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The head-on collision of two ion acoustic solitary waves is investigated in a magnetized plasma containing
trapped electrons and dust grains. For completeness, the fluctuations in dust grain charge are taken into account.
By using the extended Poincaré-Lighthill-Kuo (PLK) perturbation method, an analytical expression is obtained
for the phase shift that takes place due to the collision of the waves. How the phase shift behaves under the
combined effect of trapped electrons and dust grains along with the finite temperature of ions is examined. A
focus is given to uncover the situations of fluctuating charge and fixed charge on the dust grains in the plasma.
Interestingly, the solitary waves acquire a larger phase shift and are delayed more in the case of dust grains having
a fluctuating charge.
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I. INTRODUCTION

Solitary waves can evolve from a localized disturbance
in a medium which is nonlinear and dispersive. Such types
of waves occur only when there is a dynamical balance
between the effects of the nonlinearity and the dispersion
of the medium. These waves have been an important topic
of research because of their existence in laboratory, space,
and astrophysical plasmas. The excitation, propagation,
and interaction of the solitary waves are important issues
in theoretical plasma physics. The interaction of two
electrostatic solitons has been studied in multi-ion plasma [1]
and electron-positron (e-p) plasma [2]. The head-on collision
of two electron acoustic solitary waves in an unmagnetized
plasma has been investigated by taking into account the cold
electrons fluid, stationary ions, and hot electrons that obey
a nonextensive distribution [3]. Such a collision of an ion
acoustic solitary wave and a shock wave in a two-electron-
temperature plasma has also been reported [4]. The interaction
of two counterpropagating ion acoustic solitary waves has
been studied in different plasma models [4–12] including
the e-p-ion plasma [7] and a plasma having q-distributed
electrons. In addition, the interaction of two solitary waves has
been investigated in different environments such as in fluid-
filled elastic tubes, blood, water, and a nonlinear transmission
line [13–16].

The interaction of two counterpropagating solitons of equal
amplitudes has been studied experimentally and numerically in
a monolayer strongly coupled complex plasma by suspending
microparticles in usual ion-electron plasma [17,18]. In these
investigations, the solitons were found to endure a delay after
their collision. The solitons with higher amplitude have been
found to experience longer delays after collision [19]. On the
other hand, the head-on collisions of two concentric cylindrical
ion acoustic solitary waves have been discussed [7]. The head-
on collision of two ion-thermal solitary waves has also been
investigated in a two-fluid plasma consisting of positive and
negative ions as well as a fraction of stationary (+ve/−ve)
charged dust impurities [20].

It is clear that a considerable amount of work has been
done related to the head-on collision of two solitary waves
in different plasmas. However, in most of the cases, the dust
grains were neglected; these are available in realistic situations
and become charged due to the ion and electron currents
flowing into them. In some investigations [20–24] these grains
were considered, but their charge was taken to be fixed. Since
in a realistic situation, the charge on the dust grains fluctuates,
it is desirable to realize the exact behavior of the solitary
waves after their collision in a plasma having dust particles of
fluctuating or variable charge. In this paper, we consider the
same and also include the effect of the magnetic field in view
of space-related plasmas.

To solve the above problem, we employ the extended
Poincaré-Lighthill-Kuo method. The Poincaré-Lighthill-Kuo
method [25–27], abbreviated as the PLK method, was de-
veloped based on the Poincaré-Lindstedt technique, which
is useful for uniformly approximating periodic solutions
to ordinary differential equations when regular perturbation
approaches fail. The Poincaré-Lindstedt or Lindstedt-Poincaré
technique of strained parameters removed secular terms (the
terms that grow without bound) raised in the straightforward
application of the perturbation theory to weakly nonlinear
problems with finite oscillatory solutions. Here a perturbation
of frequency was made that was equivalent to introduc-
ing a linear transformation of the time coordinate. This
technique was generalized by Lighthill [28] in the case of
an aerodynamics problem, where he introduced nonlinear
transformations of coordinates for the successful elimination
of the singularities in perturbation solutions; actually the
ordinary differential equations were generalized to hyperbolic
partial differential equations. Then Kuo’s contribution to the
above generalized technique was the addition of the boundary
layer method [29]. Finally, the whole technique, developed
based on the combination of the Poincaré-Lindstedt, Lighthill,
and Kuo methods, was given the name as the Poincaré-
Lighthill-Kuo method or the PLK method. The extended PLK
method [7,14,20,24,30–35] is a combination of the standard
reductive perturbation method and the technique of the strained
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coordinates. Here asymptotic expansions of both the flow field
variables and the spatial or time coordinates are used in the
limit of the long wavelength approximation, which is the case
with the solitary waves. With the help of this, one gets a
uniformly valid asymptotic expansion (removal of the secular
terms) and at the same time the change of the trajectories of
solitary waves after the collisions.

II. MATHEMATICAL FORMULATION

We consider a magnetized plasma containing charge-
fluctuating stationary dust grains, inertial warm positive ions,
isothermal electrons, and nonisothermal (trapped) electrons
that follow the vortex-like distribution. A static magnetic field
�B0 is taken to be applied in the z direction at an angle of
θ with respect to the direction of the wave propagation in
the (x,z) plane. The ions are assumed to be singly charged
and the dust grains are assumed to be massive so that their
motion can be neglected. The nonisothermality [36–38] of the
plasma is considered through the electron density nel . Hence,
the normalized basic fluid equations are written as

∂n

∂t
+ ∂

∂x
(nvx) + ∂

∂z
(nvz) = 0, (1)

n
∂vx

∂t
+ nvx

∂vx

∂x
+ nvz

∂vx

∂z
+ n

∂φ

∂x
− nAvy + 2σ

∂n

∂x
= 0,

(2)

n
∂vz

∂t
+ nvx

∂vz

∂x
+ nvz

∂vz

∂z
+ n

∂φ

∂z
+ 2σ

∂n

∂z
= 0, (3)

∂vy

∂t
+ vx

∂vy

∂x
+ vz

∂vy

∂z
+ Avx = 0, (4)

∂2φ

∂x2
+ ∂2φ

∂z2
+ n − nel − neh + nd0Zd = 0, (5)

nel = nel0

{
1 + Teff

Tel

φ − 4

3
bl

(
Teff

Tel

φ

)3/2

+ 1

2

(
Teff

Tel

φ

)2

+ . . .

}
,

(6)

neh = neh0 exp

(
Teffφ

Teh

)
. (7)

The densities of the electron species at lower temperature
(trapped) and higher temperature (isothermal) are given
by nel and neh, respectively, together with their respective
unperturbed values as nel0 and neh0. The ion density, dust grain
density, and dust charge number are given by n, nd0, and Zd .
All the densities are normalized by the unperturbed plasma
density n0 at an arbitrary reference point (say x = z = 0).
Teff is the effective temperature [38,39] of the plasma, defined
by Teff = (nelo + neho)TelTeh/(neloTeh + nehoTel), and bl is the
nonisothermal parameter defined as bl = (Teff − Tel)/Teff

√
π .

The ion flow velocities vx , vy , and vz are normalized by the
ion acoustic speed (Teff/mi)1/2, where mi is the mass of the
ion, and the electric potential φ is normalized by Teff/e. The
space coordinates x and z are normalized by the Debye length
(ε0Teff/n0e

2)1/2 and the time t by the inverse of the ion plasma
frequency ωpi = (n0e

2/ε0mi)1/2.
The basic processes that lead to the charging of the

dust grains are quiet complex and depend mainly on the
environment around the dust grains. When the dust grains are

immersed in gaseous plasma, the plasma particles (electrons
and ions) are collected by the dust grains and hence, they are
charged by the collection of the plasma particles flowing onto
their surfaces. This happens due to the difference in the surface
potential of the dust grains and the plasma potential. The
charge on the dust grains will fluctuate if the plasma potential
φ fluctuates or oscillates. In this context, we define � as the
dust grain surface potential relative to the plasma potential
φ, and �i(0) = �i corresponding to the case of zero plasma
potential (φ = 0). Considering the dust grains to be spherical,
we can write the charge on each grain as Q = C� together
with C as the capacity of the dust grain. Taking Zd as the
normalized dust charge, i.e., Zd = �

�i (0) (C gets cancelled), we

expand � near �i(0) and obtain Zd = 1 + γ1φ + γ2φ
2 + . . .,

where γ1 = �′
i (0)

�i (0) = �′
i0

�i0
and γ2 = �

′′
i (0)

2�i (0) = �
′′

i0
2�i0

. This will be
understood as per the following description.

Considering finite-sized neutral dust particles immersed in
a magnetized plasma, the charging currents due to the electrons
and ions are written as [40]

Ie = −eπr2

(
8Te

πme

)1/2

ne exp

(
e�

Te

)
, (8)

Ii = eπr2

(
8Ti

πmi

)1/2

ni

(
1 − e�

Ti

)
. (9)

The dust grains always rest at a floating potential with
respect to the plasma potential, which means the electron
and ion currents towards the dust grains are equal in this
equilibrium state. By using �i = e�

Ti
and ne = nel + neh in

Eqs. (8) and (9) in view of the two types of the electrons
[Eqs. (6) and (7)], we obtain

√
σ

μi

n(1 − �i) − (nel0 + neh0)

(
1 + φ+
φ2T ′

eff

)
exp

(
e�

Teff

)

+ 4

3
blnel0

(
Teff

Tel

φ

)3/2

exp

(
e�

Teff

)
= 0, (10)

where T ′
eff = 1

2 ( nel0Teh
2+neh0Tel

2

nel0Teh+neh0Tel
) Teff
TelTeh

and μi = mi

me
. The normal-

ized dust charge Zd is given by �i

�i (0) together with �i(0) = �i

at φ = 0. The expression for �i(0) is obtained from Eq. (10)

as �i(0) = [
nilh

√
σ
μi

−1

nilh

√
σ
μi

+σ
] along with the following condition:

√
σ

μi

n[1 − �i(0)] − (nel0 + neh0) exp [σ�i(0)] = 0. (11)

Here nilh is defined as nilh = n0
nel0+neh0

. From Eq. (11) we
obtain (

d�i

dφ

)
φ=0

≡ �′
i(0) = − 1 − �i0

1 + σ (1 − �i0)
, (12)

(
d2�i

dφ2

)
φ=0

≡�′′
i (0) =

[
2T ′

eff + 2σ

(
d�i

dφ

)
φ=0

+ σ 2

(
d�i

dφ

)2

φ=0

](
d�i

dφ

)
φ=0

. (13)
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Since we are considering the fluctuating charge on the dust
grains [34], the charge variation is governed by Zd = 1 +
γ1φ + γ2φ

2 + . . ..

III. DYNAMICS OF SOLITONS’ HEAD-ON COLLISION

We assume that two solitons A and B, which are initially
far apart, travel towards each other at an angle θ with respect
to the direction of the external magnetic field. After some
time, they collide and depart from each other after having
a weak interaction. Here we expect that the collision will
be quasi-elastic so that it will only cause shifts of the
postcollision trajectories (phase shift). To analyze the effect
of the collision, we employ the extended PLK perturbation
method (as described in Sec. I) and introduce the following
stretched coordinates:

ξ = ε(x − λt) + ε2P0(η,τ ) + ε3P1(ξ,η,τ ) + . . . , (14)

η = ε(x + λt) + ε2Q0(ξ,τ ) + ε3Q1(ξ,η,τ ) + . . . , (15)

τ = ε3t. (16)

Here ξ and η denote the trajectories of the two solitons
traveling towards each other. The wave velocity λ and the
variables P0, P1, Q0, and Q1 are to be determined later for
investigating their trajectories and the phase change. For this,
the dependent variables are expanded as

d = do(x,z) + ε2d1(x,z,t) + ε3d2(x,z,t) + ε4d3(x,z,t)

+ · · · together with d ≡ ni,nel,neh,φ, (17a)

vx = ε4vx1 + ε5vx2 + ε6vx3 + . . . , (17b)

vy = ε3vy1 + ε4vy2 + ε5vy3 + . . . , (17c)

vz = ε3vz1 + ε4vz2 + ε5vz3 + . . . . (17d)

The power of ε determines the magnitude of perturbation,
and the lower power of ε means the perturbation of larger
magnitude and the higher power of ε means the perturbation
of lower magnitude. In Eqs. (14) to (16), ξ and η are the space
like coordinates and τ is the time-like coordinate. It has been
established that the solitons evolve in the homogeneous plasma
if the physical quantities vary slowly with time in comparison
to their variation in space. It means the balance between the
effects of nonlinearity and dispersion arises only under this
situation in homogeneous plasmas. Hence, the power of ε is
taken to be higher in the time-like coordinate. It is taken as
the cubic of the power of ε in a space-like coordinate, which
is a general practice and is well-established in the literature.
Moreover, the expansion of physical quantities like densities,
velocity components, and potential is also responsible for
achieving the balance between the effects of nonlinearity and
dispersion. Here, the powers of velocity components parallel

and perpendicular to the direction of the magnetic field in
Eq. (17) are taken to be different in view of the fact that the
Lorentz force acts only in the perpendicular direction to the
direction of the magnetic field. In view of the magnetic field
in the z direction, this is also obvious that the magnitude of
the perturbation in vx and vy will be lower than the one in vz.
Finally, the types of perturbations taken in Eqs. (14)–(17) also
cause the various terms in the KdV equation to carry the same
powers in ε, which happens to be the confirmative test.

After employing the stretched coordinates (14)–(16) and
the expansion of the dependent variables [(Eq. (17)] in the
basic fluid equations, we obtain the following set of equations
corresponding to different orders of the expansion parameter

λ

(
− ∂

∂ξ
+ ∂

∂η

)
n1 + cos θ

(
∂

∂ξ
+ ∂

∂η

)
vz1 = 0, (18)

2σ sin θ

(
∂

∂ξ
+ ∂

∂η

)
n1 + sin θ

(
∂

∂ξ
+ ∂

∂η

)
φ1 − vy1 = 0,

(19)

2σ cos θ

(
∂

∂ξ
+ ∂

∂η

)
n1 + cos θ

(
∂

∂ξ
+ ∂

∂η

)
φ1

+ λ

(
− ∂

∂ξ
+ ∂

∂η

)
vz1 = 0. (20)

Based on the above equations and taking N = nel0 +
neh0 + nd0γ1, we obtain

[(1 + 2σN )cos2θ − Nλ2]

[
∂2φ1

∂ξ 2
+ ∂2φ1

∂η2

]

+ [(1 + 2σN )cos2θ + Nλ2]
∂2φ1

∂ξ∂η
= 0. (21)

Equation (21) can be classified as hyperbolic, the solution
of which can be written as a combination of two variables or
functions φ11(ξ,τ ) and φ12(η,τ ). Hence

φ1 = φ11(ξ,τ ) + φ12(η,τ ). (22)

The phase velocity relation is given by λ =
±

√
(2σ + 1

N
) cos θ .

Based on the first-order equations (18)–(21) and the
solution (22), we obtain the relations of n1 and vz1 in terms of
φ11 and φ12

n1 = N [φ11(ξ,τ ) + φ12(η,τ )], (23)

vz1 = 1

4λ cos θ
[(1+2σN )cos2θ+Nλ2][φ11(ξ,τ )−φ12(η,τ )].

(24)
In addition to the above first-order equations, we obtain
higher-order equations also, as depicted in the Appendix. The
integration of Eq. (A15) of the Appendix yields

4 cos θ

3λ
vz3 = − (1 + 4λ2)

3λ

∫ (
∂φ11

∂τ
− a11φ11

∂φ11

∂ξ
+ b11

∂3φ11

∂ξ 3

)
dη − (1 + 4λ2)

3λ

∫ (
∂φ12

∂τ
− a11φ12

∂φ12

∂η
+ b11

∂3φ12

∂η3

)
dξ

−
∫ (

∂P0

∂η
+ c11φ12

)
∂2φ11

∂ξ 2
dξdη +

∫ (
∂Q0

∂ξ
+ c11φ11

)
∂2φ12

∂η2
dξdη, (25)
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together with

a11 =4

9
λ

[ 4bl

(
Teff
Tel

)3/2 + 3nd0γ1

(1 + 4λ2)(nel0 + neh0 + nd0γ1)

]
, b11 = λ(2 + λ sin θ tan θ )

(1 + 4λ2)(nel0 + neh0 + nd0γ1)
, c11 = 16σ

3

[
4

3
bl

(
Teff

Tel

)3/2

+ nd0γ2

]
.

In obtaining Eq. (25), we have not taken into account the
term φ3, which carries the lowest magnitude in view of the
fact that it is accompanied by the highest power of ε. The first
term of the right-hand side of Eq. (25) will be proportional
to η whereas the second term will be proportional to ξ , as the
corresponding integrated functions are independent of η and ξ ,
respectively. It means these terms are all secular terms [31,34],
which must be eliminated to avoid spurious resonances. Hence,
we have

∂φ11

∂τ
− a11φ11

∂φ11

∂ξ
+ b11

∂3φ11

∂ξ 3
= 0, (26)

∂φ12

∂τ
+ a11φ12

∂φ12

∂η
− b11

∂3φ12

∂η3
= 0. (27)

The third and fourth terms of the right-hand side of
Eq. (25) are not secular terms in this order, but they will
become secular in the next order, which can be explained
as follows. This is clear that these terms carry double
integration with regard to (w.r.t.) ξ and η. The integrations yield
( ∂φ11

∂ξ
)[P0 + 16Nbσ

3

∫
φ12dη] and ( ∂φ12

∂η
)[Q0 + 16Nbσ

3

∫
φ11dξ ]

for the third and fourth terms. This is due to the fact that
P0 is a function of η and Q0 is a function of ξ . At higher
order these terms will contain P1 and Q1, respectively, which
are functions of ξ and η both. Then the integration shall cause
them to become secular due to the multiplication of P0 term
with ξ and Q0 term with η. Hence, we have

∂P0

∂η
= −c11φ12, (28)

∂Q0

∂ξ
= −c11φ11. (29)

Equations (26) and (27) are the KdV equations for the two
travelling waves in the reference frame of ξ and η, respectively.
Their corresponding solutions are

φ11 = ϕA sec h2

[
(ξ − Uτ )√

4b11
/
U

]
, (30)

φ12 = ϕB sec h2

[
(η + Uτ )√

4b11
/
U

]
. (31)

Here ϕA = ( 3U
a11

) and ϕB = ( 3U
a11

) are the amplitudes of the
solitons A and B in their initial positions, and their width is√

4b11
U

together with U as a constant determining the velocity
of the solitons.

The leading phase changes due to the collision can be
calculated from Eqs. (28) and (29) along with the use of soliton
solutions φ11 and φ12. Hence, we get

P0 = −c11

(
36b11U

a11
2

)1/2{
tanh

[(
U

4b11

)1/2

(η + Uτ )

]}
,

(32)

Q0 = −c11

(
36b11U

a11
2

)1/2{
tanh

[(
U

4b11

)1/2

(ξ − Uτ )

]}
.

(33)

After having calculated the values of P0 and Q0, we can
evaluate the trajectories of the two solitary waves for their
weak head-on interactions. These are obtained from Eqs. (14)
and (15), as follows:

ξ = ε(x − λt) − ε2c11

(
36b11U

a11
2

)1/2

×
{

tanh

[(
U

4b11

)1/2

(η + Uτ )

]
+ 1

}
+ O(ε3), (34)

η = ε(x + λt) − ε2c11

(
36b11U

a11
2

)1/2

×
{

tanh

[(
U

4b11

)1/2

(ξ − Uτ )

]
− 1

}
+ O(ε3). (35)

To obtain the phase shifts of the two solitons after the
collision, we assume that the solitons A and B are initially
far from each other at the initial time (t = −∞) i.e. the
soliton A is at ξ = 0, η = −∞ and the soliton B is at η = 0,

ξ = +∞. After the collision (t = +∞), the soliton A is far
to the right of the soliton B, i.e., the soliton A is at ξ = 0,
η = +∞ and the soliton B is at η = 0, ξ = −∞. Based on
these conditions [9,31,34,41] and using Eqs. (34) and (35), we
obtain the corresponding phase shifts �A and �B as follows:

�A = ε(x − λt)|ξ=0,η=+∞ − ε(x − λt)|ξ=0,η=−∞

= 2ε2c11

(
36b11U

a11
2

)1/2

, (36)

�B = ε(x − λt)|ξ=−∞,η=0 − ε(x − λt)|ξ=∞,η=0

= − 2ε2c11

(
36b11U

a11
2

)1/2

. (37)

The above phase shifts can also be obtained in
terms of the width and amplitude of the soliton,
which has not so far been explored by other investi-
gators. Hence, �A = 2ε2c11 (Width Amplitude) and �B =
−2ε2c11 (Width Amplitude). Since the soliton energy E
depends on its amplitude and width as [41–44] E =
4
3 (Width Amplitude2), the phase shift can be expressed in
terms of the soliton energy as

�A = −�B = 3

2
c11

(
Energy

Amplitude

)
. (38)

In view of the propagation of the soliton A towards the right
side and that of the soliton B towards the left side, Eqs. (36)
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and (37) reveal that each soliton has a positive phase shift in
its travelling direction due to the collision and the magnitudes
of the phase shifts are related to the physical parameters.

IV. RESULTS AND THEIR COMPARISON
TO PREVIOUS FINDINGS

We examine the phase shift of the solitons under the
effect of various parameters, i.e., dust density, dust charge
fluctuation, magnetic field, ion temperature and density, and
the temperature of the trapped electrons.

Figure 1 shows that the phase shift increases linearly with
the amplitude of the soliton. Since the soliton’s energy is also
increased for the higher amplitude, it can be concluded that
the solitons with larger energy experience a larger phase shift
after the collision. Similar results of enhanced phase shift of the
solitons have been observed in an experimental investigation
of a monolayer strongly coupled complex plasma, as it was
found that the solitons are delayed after the collision [19]. On
the other hand, we find that the solitons undergo a greater
phase shift if the dust grains have a fluctuating charge. Such
a behavior of the dust acoustic solitons has been confirmed
in a complex plasma [19]. It means the behavior of the ion
acoustic soliton after its collision with another ion acoustic
soliton in a dusty plasma remains the same as that of the
dust acoustic soliton. In another case of head-on collision of
dust acoustic solitary waves in an unmagnetized dusty plasma,
the phase shift was found to increase under the effect of the
dust particles; a similar effect has also been observed in a
magnetized warm dusty plasma [34]. However, a reduction
in the phase shift with the increase of the dust charge has
been obtained in a magnetized dusty plasma containing two-
temperature ions [21].

This is clear from Fig. 2 that the phase shift increases for
the higher values of the dust density. The shift is higher as
well as more sensitive in the case of the fluctuating charge
on the dust grains. This is as per variation of the amplitude
of the solitons. Since the solitons acquire a larger amplitude
in the case of a higher dust density, a larger phase shift is
expected after their collision. The same has been observed
in the case of ion thermal solitary waves in a pair-ion plasma
containing stationary charged dust grain density [20]. A higher
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FIG. 1. Variation of phase shift (thin lines) and energy (thick
lines) with amplitude (Tel = 1.1–1.4 eV) for fluctuating charge
(marked as VC) and fixed charge (FC) dust grains. The parameters
are n0 = 0.8, Ti = 0.02 eV, Teh = 3 eV, nel0 = 0.20, nd0 = 0.28,
B = 0.05 T, and θ = 40◦.
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fixed charge (FC) dust grains. Here Tel = 1.2 eV and other parameters
are the same as in Fig. 1.

phase shift of the dust acoustic solitary waves has also been
observed in a strongly coupled dusty plasma system consisting
of negatively charged dust grains, electrons, and ions [22]. It
means the presence of the dust grains in the plasma enforces
the phase shifting of the solitons after their collision and
delays the solitons, but the presence of the negative ions in
the dusty plasma does not influence the collision mechanism
significantly [22].

Figure 3 shows that the solitons acquire a greater phase shift
after the collision if the magnetic field is applied at a larger
angle from the direction of the wave propagation. The greater
phase shift for the larger obliqueness has also been observed
in the case of two colliding dust acoustic solitary waves in hot
dusty plasmas [21,34]. On the other hand, a greater phase shift
for the case of a higher ion temperature in our case is consistent
with the observation made by the authors of Refs. [20] and [34].
In our case, the greater phase shift is attributed to the enhanced
amplitude of the solitons in the presence of ions having higher
temperature. However, in the case of an adiabatic hot dusty
plasma containing two temperature ions, the collisional phase
shift was found to reduce as the temperature ratio (low to
high) of the ions was increased [21]. Hence, it appears that
the nonlinearity of the plasma (in view of the larger shift or
amplitude of the solitons) is significantly enhanced in the case
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FIG. 3. Variation of phase shift (thin lines) and soliton amplitude
(thick lines) with ion temperature for fluctuating charge (solid lines)
and fixed charge (dashed line) dust grains. Here the parameters are
the same as in Fig. 1.
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FIG. 4. Variation of phase shift with the temperature of trapped
electrons for the cases of fluctuating charge (solid lines) and fixed
charge (dashed line) dust grains. Here the parameters are taken as the
same as in Fig. 1.

of two temperature electrons but the opposite is realized in the
case of two temperature ions. A reduction in phase shift of
the dust ion acoustic solitary waves with the ion temperature
is also found in unmagnetized dusty plasma [35] and the
plasma having nonthermal ions [23]. The same was also
obtained for the ion acoustic solitary waves in unmagnetized
plasma containing nonthermal electrons and warm adiabatic
ions [8,22,45].

From Fig. 4, the phase shift has been found to increase with
the temperature of the trapped electrons for both the cases of
dust grains, i.e., the dust having a fixed charge or variable
charge. The change in the phase shift takes place at a very

significant rate when the dust grains carry variable charge.
Moreover, a higher phase shift is attained by the solitons
in a plasma containing dust with variable charge; the same
is the case with the higher density of the trapped electrons.
In an unmagnetized nonplanar plasma consisting of warm
adiabatic ions and nonthermally distributed electrons, a greater
phase shift of ion acoustic solitary waves after their head-on
collision was found for the increasing nonthermality parameter
and temperature of the electrons [45]. On the other hand,
the nonplanar dust ion acoustic solitary waves were found
to attain a greater shift for the larger nonthermality parameter
in an unmagnetized plasma containing nonthermal electrons
distribution; however, the opposite was obtained for the larger
electron density [35].

V. CONCLUSIONS

Our analytical calculations concerning the head-on colli-
sion of the ion acoustic solitary waves in magnetized plasma
reveal that the greater amplitude waves acquire a larger phase
shift and hence are delayed more after the collision. The phase
shift was found to be larger under the effect of a higher density
of the dust grains and higher temperature of the ions. The
solitary waves were also found to delay further for the higher
concentration and temperature of the trapped electrons. The
phase shift changes significantly in the plasma if the dust
grains carry fluctuating charge.

APPENDIX

The next order yields

n2 = N [φ22(ξ,τ ) + φ23(η,τ )], (A1)

vz2 = 1

4λ cos θ
[(1 + 2σN )cos2θ + Nλ2][φ22(ξ,τ ) − φ23(η,τ )], (A2)

vy2 = sin θ

4cos2θ
[(1 + 2σN )cos2θ + Nλ2]

[
∂φ22

∂ξ
− ∂φ23

∂η

]
, (A3)

λ

(
− ∂

∂ξ
+ ∂

∂η

)
n3 + cos θ

(
∂

∂ξ
+ ∂

∂η

)
vz3 + sin θ

(
∂

∂ξ
+ ∂

∂η

)
vx2 +

(
∂

∂τ
+ λP0η

∂

∂ξ
− λQ0ξ

∂

∂η

)
n1

+ cos θ

(
P0η

∂

∂ξ
+ Q0ξ

∂

∂η

)
vz1 = 0, (A4)

2σ sinθ

(
∂

∂ξ
+ ∂

∂η

)
n3 + sin θ

(
∂

∂ξ
+ ∂

∂η

)
φ3 − vy3 + λ

(
− ∂

∂ξ
+ ∂

∂η

)
vx2 + sin θ

(
P0η

∂

∂ξ
+ Q0ξ

∂

∂η

)
φ1 = 0, (A5)

2σ cosθ

(
∂

∂ξ
+ ∂

∂η

)
n3 + cos θ

(
∂

∂ξ
+ ∂

∂η

)
φ3 + λ

(
− ∂

∂ξ
+ ∂

∂η

)
vz3 + 2σ cos θ

(
P0η

∂

∂ξ
+ Q0ξ

∂

∂η

)
n1

+ cos θ

(
P0η

∂

∂ξ
+ Q0ξ

∂

∂η

)
φ1 +

(
∂

∂τ
+ λP0η

∂

∂ξ
− λQ0ξ

∂

∂η

)
φ1 = 0, (A6)

Avx3 + λ

(
− ∂

∂ξ
+ ∂

∂η

)
vy2 = 0, (A7)

sin θ

(
∂

∂ξ
+ ∂

∂η

)
vx3 +

(
∂

∂τ
+ P0ξ

∂

∂ξ
− Q0η

∂

∂η

)
n2 + cos θ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
vz2 = 0, (A8)

2σ cos θ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
n2 + cos θ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
φ2 +

(
∂

∂τ
+ P0ξ

∂

∂ξ
− Q0η

∂

∂η

)
vz2 = 0, (A9)
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2σ sinθ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
n2 + sin θ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
φ2 + λ

(
− ∂

∂ξ
+ ∂

∂η

)
vx3 +

(
∂

∂τ
+ P0ξ

∂

∂ξ
− Q0η

∂

∂η

)
vx1 = 0,

(A10)

sin θ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
vx2 + cos θ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
vz3 = 0, (A11)

(
∂

∂τ
+ P0ξ

∂

∂ξ
− Q0η

∂

∂η

)
vx2 + sin θ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
φ3 + 2σ sinθ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
n3 = 0, (A12)

(
∂

∂τ
+ P0ξ

∂

∂ξ
− Q0η

∂

∂η

)
vz3 + cos θ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
φ3 + 2σ cos θ

(
P0ξ

∂

∂ξ
+ Q0η

∂

∂η

)
n3 = 0, (A13)

[
∂2

∂ξ 2
+ ∂2

∂η2
+ 2

∂2

∂ξ∂η

]
φ1 + n3 − Nφ3 − Nbφ1

2 = 0. (A14)

In the above equation Nb = 4
3bl(

Teff
Tel

)3/2 + nd0γ2. Now by differentiating Eq. (A14) w.r.t. ξ and η simultaneously, using Eq. (22)
and eliminating higher-order terms using Eqs. (A1)–(A13), we get

4 cos θ

3λ

∂2vz3

∂ξ∂η
= − (1 + 4λ2)

3λ

∂

∂ξ

[
∂φ11

∂τ
− 2

Nb

Nλ

φ11
∂φ11

∂ξ
+ (2 + λ sin θ tan θ )

2Nλ

∂3φ11

∂ξ 3

]

− (1 + 4λ2)

3λ

∂

∂η

[
∂φ12

∂τ
+ 2

Nb

Nλ

φ12
∂φ12

∂η
− (2 + λ sin θ tan θ)

2Nλ

∂3φ12

∂η3

]
−

[
∂P0

∂η
+ 16Nbσ

3
φ12

]
∂2φ11

∂ξ 2

+
[
∂Q0

∂ξ
+ 16Nbσ

3
φ11

]
∂2φ12

∂η2
+

(
N + 1

4σ

)[
∂2

∂ξ 2
− ∂2

∂η2

]
φ3 = 0. (A15)

Here Nλ = N(1+4λ2)
2λ

, P0ξ = ∂P0
∂ξ

, P0η = ∂P0
∂η

, and so on.
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