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Helicity-based particle-relabeling operator and normal mode expansion of the
dissipationless incompressible Hall magnetohydrodynamics
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The dynamics of an incompressible, dissipationless Hall magnetohydrodynamic medium are investigated from
Lagrangian mechanical viewpoint. The hybrid and magnetic helicities are shown to emerge, respectively, from
the application of the particle relabeling symmetry for ion and electron flows to Noether’s first theorem, while
the constant of motion associated with the theorem is generally given by their arbitrary linear combination.
Furthermore, integral path variation associated with the invariant action is expressed by the operation of an
integrodifferential operator on the reference path. The eigenfunctions of this operator are double Beltrami flows,
i.e., force-free stationary solutions to the equation of motion and provide a family of orthogonal function bases
that yields the spectral representation of the equation of motion with a remarkably simple form. Among the
double Beltrami flows, considering the influence of a uniform background magnetic field and the Hall term effect
vanishing limit, the generalized Elsässer variables are found to be the most suitable for avoiding problems with
singularities in the standard magnetohydrodynamic limit.
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I. INTRODUCTION

In the present study we investigate dynamical system
features of a dissipationless incompressible Hall magneto-
hydrodynamic (HMHD) medium and propose the notion of
helicity-based, particle-relabeling operator, which is located
at the junction of two seemingly separated topics: particle
relabeling symmetry and force-free, stationary-state solution.
Consideration of the invariant action associated with the
particle-relabeling symmetry naturally leads to the operator,
and its eigenvalue problem and associated normal-mode
expansion of basic formulas and equations are examined as
its application.

The HMHD is well known as a simple, one-fluid plasma
model that contains two-fluid effects and that has been
intensively investigated both numerically and mathematically.
The basic idea of the HMHD approximation is formulated by
replacing the magnetohydrodynamic (MHD) approximation
[1], by which a vanishing Lorentz force is assumed for
the entire plasma (E + V × B = 0), with an assumption
that the Lorentz force only vanishes for the electron component
of the plasma (E + V e × B = 0), where V and V e are the
averaged plasma velocity and its electron component, respec-
tively [2]. The formulation is completed by approximating
the entire plasma velocity by its ion component (V ≈ V i),
and then evaluating the current density by V i − V e = J/ene

with an approximated Ampere’s law, ∇ × B = μ0 J . Thus,
the evolution equations for a dissipationless, incompressible
HMHD plasma are given by the incompressibility condition,
solenoidal condition, momentum equation, and induction
equation as follows:

∇ · u = ∇ · b = 0,

∂t u = u × (∇ × u) + j × b − ∇P, (1)

∂t b = ∇ × [(u − α j ) × b],
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where u, b, j , P , and α are the appropriately nondimension-
alized variables corresponding to ion velocity, magnetic field,
current density ( j = ∇ × b), generalized pressure, and Hall
term strength parameter, respectively. It is easy to see that,
in the limit α → 0, the system reduces to the standard MHD
system.

The system Eq. (1) is known to have three constants of
motion, i.e., the total energy, E, the magnetic helicity, HM ,
and the hybrid helicity, HH , which are given by

E = 1

2

∫
(|u|2 + |b|2)d3 �x, (2)

HM = 1

2

∫
a · bd3 �x, (3)

HH = 1

2

∫
(αu + a) · (α∇ × u + b)d3 �x, (4)

respectively [3], where a is the vector potential of b (b =
∇ × a). Obviously, in the MHD limit, α → 0, the hybrid
helicity degenerates into the magnetic helicity. However, it
was very interesting that the spectral representation of Eq. (1)
by the generalized Elsässer variables was naturally proved to
yield four constants of motion due to the skew-symmetry of
the quadratic terms coefficients [4]. The fourth constant was
the modified cross helicity, given by HC := HH − HM , and it
converges to the cross helicity in the MHD limit. Despite that
the helicity conservation has been known to emerge from the
particle relabeling symmetry for the MHD case [5], its HMHD
counterpart still remains unresolved.

We focus here on the Lagrangian mechanical aspects of
the HMHD system together with a differential topological
framework.

Since Holm established the Hamiltonian mechanical de-
scription of the HMHD system [6], analytical mechanical
approaches to HMHD physics have been mainly carried out
within the Hamiltonian mechanics framework [7,8]. Recently,
a Lagrangian mechanical approach was employed by Kerami-
das Charidakos et al. [9]. Their Lagrangian was obtained
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by naturally extending an n-particle system Lagrangian to a
two-fluid plasma model, and the HMHD momentum equation
and Ohm’s law were derived.

On the other hand, our Lagrangian mechanical approach is
rather close to Arnold’s differential-geometrical method.

Ever since Arnold [10] reviewed his studies of dynamical
systems on Lie groups and related hydrodynamic topics in
a unified form, many fluid dynamical systems have been
recognized to exist on appropriate Lie groups [11]. The key
mathematical objects of Arnold’s method are twofold. One is
an appropriate Riemannian metric that is introduced on the
relevant Lie group as a Lagrangian of the action. The other are
so-called “Lin’s constraints” that provide the variation of an
integration path [12].

In the field of plasma physics, Arnold’s method was
found to be applicable to the dynamics of a dissipationless,
incompressible MHD medium if the Lie algebraic structure
was appropriately defined on the function space of the pair of
the velocity and magnetic fields [13,14]. This extension to the
pair was called “magnetic extension” and is now recognized
as a special case of the semidirect product of a Lie group and
a certain vector space (Sec. 10.B of Ref. [11]).

Since the induction equation is not “passive” due to the Hall
term (i.e., the magnetic field can evolve autonomously), the
HMHD system does not obey the magnetic extension scheme.
This discrepancy of magnetic extension can be overcome
by replacing the group action on the vector space with
the group homomorphism, which was based on Vizman’s
extended formulation [15]. The configuration space was given
by a semidirect product of two volume-preserving diffeomor-
phisms and the Lagrangian was given by a Riemannian metric
that physically implied the total plasma energy [4]. In the
present study, we will report another HMHD formulation,
wherein the ion and electron velocities are taken as basic
variables and the configuration space is given by a direct
product of two volume-preserving diffeomorphisms, and we
will discuss the conservation of helicities as a consequence
of the particle relabeling symmetry of each fluid. For the
MHD case, the particle relabeling symmetry and its relation to
helicity conservation is discussed by Padhye and Morrison [5].

Note that, despite the simple appearance of the basic
Eqs. (1), analytical mechanical approaches to HMHD systems
raise a small parameter problem when their relation to the
standard MHD limit is considered. For example, in the
Hamiltonian mechanics approach, one of the natural choices of
vector variables is the pair of the total ion momentum density,
M = ρv + R−1aρ A, and the magnetic vector potential, A,
where ρ, v are the density and velocity of ion component
and R/a = α in our notation [6]. In the limit α → 0, these
two variables come close to each other, M ≈ R−1aρ A, and
manipulation of the small difference v = M/ρ − R−1a A is
needed to capture the ion flow. Recently, Yoshida and Hameiri
proposed a method to treat the MHD limit by renormalizing the
Lagrangian described by some appropriate Clebsch variables
[16]. In the present study, we will seek another way of avoiding
the singularity problem by choosing an appropriate expansion
function set.

In the context of the analysis of fully developed turbulence,
it was recently shown by direct numerical simulation (DNS)
that the Hall term effect alters the formation tendency of

coherent structures [17]. Formation of tubular structures of
currents and enstrophy densities at small scales are observed
for the HMHD case, while sheet-like structures are often
observed for the standard MHD system. In addition, it is
interesting that although both the Lorentz force term of the
ion velocity evolution equation and the Hall term of the
magnetic field evolution equation contain the function j × b,
their contributions to the energy transfer of the kinetic and
magnetic energies were found to be quite different [18]. This
suggests that, for the analysis of basic dynamical features,
it is not sufficient to focus upon the features of a magnetic
field alone, but that their coupling with the velocity field must
also be considered. Thus, an appropriate coupled base function
system is required for the DNS or some other practical analysis.

In relation to the coupling of the magnetic and ion velocity
fields, there exist two significant functional categories to
describe the equilibrium states, dynamics, and the stability
of the HMHD system: the double Beltrami flow (DBF) and the
generalized Elsässer variable (GEV).

The notion of DBF was introduced by Mahajan and Yoshida
in order to extend the concept of a Taylor state to two-fluid
plasma models [19]. To derive the stable equilibrium state, the
DBF was applied to the variational calculation to minimize a
dissipation function [20]. The DBF was also applied as “dy-
namically accessible variation,” which conserves the Casimir
invariants, to analyze the nonlinear stability of the equilibrium
state [8]. In the present study, the Casimir-preserving nature
of the DBFs will be considered based on its Lagrangian
mechanical counterpart, i.e., Noether’s first theorem, and the
eigenfunctions of the DBF-generating operator will be shown
to provide a remarkably simple expression for the evolution
equation.

On the other hand, the GEV was introduced by Galtier
to formulate the HMHD dynamics in the wave/weak turbu-
lence closure analysis framework [21]. Though GEVs were
developed to describe the linear waves that are excited when
a uniform background magnetic field exists, they can also
be used as a set of orthogonal base functions even when the
ambient field is absent. In the previous study, it was shown that
the GEV expansion of the HMHD equation naturally yields
four conservation laws due to the symmetric properties of
the quadratic term coefficients, and it was conjectured that
this observation might reflect some symmetries intrinsic to
the system [4]. Recently, we also have applied the GEV
decomposition to the DNS data and confirmed the mirror
symmetry breaking at small scales [22]. In the present study,
we will review the GEV as a specific example of DBF and
discuss its advantages over other DBFs in relation to the MHD
limit.

This paper is organized as follows: the basics of the
Lagrangian mechanical formulation are given in Sec. II;
variational calculations are carried out in Sec. III, where we
derive the equation of motion from Hamilton’s principle and
the conservation of the helicities from Noether’s first theorem;
in Sec. IV, the derivation process is reformulated using
the differential topological terminology, and the topological
foundations of helicity conservation are discussed. The DBFs
are used as the base functions of the HMHD system and the
topological basic quantities, i.e., the Riemannian metric and
the structure constant of the Lie group, are given in the Sec. V;
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the influence of a uniform background magnetic field and
the standard MHD limit of HMHD system are discussed in
Sec. VI; Sec. VII is devoted to discussing the implications of
our findings.

II. FORMULATION

In a Lagrangian mechanical description of hydrodynamics,
the basic variable for describing the fluid motion is known to
be given by an n-tuple of functions that maps the fluid particles
from one time to another; we call this variable the “particle
trajectory map” (PTM) hereafter.

In the present study, we choose as the basic variables a pair
of PTMs, say ( �X(t), �Y (t)), which describe the positions of the
ion and electron fluid particles, respectively; �X(�a,t), �Y (�a,t)
express the positions, which are initially (at t = 0) located
at �a ∈ M [23]. In differential topological terminology, we
consider here the dynamical system on a direct product of two
volume-preserving diffeomorphisms, SDiff(M)×SDiff(M),
say G hereafter. Note that, the choice of basic variables is not
unique for the HMHD system; in our previous study, we used
the pair of PTMs of the ion velocity and the current density to
constitute a semidirect product of diffeomorphisms [4].

The PTMs are related to the ion and electron velocity fields
in the Eulerian specification, say V i(t) = V k

i (t) ∂
∂xk ,V e(t) =

V k
e (t) ∂

∂xk ∈ X�(M), by

∂Xk(�a,τ )

∂τ

∣∣∣∣
τ=t

(
∂

∂xk

)
�X(�a,t)

=
(

V k
i (t)

∂

∂xk

)
�X(�a,t)

,

(5)
∂Y k(�a,τ )

∂τ

∣∣∣∣
τ=t

(
∂

∂xk

)
�Y (�a,t)

=
(

V k
e (t)

∂

∂xk

)
�Y (�a,t)

.

Hereafter, X�(M) denotes the function space of the
divergence-free, tangent vector fields on M . Mathematically,
the right-hand sides of these equations express the right
translation of the vector field, V i (respectively, V e), by the
group operation �X(t) (respectively, �Y (t)). As was discussed
in Ref. [24], since the arguments of component function and
basis do not agree with each other, the left-hand sides of Eq. (5)
are not proper differential topological objects; the Lagrangian
velocities in the right-hand sides form are appropriate for the
calculus on manifolds.

In Lagrangian mechanics on Lie groups, there exist two key
mathematical structures: the Lie bracket and the Riemannian
metric. The Lie bracket is necessary to determine the higher-
order terms of the Taylor expansion of a composite function
of PTMs. The Riemannian metric is the inner product of two
tangential vectors of PTMs and defines the Lagrangian of the
system.

Since the group operation of G is defined by
the compositions of function triplets ( �X1, �Y1) ◦ ( �X2, �Y2) =
( �X1( �X2), �Y1( �Y2)), the Lie bracket of the associated Lie algebra
is given by

[ �V 1, �V 2] = (∇ × (V i1 × V i2),∇ × (V e1 × V e2)), (6)

where �V k = (V ik,V ek) ∈ g = TeG = X�(M) × X�(M).
Since M is three-dimensional and the vector fields considered
here are divergence free, the Lie bracket on X�(M) is given
by [a,b] = ∇ × (a × b).

In the present study, the Riemannian metric at ( �X, �Y ) ∈ G

is defined by the combination of the integrals described by the
Lagrangian and the Eulerian specifications as follows:

〈 �V 1| �V 2〉( �X, �Y ) =
∫

�a∈M

d3 �X(�a,t)(V i1 · V i2) �X(�a,t)

+ 1

α2

∫
�x∈M

d3 �x{[(∇×)−1(V i1 − V e1)]

· [(∇×)−1(V i2 − V e2)]}�x, (7)

where d3 �X(�a,t) and (∇×)−1 are the advected volume element
at the time t (which is initially located at �a) and the inverse
of the curl operator, respectively. For practical calculations,
the first term is replaced by

∫
�x∈M

d3 �x(
V i1 · V i2

)
�x, because the

modulus of the volume element is conserved due to the incom-
pressibility: |d3 �X(�a,t)| = |d3�a| for all t . Mathematically, this
replacement implies the right invariance of the Riemannian
metric.

Since the difference V i − V e gives a current density α j , the
generated magnetic field is given by b = α−1(∇×)−1(V i1 −
V e1). Thus, the Riemannian metric expresses the sum of
the kinetic energy of the ion flow (with density ρ = 1) and
the magnetic field energy generated by the plasma current,
while the kinetic energy of the electron flow is assumed to be
negligible.

In the present formulation, the Riemannian metric coer-
cively combines the two different vector spaces by a subtrac-
tion operation, although the implication of the operation is
quite natural from a physical viewpoint. In our previous study,
the coupling of two spaces is established by the group action of
a semidirect product of two diffeomorphism groups, while the
Riemannian metric is defined by separately defined integrals.

A remark on the Lie algebraic structure should be made
here. Substituting

V i = u, V e = u − α j (8)

into Eqs. (6) and (7), we obtain the inner product of a �V
variable and their Lie bracket as follows:

〈 �V 1|[ �V 2, �V 3]〉(e,e)

=
∫

�x∈M

d3 �x{u1 · [∇ × (u2 × u3)]

+ b1 · (u2 × j3 + j2 × u3 − α j2 × j3)}�x, (9)

where bk satisfies bk = (∇×)−1 j k,∇ · bk = 0. The same
integral can be obtained from the other Riemannian metric
and the commutator, i.e., from Eqs. (4) and (7) [or Eqs. (12)
and (13)] of our previous study [4]. This implies that these
two formulations provide the same structure constant of the
Lie algebra if appropriate base functions such as the GEVs are
applied, and thus, these two systems are equivalent although
their group structures are quite different from each other.
In other words, these two formulations constitute a kind of
“canonical transformation” between the configuration spaces
with different group structures.
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III. VARIATIONAL CALCULATION: DERIVATION OF THE
EQUATION OF MOTION AND HELICITY CONSERVATION

Action along a path γ (t) = ( �X(t), �Y (t)) ∈ G (t ∈ [0,1]) is
given by S = ∫ 1

0 Ldt, where L is the Lagrangian defined by

L = L(γ (t),γ̇ (t)) := 1
2 〈 �V | �V 〉γ (t), (10)

where γ (t + τ ) ≈ ( exp (τ V i(t)), exp (τ V e(t))) ◦ γ (t), t ∈
[0,1], τ is a small parameter, and exp is the exponential map on
X�(M). Let γ (t ; δ) be a perturbed path, where γ (t ; 0) = γ (t),

γ (t ; δ) ≈ ( exp (δξ (t)), exp (δη(t))) ◦ γ (t ; 0),

δ is a small parameter, and (ξ ,η) ∈ g = X�(M) × X�(M) are
the displacement fields. Noticing that the perturbation part of
the velocity, say (Ṽ i ,Ṽ e), obeys Lin constraints

(Ṽ i ,Ṽ e) = ∂t (ξ ,η) + [(ξ ,η),(V i ,V e)] (11)

(see Appendix A for the derivation), the first variation of the
action is given by

δS =
∫ 1

0
dt

∫
�x∈M

d3 �x{V i · Ṽ i

+α−2[(∇×)−1(V i − V e)] · [(∇×)−1(Ṽ i − Ṽ e)]}

=
∫ 1

0
dt

∫
�x∈M

d3 �x{(V i + A) · [∂tξ + ∇ × (ξ × V i)]

− A · [∂tη + ∇ × (η × V e)]}, (12)

where A is the vector potential of the magnetic field with
Coulomb gauge divided by α:

A := α−2(∇×)−2(V i − V e) = a
α

. (13)

In the present study, we assume that the boundary integrals
always vanish. The expression in the second line yields the
following two results: first, the conjugate momenta of V i and
V e are given by

M i := δL

δV i

= V i + A = u + a
α

,

(14)

Me := δL

δV e

= −A = − a
α

,

respectively; second, the variations due to ξ and η that satisfy

∂tξ + ∇ × (ξ × V i) = 0, ∂tη + ∇ × (η × V e) = 0 (15)

retain the value of action. In terms of Lin constraints Eq. (11),
this reads as (Ṽ i ,Ṽ e) = (0,0), i.e., the velocity fields along the
perturbed paths are the same as those of the reference path.
This symmetry for the invariant action is well known as the
particle relabeling symmetry [5,25]; we give a brief review in
Appendix B.

By integration by parts of Eq. (12) with respect to t and
�x and changing the order of scalar triple products of vector

fields, we obtain

δS =
∫ 1

0
dt

∫
�x∈M

d3 �x{(V i + A) · ∂tξ

+ ξ · [V i × (∇ × (V i + A))]

− A · ∂tη − η · [V e × (∇ × A)]}, (16)

=
∫

�x∈M

d3 �x((V i + A) · ξ − A · η)t=1

−
∫

�x∈M

d3 �x((V i + A) · ξ − A · η)t=0

+
∫ 1

0
dt

∫
�x∈M

d3 �x

×{ξ · [−∂t (V i + A) + V i(∇ × (V i + A))]

+ η · [∂t A − V e × (∇ × A)]}. (17)

Hamilton’s principle, i.e., δS = 0 for an arbitrary perturbation
(ξ ,η) with fixed path end conditions, leads to the following
Euler-Lagrange equations:

∂t (V i + A) = V i × [∇ × (V i + A)] − ∇Pi, (18)

∂t A = V e × (∇ × A) − ∇Pe, (19)

where Pi and Pe are the generalized pressures for each
fluid. Substituting Eqs. (8) and (13), and carrying out some
calculations, we obtain the evolution equation (1). Note that,
in the limit α → 0, we obtain the standard MHD equations,
although the variable A = a/α diverges at O(α−1).

Next, we consider specific perturbations (ξ ,η) that leave
the value of action unchanged. The combinations of ξ = V i

or ∇ × (V i + A) and η = V e or ∇ × A are the candidates for
the invariant action, because they cancel the cubic terms of
Eq. (16). It is easy to see that the conservation of total energy
Eq. (2) is obtained by setting (ξ (t),η(t)) = (V i ,V e), which
implies that the variation is taken in the direction of the path,
i.e., the variation is associated with the time translation.

By setting (ξ (t),η(t)) = (0,∇ × A(t)), the first variation of
action Eq. (16) becomes

δS =
∫ 1

0
dt

∫
�x∈M

d3 �x[−A · (∇ × ∂t A)],

= −
∫ 1

0
dt

∫
�x∈M

d3 �x[(∇ × A) · ∂t A], (20)

where the second line is obtained by the integration by parts
with respect to �x. If the path γ (t) satisfies the Euler-Lagrange
Eq. (19), substitution of the right-hand side of Eq. (19) into
Eq. (20) yields the vanishing first variation; i.e., δS = 0.
Noticing that the identity∫

�x∈M

d3 �x[A · (∇ × ∂t A)] = 1

2

∫
�x∈M

d3 �x ∂

∂t
[(∇ × A) · A]

holds, the integration by parts with respect to t without fixed
path end conditions results in the conservation of magnetic
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helicity Eq. (3) by Noether’s first theorem:

δS = 1

2

∫ 1

0
dt

∫
�x∈M

d3 �x ∂

∂t
[−A · (∇ × A)]

=
∫

�x∈M

d3 �x [A·(∇ × A)]t=0 −
∫

�x∈M

d3 �x [A · (∇ × A)]t=1

= α−2HM (1) − α−2HM (0) = 0. (21)

Similarly, by setting (ξ (t),η(t)) = (∇ × (V i(t) + A(t)),0), we
obtain the conservation of hybrid helicity Eq. (4) by Noether’s
first theorem:

δS =
∫

�x∈M

d3 �x[(V i + A) · (∇ × (V i + A))]t=1

−
∫

�x∈M

d3 �x[(V i + A) · (∇ × (V i + A))]t=0

= α−2HH (1) − α−2HH (0) = 0. (22)

In summary, if the path γ (t) locally satisfies the Euler-
Lagrange Eqs. (18) and (19), the combinations of perturbations
(ξ ,η) = CE(V i ,V e) and (Ci∇ × (V i + A),−Ce∇ × A) retain
the value of the action, where CE , Ci , and Ce are arbitrary
constants. The derivation process clearly shows that the
magnetic (respectively, hybrid) helicity is obtained by varying
the integral path only on the V e (respectively, V i) side of the
configuration space; i.e., the magnetic and hybrid helicities are
obtained by the relabeling of V e and V i .

IV. DIFFERENTIAL TOPOLOGICAL DESCRIPTION

In order to obtain mathematical insight to these conserva-
tion laws, we revisit the discussion above using the differential
topological expressions.

As a starting point, we notice that the Lie bracket is also
expressed by the Lie derivative of a vector field; i.e.,

[ξ ,η] = Lηξ =
(

ηj ∂ξ i

∂xj
− ξ j ∂ηi

∂xj

)
∂

∂xi
, (23)

for ξ , η ∈ X(M). Using this relation, the first variation Eq. (12)
can be rewritten as

δS =
∫ 1

0
dt

{(
M i

∣∣(∂t + LV i

)
ξ
) + (

Me

∣∣(∂t + LV e

)
η
)}

,

(24)

where the underline denotes a differential 1-form and
the parenthesis is the inner product between a differen-
tial 1-form and a vector field; ( ∗ | ∗ ) : �1(M) × X(M) →
R, where

(
A
∣∣B

) = ∫
�x∈M

AiB
id3 �x,A = Aidxi ∈ �1(M), and

B = Bi ∂
∂xi ∈ X(M). Integration by parts yields

δS = {(M i |ξ ) + (Me|η)}t=1 − {(M i |ξ ) + (Me|η)}t=0

−
∫ 1

0
dt

{((
∂t + LV i

)
M i |ξ

) + ((
∂t + LV e

)
Me|η

)}
,

(25)

which corresponds to Eq. (17). Under the fixed path end
conditions, ξ = η = 0 for t = 0 and 1, we obtain the Euler-
Lagrange equation [26](

∂t + LV i

)
M i = −dP ′

i ,
(
∂t + LV e

)
Me = −dP ′

e, (26)

where P ′
i and P ′

e are introduced to satisfy the divergence-free
condition. These are the differential topological expressions
of Eqs. (18) and (19). Since the exterior differentiation, d,
is commutative with the Lie derivative of differential form
[24,27], using dd = 0, we obtain the exterior derivative of
Eq. (26) as follows:(

∂t + LV i

)
d M i = 0,

(
∂t + LV e

)
d Me = 0. (27)

Since we consider three-dimensional space and divergence-
free vector fields and differential forms here, there is a natural
correspondence between the differential 2-form and the vector
field [28]. Here, we introduce the mapping [∗] : �2(M) →
X(M), defined by

(A|[ξ ]) :=
∫

A ∧ ξ , (28)

where A ∈ �1(M), and ξ ∈ �2(M). Using the relations

[LV x
d Mx] = LV x

[d Mx], which are guaranteed by the
divergence-free condition, we obtain(

∂t + LV i

)
[d M i] = 0,

(
∂t + LV e

)
[d Me] = 0. (29)

These equations obey the invariant action conditions Eq. (15).
Thus, by substituting ξ = αCi[d M i] = Ci(α∇ × u + b) and
η = αCe[d Me] = −Ceb into Eq. (25), we obtain the general
helicity conservation law H (1) − H (0) = 0 as a consequence
of invariant action, where the constant H , which we call the
mixed helicity hereafter, is given by

H = αCi(M i |[d M i]) + αCe(Me|[d Me]), (30)

and Ci and Ce are arbitrary constants. Using Eq. (28), H is
also written as the integral of the wedge product of differential
forms:

H = α

∫
(Ci M i ∧ d M i + Ce Me ∧ d Me). (31)

This construction procedure is also regarded as an extension
of the general helicity conservation laws found by Khesin and
Chekanov [29] to a direct product group case.

Since the exterior derivative of a differential 1-form on
a three-dimensional manifold is given by the curl operation,
substituting Eq. (14) into the mixed helicity Eq. (30), we obtain
each part of the mixed helicity as follows:

(M i |[d M i]) = 1

α2

∫
�x∈M

(αu + a) · (α∇ × u + b)d3 �x,

(Me|[d Me]) = 1

α2

∫
�x∈M

a · b d3 �x.

Note that, in the standard MHD limit α → 0, an asymptotic
relation M i = V i + A ≈ Me = A = a/α ∼ O(α−1) holds,
and thus the hybrid helicity comes close to the magnetic
helicity as an O(α−2) quantity. However, when Ci = −Ce,
the singularity order of H is reduced by α, i.e., the leading
orders of these helicities cancel each other, and the mixed
helicity becomes

H = Ci

∫
d3 �x [2u · b + αu · (∇ × u)], (32)
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FIG. 1. Relation among generalized velocity, �V , helicity-based,
particle-relabeling operator, Ŵ , and action-preserving path variation,
γ (t) → γ (t ; δ).

which converges to a finite value in the standard MHD limit.
Thus, the conservation of cross helicity is shown to be a special
case of the general conservation law for the mixed helicity.

V. DOUBLE BELTRAMI FUNCTION EXPANSION

As is shown in the previous section, the pair of vector
fields (αCi[d M i], αCe[d Me]) satisfies the particle relabeling
symmetry conditions Eq. (15). This implies that the integral
path in the configuration space shifted in this direction retains
the value of the action. Noticing that the vector fields pair is
obtained by operation of appropriate operator on the ion and
electron velocities pair as follows:(

αCi[d M i]

αCe[d Me]

)
= Ŵ

(
V i

V e

)
, (33)

where the integrodifferential operator, Ŵ , is defined by

Ŵ :=
(

Ci(α∇×)−1 + Ciα∇× −Ci(α∇×)−1

−Ce(α∇×)−1 Ce(α∇×)−1

)
, (34)

we recognize that the operation of Ŵ on the integral path of
the action physically implies infinitesimal particle relabeling
operation (see Fig. 1). Thus, we call Ŵ helicity-based,
particle-relabeling operator hereafter.

It seems reasonable to consider the eigenvalue problem
of the operator Ŵ , because it is expected that the spectral
expansion by such eigenfunctions should have some “good”
properties for the description of the basic formulas and equa-
tions. In the following, we will solve the eigenvalue problem,
demonstrate the mode expansions of various quantities and
equations, and discuss the relation to the uniform background
magnetic field effect and the standard MHD limit.

The eigenvalue problem of the operator,

Ŵ �V = � �V , (35)

is equivalent to the double Beltrami flow (DBF) problem,
which is given by the following coupled partial differential
equations [19];

α∇ × u + b = �

Ci

u, b = − �

Ce

(u − α j ). (36)

Note that the eigenfunction of the DBF problem is con-
structed using a Beltrami flow, i.e., the eigenfunctions of the
curl operator, say ψ( �K,σ ), which satisfies

∇ × ψ( �K,σ ) = σKψ( �K,σ ),

where �K , K > 0, and σ = ±1 are the mode index, the asso-
ciated eivenvalue, and the helicity of vector field, respectively
[30]. The Chandrasekhar-Kendall function on a cylindrical
configuration [31] and the complex helical waves on a periodic
box or a Euclidean space [32] are known as examples of the
Beltrami flows. Expanding the variables using ψ( �K,σ ), the
operator Ŵ is reduced to a 2 × 2 matrix as

σ

(
Ci

αK
+ CiαK − Ci

αK

− Ce

αK

Ce

αK

)
,

for each expansion mode. The eigenvalue of this matrix is
given by

�(K,σ,s) = σ

2

{
Ci + Ce

αK
+ CiαK

+ s

[(
Ci + Ce

αK
− CiαK

)2

+ 4C2
i

] 1
2
}
, (37)

where s = ±1 is the polarity. Note that, the eigenvalues for
the assigned K and σ satisfy

�(K,σ,+)�(K,σ,−) = CiCe, (38)

and, in the standard MHD limit α → 0, they become

�(K,σ,+) → ∞, �(K,σ,−) → 0 for Ci �= −Ce, (39)

�(K,σ,s) → σs|Ci | for Ci = −Ce. (40)

The eigenfunction of Ŵ , say �� = t (� i ,�e), is given by

��( �K,σ,s) =
((

1
�( �K,σ,s)

− αK
σCe

)
ψ( �K,σ )

1
�( �K,σ,s)

ψ( �K,σ )

)
, (41)

and we call the set of the eigenfunctions the DBF basis,
hereafter. If the Beltrami functions ψ are orthonormal each
other: ∫

ψ( �K,σK ) · ψ( �P ,σP ) d3 �x = δ �K, �P δσK,σP
, (42)

hereafter, overline and δ denote complex conjugate and Kro-
necker’s delta, respectively. The corresponding eigenfunctions
�� are orthogonal:

〈 ��(eK)| ��(eP )〉 = g(eK) δ �K, �P δσK,σP
δsK ,sP

, (43)

hereafter, the tilde denotes the set of mode indices, eK :=
( �K,σK,sK ), and g is the inner product of the base function
��(eK), i.e., mathematically the component of the Riemannian
metric tensor Eq. (7) for the DBF basis, that is to say

g(eK) :=
(

1

�(eK)
− αK

σKCe

)2

+ 1

C2
e

. (44)

Substitution of � i and �e into Eq. (14) yields the base
functions of conjugate momenta space, say �� = t (� i ,�e),
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as follows:

��(eK) =
((

1

�(K̃ )
− αK

σCe
− σ

CeαK

)
ψ( �K,σ )

σ
CeαK

ψ( �K,σ )

)
. (45)

It is easy to check that the base functions �� and �� are
biorthogonal each other; i.e.,

(� i(eK)|� i(eP )) + (�e(eK)|�e(eP )) = g(eK) δ �K, �P δσK,σP
δsK ,sP

.

(46)

Using these base functions, we can rewrite the eigenvalue
problem Eq. (35) as follows:(

αCi∇ × � i(eK)

αCe∇ × �e(eK)

)
= �(eK)

(
� i(eK)

�e(eK)

)
. (47)

The generalized velocity and momentum are expanded using
the eigenfunctions of Ŵ as

�V =
∑
K̃

bV (eK) ��(eK), �M =
∑
K̃

bV (eK) ��(eK), (48)

where the expansion coeffcient, bV (eK), is obtained by the inner
product,

bV (K̃) = 〈 �V | ��(K̃)〉. (49)

Since V i = u and α∇ × Me = α∇ × (a/α) = −b, the ex-

pansion coefficients, bV ( �K,σ,s), are determined by the follow-
ing simultaneous equations:

bu( �K,σ ) =
(

1

�(K,σ,+)
− αK

σCe

)
bV ( �K,σ,+)

+
(

1

�(K,σ,−)
− αK

σCe

)
bV ( �K,σ,−), (50)

bb( �K,σ ) = − 1

Ce

(bV ( �K,σ,+) + bV ( �K,σ,−)),

where bu( �K,σ ) and bb( �K,σ ) are the spectral expansion coef-
ficients of the velocity and magnetic fields with respect to
the basis {ψ( �K,σ )}, respectively. Unfortunately, the expansion
coefficients bV converge to zero or diverge in the limit α → 0,
unless Ci = −Ce.

The energy and the mixed helicity are obtained by substi-
tuting Eq. (48) into Eqs. (10) and (30) and using the relation
Eqs. (43), (46), and (47); i.e.,

E = 1

2

〈∑
bV (K̃) ��(K̃)

∣∣∣∑ bV (P̃ ) ��(P̃ )
〉

= 1

2

∑
K̃

g(K̃)|bV (K̃)|2, (51)

H = αCi

(∑
bV (K̃)� i(K̃)

∣∣∣∑ bV (P̃ )∇ × � i(P̃ )

)
+αCe

( ∑
bV (K̃)�e(K̃)

∣∣∣∑ bV (P̃ )∇ × �e(P̃ )

)
=

∑
K̃

g(K̃)�(K̃)|bV (K̃)|2. (52)

Applying the DBF expansion to the equation of motion
yields the following simultaneous equations for the expansion
coefficients, bV (K̃; t):

d

dt
bV (K̃; t) = g(K̃)−1

∑
P̃

∑
Q̃

((K̃||P̃ ||Q̃)) �(Q̃)

× bV (P̃ ; t) bV (Q̃; t), (53)

where the symbol ((K̃||P̃ ||Q̃)) is given by

((K̃||P̃ ||Q̃)) = 1

α

[
1

Ci

(
1

�(K̃)
− αK

σKCe

)(
1

�(P̃ )
− αP

σP Ce

)
×

(
1

�(Q̃)
− αQ

σQCe

)
+ 1

Ce�(K̃)�(P̃ )�(Q̃)

]
×

∫
ψ( �K,σK ) · (ψ( �P ,σP ) × ψ( �Q,σQ))d3 �x.

(54)

The derivations of Eqs. (53) and (54) are summarized in
Appendix C. Note that the symbol ((K̃||P̃ ||Q̃)) is skew-
symmetric between two arbitrary argument sets, because the
integrand is given by a scalar triple product of vector-valued
functions, whereas the coefficient is symmetric. Due to this
skew symmetry, we can easily prove the conservation laws of
the energy and the mixed helicity from Eq. (53) as follows:

dE

dt
= 1

2

∑
K̃

∑
P̃

∑
Q̃

((K̃||P̃ ||Q̃)) �(Q̃)

× bV (K̃; t) bV (P̃ ; t) bV (Q̃; t) + c.c. = 0, (55)

dH

dt
=

∑
K̃

∑
P̃

∑
Q̃

((K̃||P̃ ||Q̃)) �(K̃) �(Q̃)

× bV (K̃; t) bV (P̃ ; t) bV (Q̃; t) + c.c. = 0. (56)

Thus, the DBFs, i.e., the eigenfunctions of the helicity-based
particle-relabeling operator are shown to constitute a family
of orthogonal function bases that yields a remarkably simple
spectral representation of the equation of motion. Especially,
the mixed helicity conservation is naturally built into this
representation due to the skew-symmetry of the coefficients
of the quadratic terms. In the previous study, wherein the
generalized Elsässer variables (GEV) expansion of the HMHD
system was presented, we conjectured that the conservation
of the modified cross helicity might reflect some symmetry
intrinsic in the system [4]. Since the DBFs become the GEVs
for Ci = −Ce = 1, the modified helicity conservation is now
recognized as the consequence of a special case of the particle
relabeling symmetry for ion and electron flows.

VI. CONSIDERATION OF THE UNIFORM
BACKGROUND MAGNETIC FIELD

For some practical applications, it is important to consider
the influence of the uniform background magnetic field on the
dynamics of plasmas.
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Here, we mathematically consider the influence of a
background magnetic field, say B0, which is a harmonic
function: ∇ × B0 = 0, ∇ · B0 = 0. Substitution of b + B0

into the equations of motion, Eqs. (29), yields(
∂t + LV i

)
(α[d M i] + B0) = 0,(

∂t + LV e

)
(α[d Me] − B0) = 0.

(57)

When the amplitudes of the variables are sufficiently small
compared to the modulus of B0, these equations are approxi-
mated as

α∂t [d M i] = LB0 V i , α∂t [d Me] = −LB0 V e, (58)

where the identity for two vector fields Lξ η = −Lηξ is used
[see Eq. (23)]. These linear simultaneous equations can be
described using the operator Ŵ as:

∂

∂t
Ŵ

(
V i

V e

)
= LB0

(
V i

V e

)
. (59)

Thus, the linear waves are shown to be expressed by the
eigenfunctions of the DBF problem, Eq. (41), with Ci = 1
and Ce = −1. The eigenvalue becomes

�(K̃) = σ

2
(αK + s

√
(αK)2 + 4).

For typical velocity and magnetic field variables, the linear
simultaneous equations are given by

∂t u = j × B0 − ∇P,

∂t b = ∇ × [(u − α∇ × b) × B0].
(60)

The eigenfunctions of the linearized HMHD system Eq. (60)
are known as the generalized Elsässer variables (GEV) [21].
Physically, the GEVs describe the ion cyclotron or whistler
waves in plasmas. The phase velocity for an assigned K̃

is ω(K̃) := B0k‖�(K̃)−1, where k‖ is the wave number of
ψ( �K,σK ) in the direction of B0. The equations of motion
for this case are obtained by substituting bV (K̃; t)e−iω(K̃)t into
bV (K̃; t).

It is interesting that the GEV expansion coefficients of the
basic variables are simply and hierarchically expressed by bV
multiplied by the powers of � as follows:

V e = u − α∇ × b =
∑
K̃

�(K̃)−1
bV (K̃) ψ( �K,σK ),

−α[d Me] = b =
∑
K̃

bV (K̃) ψ( �K,σK ),

V i = u =
∑
K̃

�(K̃) bV (K̃) ψ( �K,σK ),

α[d M i] = α∇ × u + b =
∑
K̃

�(K̃)2
bV (K̃) ψ( �K,σK ).

(61)

Note that helicity parameters for the linear wave modes
have the following significant properties.

First, the eigenvalues, Eq. (37), do not diverge in the
standard MHD limit, α → 0:

�(K̃) ≈ σKsK + α

2
σKK + α2

8
σKsKK2 −→ σKsK.

This convergence leads to the finiteness of the following
quantities in that limit: coefficients of the base function
Eqs. (41):

��(K̃) ≈
((

σKsK + α
2 σKK

)
ψ( �K,σK )(

σKsK − α
2 σKK

)
ψ( �K,σK )

)

−→ σKsK

(
ψ( �K,σK )
ψ( �K,σK )

)
,

the Riemannian metric Eq. (44):

g(K̃) = 2 + α2K2 −→ 2,

the coefficient of the right-hand side of Eq. (54):

1

α

[(
1

�(K̃)
+ αK

σK

)(
1

�(P̃ )
+ αP

σP

)(
1

�(Q̃)
+ αQ

σQ

)
− 1

�(K̃)�(P̃ )�(Q̃)

]
≈ σKσP σQsKsP sQ(sKK + sP P + sQQ)

+ 1

8
α2σKσP σQKPQ

(
sP P + sQQ

sKK

+ sQQ + sKK

sP P
+ sKK + sP P

sQQ
+ 2

)
+ o(α2)

−→ σKσP σQsKsP sQ(sKK + sP P + sQQ). (62)

Since the simultaneous Eqs. (50) converge to

bu( �K,σK ) = σKsK
bV ( �K,σK,−) − σKsK

bV ( �K,σK,+),

bb( �K,σK ) = bV ( �K,σK,+) + bV ( �K,σK,−), (63)

we obtain the MHD limit of the expansion coefficient, bV :

bV (K̃,σK,sK ) =bb( �K,σK ) − σKsKbu( �K,σK ), (64)

and thus, the equation of motion, Eq. (53), has the standard
MHD limit. The coefficients, bV , are associated with the
conventional Elsässer variables by the formula

z+ = u + b = bV (K, + ,−)ψ(K,+) + bV (K, − ,+)ψ(K,−),

z− = u − b = −bV (K,+,+)ψ(K,+) − bV (K,−,−)ψ(K,−).

(65)

The base function in momentum space ��, on the other hand,
diverges on the order of α−1, at which the diverging a/α term
is reflected.

Second, the singularity order of the mixed helicity Eq. (30)
reduces by α and the constant H become the modified cross
helicity, which converges to the cross helicity:

HC =
∫

d3 �x [2u · b + αu · (∇ × u)] −→ 2
∫

d3 �x u · b.

(66)

In our previous study, it was shown that the conservation of
the modified cross helicity is naturally derived from the GEV
representation of the HMHD dynamics.
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VII. DISCUSSION

In the present study, we considered the helicity conservation
laws of HMHD system from Lagrangian mechanical, invariant
action theory viewpoint. The hybrid and magnetic helicity
conservation laws were derived as consequences of the particle
relabeling symmetry of the ion and electron flows, respectively.
To prove the conservation laws, it is convenient to use the pair
of ion and electron velocity fields, Eq. (5), as basic variables,
while that of fluid velocity and current fields had been used in
our previous study [4]. Mathematically, this variables change
was carried out by changing the configuration space of HMHD
system from semidirect product group to direct product one.

Furthermore, associated integral path variation of the
invariant action was shown to be expressed by the operation
of the helicity-based, particle-relabeling operator Eq. (34) on
the reference path, which maps the generalized velocities
(V i ,V e) to the action-preserving, particle-relabeling fields
(αCi[d M i],αCe[d Me]).

The eigenfunctions of the relabeling operator are DBFs,
which are well-known, force-free solutions of the HMHD
system [19], and found to provide a family of orthogonal
function bases that yields the spectral representation of the
equation of motion with a remarkably simple form. Thus, the
GEV based formulation we had discussed in Ref. [4] is now
understood as an example of more wider class of orthogonal
function expansion of the HMHD equations, since the GEVs
are special case of the DBFs (Ci = −Ce = 1).

The implication of this eigenvalue problem may be well-
understood by considering the correspondence between the
Lagrangian and Hamiltonian mechanics.

It is well-known that the Lie algebraic structure naturally
induces a so-called Lie-Poisson structure on the dual space of
the Lie algebra by defining the Poisson bracket by {A,B}(μ) =(
μ

∣∣[ ∂A
∂μ

, ∂B
∂μ

]
)
, where μ ∈ g∗ is an element of the generalized

momentum space, and A,B ∈ F(g∗) are the functionals of
the generalized momenta [12]. In the incompressible HMHD
case, the Poisson bracket based on Eqs. (6) and (7) becomes

{A,B}( �M) =
(

M i |∇ ×
(

δA

δM i

× δB

δM i

))
+

(
Me|∇ ×

(
δA

δMe

× δB

δMe

))
. (67)

When B is the Hamiltonian obtained by the Legendre
transformation of the Lagrangian Eq. (10), which results in
B( �M) = L( �V ), the functional derivatives of B are given by
δB
δM i

= V i ,
δB

δMe
= V e. Integration by parts of Eq. (67) yields

{A,B}( �M) =
∫

d3 �x
[

δA

δM i

· (V i × (∇ × M i))

+ δA

δMe

· (V e × (∇ × Me))
]
. (68)

By setting the derivatives δA
δM i

= ξ , δA
δMe

= η, the cubic terms of
the first variation Eq. (16) are reproduced, and thus, the action-
preserving variation is shown to correspond to the functional
derivative of a certain Casimir function.

In the Hamiltonian mechanical approach to the stability
problem of the equilibrium solutions, the DBF are known to

constitute the dynamically accessible variations that a priori
satisfy the conservation laws for energy and Casimirs [8]. In
the incompressible HMHD case, the Casimirs are given by the
magnetic and hybrid helicities. In the Lagrangian mechanical
approach, on the other hand, they are obtained from the
invariant action. Thus, the eigenvalue problem for the invariant
action is naturally described as the DBF problem.

Since the DBFs for assigned Ci and Ce were orthogonal
to each other, by using them as base functions we could
obtain a general form of the “normal mode” expansion of
the Riemannian metric, the structure constants of the Lie
algebra, and the equation of motion. The combinations of
Ci and Ce are arbitrary, i.e., the DBF basis has two degrees
of freedom. By changing the values of Ci and Ce, we
obtained a family of “canonical” transformations between
the spectral representations of the equation of motion. The
spectral representations of the equation of motion formally
have a common mathematical expression given by Eq. (53),
which is known as the Euler-Poincare equation (Chapter 13
of Ref. [12]), or as the geodesic equation [10],

d

dt

∂l

∂ξa
= Cb

daξ
d ∂l

∂ξb
,

where the variables and coefficients ξd , ∂l
∂ξa , and

Cb
da respectively correspond to �V (K̃), �M(K̃), and

((K̃||P̃ ||Q̃))�(K̃)/g(K̃) in the present study. As is expected,
conservation laws for the energy and the mixed helicity are
easily proved from the symmetric properties of the obtained
structure constant.

In the standard MHD limit α → 0, the eigenvalues, and
thus, the related quantities such as the expansion coefficients,
the Riemannian metric, and the structure constants, diverge
or shrink to zero unless Ci = −Ce. Hence, the DBF basis
seems unsuitable for comparative analysis between HMHD
and MHD in most cases. However, it is very interesting that
consideration of the effect of a uniform background magnetic
field yields such a linear wave equation that uses the same DBF
operator as Ci = −Ce = 1. It is well known that the linear
wave modes in the incompressible HMHD system are the ion
cyclotron and whistler waves and are elegantly described by
the GEV [21]. That is, the GEV is such that the DBF has
nondiverging properties in the limit α → 0. Thus, among the
wide variety of the DBF expansions, the GEV expansion is
the most suitable for comparing the dynamics of the HMHD
system to its MHD limit, avoiding singularity problems.

Since the DBFs are constructed from the eigenfunctions
of the curl operator, it is easy to include Laplacian-type
dissipation into the spectral representation of the equation of
motion,(

g(K̃)
∂

∂t
+ D(K̃,ν,η)

)
bV (K̃; t)

=
∑
P̃

∑
Q̃

((K̃||P̃ ||Q̃)) �(Q̃) bV (P̃ ; t) bV (Q̃; t), (69)

where D, ν, and η are the dissipation term coefficient given by

D(K̃,ν,η) := K2

[
ν

(
1

�(K̃)
− σKK

Ce

)2

+ η

C2
e

]
, (70)
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the kinematic viscosity, and the resistivity, respectively. This
feature allows us to apply the DBF expansion to such
analyses as the closure problem [21] or the direct numerical
simulation [22].
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APPENDIX A: DERIVATION OF THE LIN CONSTRAINTS

We briefly review the derivation of the formula for the
variation of the tangent vector to an integral path. For this
derivation process, we use only the exponential map and
the Baker-Campbell-Hausdorff formula. Since no material
specific to any particular Lie algebra is used here, the result is
applicable to all the Lie groups.

Let γ (t ; δ) (t ∈ [0,1]) be a path on G with a variation
parameter δ ∈ I ∈ R. The path C → D is approximated by

γ (t + τ ; δ) ≈ exp
{
τ
[
V (t) + δṼ (t)

]} ◦ γ (t ; δ),

where V (t) is the tangent vector to the reference path (δ = 0),
and δṼ (t) is the small deviation. The path C → A → B → D
is, on the other hand, also approximated by

γ (t + τ ; δ) ≈ exp[δξ (t + τ )] ◦ exp[τ V (t)]

◦ exp[−δξ (t)] ◦ γ (t ; δ)

(see Fig. 2). Expanding ξ (t + τ ) = ξ (t) + τ∂tξ (t) + o(τ ) and
using the Baker-Campbell-Hausdorff formula at the lowest
two orders, we obtain

exp[δξ (t + τ )] ◦ exp[τ V (t)] ◦ exp[−δξ (t)]

= exp (τ V (t) + τδ{∂tξ (t) + [ξ (t),V (t)]} + o(δ) + o(τ )).

(A1)

FIG. 2. The derivation of the Lin constraints using approxima-
tions of short intervals on paths.

Since the two approximated paths from C to D agree with
each other in the limit δ → 0 and τ → 0, we obtain the Lin
constraints,

Ṽ (t) = ∂tξ (t) + [ξ (t),V (t)], (A2)

at the order O(δτ ).

APPENDIX B: LOCAL EXPRESSION OF
PARTICLE-RELABELING SYMMETRY

By the term “particle-relabeling symmetry,” we recognize
the invariance of the flow against the change of Lagrangian
coordinates. The freedom of choice of the action-preserving
transformation exists only at the “initial time” and the trans-
formation along the integral path of the action is determined
by this initial condition. This symmetry is qualitatively
different from the symmetry considered, for example, in gauge
field theory, wherein, in principle, group transformation is
applicable at any point in the relevant space and time [33].

Thus, the evolution of transformation should be considered.
Let ξ and ε be a displacement-generating vector field and
a small parameter, respectively. For an assigned flow and a
sufficiently small displacement, the displacement field must
satisfy the particle tracing relation:

�X(�a + εξ (�a; 0); t) = �X(�a; t) + εξ ( �X(�a; t); t), (B1)

where the �X is the PTM for the assigned flow. At the order
O(ε), each component of ξ satisfies

ξk(�a; 0)
∂Xi

∂xk

∣∣∣∣
(�a;t)

= ξ i( �X(�a; t); t). (B2)

Differentiating with respect to t and evaluating at t = 0, we
obtain

ξk(�a; 0)
∂2Xi

∂xk∂t

∣∣∣∣
(�a;0)

= ∂ξ i

∂xk

∣∣∣∣
( �X(�a;0);0)

∂Xk

∂t

∣∣∣∣
(�a;0)

+ ∂ξ i

∂t ( �X(�a;0);0)
.

(B3)

The relation Eq. (5) leads to the following PDE for the vector
fields in the Eulerian specification:(

∂ξ i

∂t
+ V k ∂ξ i

∂xk
− ξk ∂V i

∂xk

)
( �X(�a;0);0)

= 0, (B4)

which is the evolution equation for the frozen-in line element.
Since the Lie bracket of the vector fields is given by Eq. (23),
the obtained evolution equation agrees with Eq. (A2) for
Ṽ (t) = 0. For divergence-free fields in a three-dimensional
space, the equation is rewritten using vector analysis notation
as

∂tξ + ∇ × (ξ × V ) = 0. (B5)

APPENDIX C: STRUCTURE CONSTANTS
FOR THE DBF BASIS

The symbol ((K̃||P̃ ||Q̃)), which is related to the structure
constant of the Lie algebra, is defined by using a combination
of the Riemannian metric and the Poisson bracket for the
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HMHD system as follows:

((K̃||P̃ ||Q̃)) �(K̃) := 〈 ��(K̃)|[ ��(P̃ ), ��(Q̃)]〉
= (� i(K̃)|∇ × [� i(P̃ ) × � i(Q̃)]) + (�e(K̃)|∇ × [�e(P̃ ) × �e(Q̃)])

= �(K̃)

α

∫
d3 �x{

C−1
i � i(K̃) · [� i(P̃ ) × � i(Q̃)] + C−1

e �e(K̃) · [�e(P̃ ) × �e(Q̃)]
}
, (C1)

where the second line is derived by integrating by parts with respect to �x and by using the relation Eq. (47). Substitution of
Eq. (41) into the second line yields Eq. (54), i.e., the explicit expression of the symbol ((K̃||P̃ ||Q̃)). Using this symbol, the first
variation of action reads as∫ 1

0
dt

�∑
Q̃

�V (Q̃)

∣∣∣∣∣∣∣∂t
�ξ (K̃) +

⎡⎣�ξ (K̃),
∑
P̃

�V (P̃ )

⎤⎦
�

=
∫ 1

0
dt

⎡⎣g(K̃)bV (K̃)∂t
bξ (K̃) +

∑
P̃ ,Q̃

�(Q̃)((Q̃||K̃||P̃ ))bV (Q̃)bξ (K̃)bV (P̃ )

⎤⎦ ,

= [g(K̃)bV (K̃)bξ (K̃)]t=1 − [g(K̃)bV (K̃)bξ (K̃)]t=0 +
∫ 1

0
dtbξ (K̃)

⎡⎣−g(K̃)∂t
bV (K̃) +

∑
P̃ ,Q̃

�(Q̃)((K̃||P̃ ||Q̃))bV (Q̃)bV (P̃ )

⎤⎦ . (C2)

We obtain the Euler-Lagrange Eq. (53) if the fixed path end conditions are imposed.
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