Phys. Rev. Lett. 86,

2938 (2001).
[40] T. Taniuti and N. Yajima, J. Math. Phys. 10, 1369 (1969).
[41] R. Fedele, H. Schamel, and P. K. Shukla, Phys. Scr. T98,

18 (2002); R. Fedele, ibid. 65, 502 (2002); R. Fedele and H.
Schamel, Eur. Phys. J. B 27, 313 (2002).

063110-18

http://dx.doi.org/10.1038/ncomms7747
http://dx.doi.org/10.1038/ncomms7747
http://dx.doi.org/10.1038/ncomms7747
http://dx.doi.org/10.1038/ncomms7747
http://dx.doi.org/10.1103/PhysRevLett.62.901
http://dx.doi.org/10.1103/PhysRevLett.62.901
http://dx.doi.org/10.1103/PhysRevLett.62.901
http://dx.doi.org/10.1103/PhysRevLett.62.901
http://dx.doi.org/10.1103/PhysRevLett.75.3846
http://dx.doi.org/10.1103/PhysRevLett.75.3846
http://dx.doi.org/10.1103/PhysRevLett.75.3846
http://dx.doi.org/10.1103/PhysRevLett.75.3846
http://dx.doi.org/10.1063/1.871466
http://dx.doi.org/10.1063/1.871466
http://dx.doi.org/10.1063/1.871466
http://dx.doi.org/10.1063/1.871466
http://dx.doi.org/10.1103/PhysRevLett.91.205005
http://dx.doi.org/10.1103/PhysRevLett.91.205005
http://dx.doi.org/10.1103/PhysRevLett.91.205005
http://dx.doi.org/10.1103/PhysRevLett.91.205005
http://dx.doi.org/10.1103/PhysRevLett.95.175003
http://dx.doi.org/10.1103/PhysRevLett.95.175003
http://dx.doi.org/10.1103/PhysRevLett.95.175003
http://dx.doi.org/10.1103/PhysRevLett.95.175003
http://dx.doi.org/10.1103/PhysRevE.89.053104
http://dx.doi.org/10.1103/PhysRevE.89.053104
http://dx.doi.org/10.1103/PhysRevE.89.053104
http://dx.doi.org/10.1103/PhysRevE.89.053104
http://dx.doi.org/10.1103/PhysRevE.87.053112
http://dx.doi.org/10.1103/PhysRevE.87.053112
http://dx.doi.org/10.1103/PhysRevE.87.053112
http://dx.doi.org/10.1103/PhysRevE.87.053112
http://dx.doi.org/10.1103/PhysRevE.70.058401
http://dx.doi.org/10.1103/PhysRevE.70.058401
http://dx.doi.org/10.1103/PhysRevE.70.058401
http://dx.doi.org/10.1103/PhysRevE.70.058401
http://dx.doi.org/10.1063/1.4864650
http://dx.doi.org/10.1063/1.4864650
http://dx.doi.org/10.1063/1.4864650
http://dx.doi.org/10.1063/1.4864650
http://dx.doi.org/10.1103/PhysRevA.42.960
http://dx.doi.org/10.1103/PhysRevA.42.960
http://dx.doi.org/10.1103/PhysRevA.42.960
http://dx.doi.org/10.1103/PhysRevA.42.960
http://dx.doi.org/10.1103/PhysRevE.85.046406
http://dx.doi.org/10.1103/PhysRevE.85.046406
http://dx.doi.org/10.1103/PhysRevE.85.046406
http://dx.doi.org/10.1103/PhysRevE.85.046406
http://dx.doi.org/10.1063/1.4771596
http://dx.doi.org/10.1063/1.4771596
http://dx.doi.org/10.1063/1.4771596
http://dx.doi.org/10.1063/1.4771596
http://dx.doi.org/10.1063/1.1692358
http://dx.doi.org/10.1063/1.1692358
http://dx.doi.org/10.1063/1.1692358
http://dx.doi.org/10.1063/1.1692358
http://dx.doi.org/10.1063/1.1693097
http://dx.doi.org/10.1063/1.1693097
http://dx.doi.org/10.1063/1.1693097
http://dx.doi.org/10.1063/1.4890571
http://dx.doi.org/10.1063/1.4890571
http://dx.doi.org/10.1063/1.4890571
http://dx.doi.org/10.1063/1.4890571
http://dx.doi.org/10.1063/1.4927463
http://dx.doi.org/10.1063/1.4927463
http://dx.doi.org/10.1063/1.4927463
http://dx.doi.org/10.1063/1.4927463
http://dx.doi.org/10.1088/0031-8949/90/6/068020
http://dx.doi.org/10.1088/0031-8949/90/6/068020
http://dx.doi.org/10.1088/0031-8949/90/6/068020
http://dx.doi.org/10.1088/0031-8949/90/6/068020
http://dx.doi.org/10.1029/JA073i015p04999
http://dx.doi.org/10.1029/JA073i015p04999
http://dx.doi.org/10.1029/JA073i015p04999
http://dx.doi.org/10.1029/JA073i015p04999
http://dx.doi.org/10.1029/97GL00992
http://dx.doi.org/10.1029/97GL00992
http://dx.doi.org/10.1029/97GL00992
http://dx.doi.org/10.1029/97GL00992
http://dx.doi.org/10.1029/2007JA012979
http://dx.doi.org/10.1029/2007JA012979
http://dx.doi.org/10.1029/2007JA012979
http://dx.doi.org/10.1029/2007JA012979
http://dx.doi.org/10.1103/PhysRevLett.72.2717
http://dx.doi.org/10.1103/PhysRevLett.72.2717
http://dx.doi.org/10.1103/PhysRevLett.72.2717
http://dx.doi.org/10.1103/PhysRevLett.72.2717
http://dx.doi.org/10.1007/s11207-010-9640-2
http://dx.doi.org/10.1007/s11207-010-9640-2
http://dx.doi.org/10.1007/s11207-010-9640-2
http://dx.doi.org/10.1007/s11207-010-9640-2
http://dx.doi.org/10.1007/BF02024393
http://dx.doi.org/10.1007/BF02024393
http://dx.doi.org/10.1007/BF02024393
http://dx.doi.org/10.1007/BF02024393
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1103/PhysRevE.78.021102
http://dx.doi.org/10.1103/PhysRevE.78.021102
http://dx.doi.org/10.1103/PhysRevE.78.021102
http://dx.doi.org/10.1103/PhysRevE.78.021102
http://dx.doi.org/10.1103/PhysRevLett.106.140601
http://dx.doi.org/10.1103/PhysRevLett.106.140601
http://dx.doi.org/10.1103/PhysRevLett.106.140601
http://dx.doi.org/10.1103/PhysRevLett.106.140601
http://dx.doi.org/10.1016/j.aop.2013.01.016
http://dx.doi.org/10.1016/j.aop.2013.01.016
http://dx.doi.org/10.1016/j.aop.2013.01.016
http://dx.doi.org/10.1016/j.aop.2013.01.016
http://dx.doi.org/10.1023/A:1020990413487
http://dx.doi.org/10.1023/A:1020990413487
http://dx.doi.org/10.1023/A:1020990413487
http://dx.doi.org/10.1023/A:1020990413487
http://dx.doi.org/10.1103/PhysRevLett.13.184
http://dx.doi.org/10.1103/PhysRevLett.13.184
http://dx.doi.org/10.1103/PhysRevLett.13.184
http://dx.doi.org/10.1103/PhysRevLett.13.184
http://dx.doi.org/10.1103/PhysRevLett.27.718
http://dx.doi.org/10.1103/PhysRevLett.27.718
http://dx.doi.org/10.1103/PhysRevLett.27.718
http://dx.doi.org/10.1103/PhysRevLett.27.718
http://dx.doi.org/10.1143/PTPS.55.212
http://dx.doi.org/10.1143/PTPS.55.212
http://dx.doi.org/10.1143/PTPS.55.212
http://dx.doi.org/10.1143/PTPS.55.212
http://dx.doi.org/10.1016/S0375-9601(98)00710-5
http://dx.doi.org/10.1016/S0375-9601(98)00710-5
http://dx.doi.org/10.1016/S0375-9601(98)00710-5
http://dx.doi.org/10.1016/S0375-9601(98)00710-5
http://dx.doi.org/10.1590/S0103-97331999000100003
http://dx.doi.org/10.1590/S0103-97331999000100003
http://dx.doi.org/10.1590/S0103-97331999000100003
http://dx.doi.org/10.1590/S0103-97331999000100003
http://dx.doi.org/10.1016/S0378-4371(99)00064-3
http://dx.doi.org/10.1016/S0378-4371(99)00064-3
http://dx.doi.org/10.1016/S0378-4371(99)00064-3
http://dx.doi.org/10.1016/S0378-4371(99)00064-3
http://dx.doi.org/10.1103/PhysRevLett.86.2938
http://dx.doi.org/10.1103/PhysRevLett.86.2938
http://dx.doi.org/10.1103/PhysRevLett.86.2938
http://dx.doi.org/10.1103/PhysRevLett.86.2938
http://dx.doi.org/10.1063/1.1664975
http://dx.doi.org/10.1063/1.1664975
http://dx.doi.org/10.1063/1.1664975
http://dx.doi.org/10.1063/1.1664975
http://dx.doi.org/10.1238/Physica.Topical.098a00018
http://dx.doi.org/10.1238/Physica.Topical.098a00018
http://dx.doi.org/10.1238/Physica.Topical.098a00018
http://dx.doi.org/10.1238/Physica.Topical.098a00018
http://dx.doi.org/10.1238/Physica.Regular.065a00502
http://dx.doi.org/10.1238/Physica.Regular.065a00502
http://dx.doi.org/10.1238/Physica.Regular.065a00502
http://dx.doi.org/10.1238/Physica.Regular.065a00502
http://dx.doi.org/10.1140/epjb/e2002-00160-7
http://dx.doi.org/10.1140/epjb/e2002-00160-7
http://dx.doi.org/10.1140/epjb/e2002-00160-7
http://dx.doi.org/10.1140/epjb/e2002-00160-7



