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Approximants to the Tonks-Langmuir theory for a collisionless annular plasma
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Maclaurin series approximant and Padé rational approximant are used to solve the Tonks-Langmuir theory
for an annular plasma and investigate the radial transport behavior of charged particles. Coefficients of the
well-known Maclaurin approximant are given in a novel form of recurrence relations which are convenient for
computation and present a lower limit for the annular ratio of inner radius to outer radius (i.e., this approximant is
not applicable to annular geometries with small inner radii). The newly introduced Padé approximant extrapolates
the annular ratio limit determined by the Maclaurin approximant to a lower value and hence is applicable to most
annular geometries. General radial profiles of the normalized plasma density and mean drift velocity of ions are
given across the annulus and they are independent of the gas type and the Paschen number of the discharge. The
annular modeling is applied to an argon plasma and obtains the electron temperature as a function of the Paschen
number for different annular geometries.
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I. INTRODUCTION

Tonks and Langmuir [1] reported a free-fall scenario
of ions in a collisionless plasma in their classic paper “A
General Theory of the Plasma of an Arc,” where the newly
created ions had a zero drift velocity and fell towards the
plasma boundary without encountering any collisions. The
electrons were assumed to be in equilibrium and governed
by the Boltzmann relation. The Tonks-Langmuir theory was
represented in the form of an integral equation referenced here
as the “T-L integral equation.” Their model has been widely
used in studies of transport phenomena in low-temperature
plasmas [2,3], especially for the collisionless low-pressure
regime, together with the Schottky model [4] for the collisional
high-pressure regime and the Godyak model [5] for the
collisional intermediate-pressure regime. The T-L integral
equation was originally solved using the plausible Maclaurin
series approximation for the plane-parallel and cylindrical
plasmas [1]. An analytical-form solution could also be given
in terms of Dawson functions, but it was limited to the
plane-parallel geometry [6].

The annular geometry is a natural extension for the
cylindrical geometry when an inner object is inserted, e.g.,
a probe within a plasma column [1,7] or an inner quartz tube
in a plasma source [8–10]. A solution to collisional annular
plasmas has been reported in our previous study [11] where
the introduction of an effective ion temperature unified the
Schottky model and Godyak model. However, to date the
Tonks-Langmuir model has not been fully investigated for
a collisionless annular plasma. Some preliminary discussion
for the annular case was indeed given by Tonks and Langmuir
in their original work [1], but it was incomplete and only
restricted to the case of uniform ion generation. It should be
noted that their form of the Maclaurin approximant for an
annular plasma was actually incomplete due to the lack of
even-index terms which could be omitted for the cylindrical
and plane-parallel geometries but not for the annulus.
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This study focuses on the single-component, electron-
positive-ion, low-temperature plasmas where the ion thermal
effect is neglected (cold ions). The electron temperature is
assumed to be a constant across the plasma and hence the
Boltzmann relation can be used to connect the plasma density
and potential. Two cases of ion generation are included: (i) the
ion generation density (the number of ions generated per
second per unit volume) being proportional to the plasma
density, defined as the P-case, and (ii) the ion generation den-
sity being uniform and independent of the plasma density,
defined as the U-case. The P-case is mainly for the plasma
dominated by one-step ionization [1,12] while the multistep
ionization [12,13] is beyond the scope of this paper and not
presently investigated. The U-case normally occurs when the
ion generation is supplied by an external ion source [12]
or the diffusion effect [2] from an unconsidered dimension
(e.g., the axial dimension is not included in this study). The
ion loss mechanism is considered to be dominated by the
plasma flux out of the boundary, and the volume recombination
is negligible for the plasma of interest here which is a
low-pressure electropositive discharge [2,3].

In Sec. II the T-L integral equation is introduced to describe
the radial transport of charged particles in collisionless annular
plasmas for the P- and U-cases. In order to solve this integral
equation, Secs. III and IV present detailed mathematical
analyses of two approximant methods: the Maclaurin series
approximant and the Padé rational approximant. In Sec. III
a complete Maclaurin approximant is given for the T-L
integral equation of an annular plasma and, to the best of
our knowledge, this is the first study to present the results of
serial coefficients in forms of recurrence relations which are
quite convenient for computational purpose. As the Maclaurin
approximant is shown to be valid only for annular geometries
with a relatively large annular ratio (defined as the ratio value
of inner radius to outer radius), Sec IV introduces the Padé
approximant [14,15] to extend the applicable range of annular
ratios to smaller values. In Sec. V the accuracy and validity
of these two approximant methods are shown by substituting
the related solution into the T-L integral equation to check
the determined magnitude of the error, and the advantage of
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the Padé approximant in convergence is also verified for small
annular ratios. The modeling results calculated from these
two approximants are given in Sec. VI: First, radial profiles
of the normalized plasma density and mean drift velocity of
ions are obtained for different annular geometries and shown
to be general results independent of the gas type and of the
Paschen number. Subsequently, the model is applied to an
annular plasma in argon to determine the electron temperature
as a function of the Paschen number.

II. T-L INTEGRAL EQUATION

The Tonks-Langmuir theory assumes the electrons being
in Maxwellian equilibrium and governed by the Boltzmann
relation. The ion dynamics is determined from particle balance
between ion generation and free-fall ion flux towards the
plasma boundary, and this kinetic process can be repre-
sented by the T-L integral equation which is directly given
in cylindrical coordinate without repeating the deduction
details [1]:

−se−η ±
∫ s

sp

sze
−c ηz (η − ηz)

− 1
2 dsz = 0, (1)

which connects two important dimensionless parameters that
describe the transport performance of ions: the dimensionless
potential (hence the normalized plasma density using the
Boltzmann relation) given by η = − φ

Te
, where φ and Te

are the plasma potential and electron temperature, and the

dimensionless position s = rν
(P/U )
iz√
2uB

, where r , νiz, and uB =√
eTe

mi
(e and mi represent the electron charge and ion mass)

are the physical radial position, ion generation rate, and
Bohm velocity, respectively. The superscript (P/U ) of the
ion generation rate represents two cases [1]:

(i) P-case: νiz is the ionization rate and a constant for
Maxwellian electrons in this study;

(ii) U-case: νiz is given by the ratio of the ion generation
density (the number of ions generated per second per unit
volume) to the maximum plasma density.

Solution to the T-L integral equation (1) is in the form of the
dimensionless potential η as a function of the dimensionless
position s, i.e., η = η(s). It can be seen from Eq. (1) that
the solution depends on the dimensionless peak position sp

which locates the maximum plasma density (corresponding
to a zero plasma potential) across the annulus, and c = 1 or 0
corresponds to the P-case or the U-case. Notation ± represents
the outer radial range beyond sp satisfying s > sp and the
inner range within sp satisfying s < sp, which will be used
through the following paper. When sp = 0, the annulus is
reduced to a normal cylindrical geometry.

Equation (1) is a nonlinear Volterra equation of the second
kind for the unknown function η(s). It has a kernel whose
singularity is determined along ηz = η, and no solution for
Volterra equations with this type of singular kernel can be
found in the literature. Considering the monotonicity of η(s)
in the range of s > sp or s < sp where the plasma potential
and radial position hold an injection relation, it is possible
to cancel the kernel’s singularity by transforming the above
equation of η(s) to a modified equation of the inverse of η(s),

i.e., s(η), which yields:

−se−η ±
∫ η

0
sze

−c ηz
dsz

dηz

d[−2(η − ηz)
1
2 ] = 0, (2)

where the singularity is removed from the integrand by variable
substitution but a derivative term dsz

dηz
has to be introduced.

Equation (2) is further modified by using the relative position
x = s − sp, and the square root of the dimensionless potential
ρ = η

1
2 and ρz = ρ sin(θ ) to give [1]:

−(sp + x)e−ρ2 ±
∫ π

2

0
(sp + xz)e

−c ρ2
z

dxz

dρz

dθ = 0, (3)

which becomes an integral equation of x(ρ), equivalent to η(s)
of Eq. (1), and satisfies x = 0 when ρ = 0, i.e., zero plasma
potential is defined at the position of maximum plasma density.
As sp is the only variable for the T-L integral equation, for
each specific sp there is a corresponding “solution curve” x(ρ)
which is used to calculate plasma parameters such as the radial
profiles of the normalized plasma density and the normalized
mean drift velocity of ions (given in Sec. VI).

The range of solution curve x(ρ) is determined by the inner
boundary sa and outer boundary sb of an annular plasma. In
order to keep a good consistency with Tonks and Langmuir’s
work, the plasma boundaries are defined as the position with an
infinite electric field strength, i.e., dη

ds
= ∞, which is equivalent

to dx
dρ

= 0, though this condition is normally untrue in most
actual physical systems (one scenario where it is true could
be a double layer boundary [16]). Other boundary conditions
can be adapted by setting related constraint equations, e.g.,
a Bohm-type boundary is located by finding the position
where the mean drift velocity is equal to the Bohm veloc-
ity [2,3]. The following two sections use approximant methods,
the Maclaurin approximant and the Padé approximant, to
give the solution curve x(ρ) of the modified T-L integral
equation (3).

III. MACLAURIN SERIES APPROXIMANT

As most smooth functions can be well approximated
using the Taylor series (reduced to the Maclaurin series
when it centers at zero) [17], the unknown function x(ρ) is
approximated by a Maclaurin series as follows:

x =
+∞∑
i=0

aiρ
i . (4)

The coefficients {an} are derived by substituting the power
series into the T-L integral equation (3) and omitting the
rearranged coefficient of each power order of the equation.
The zeroth element a0 is always zero as x = 0 when ρ = 0.
The first two elements a1 and a2 are same for both the P- and
U-cases and given by:

a1 = ± 2

π
, a2 = ±a1 − a2

1

2sp

. (5)
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The even-index terms {a2n} are given in forms of recurrence
relations for the P-case:

a2n = 1

(2n)sp

⎧⎨
⎩sp

n−1∑
i=1

(−1)n−1−i

(n − i)!
(2i)a2i

± (2n − 1)!!

(2n − 2)!!

n∑
i=1

(−1)n−i

(n − i)!
a2i−1

−
2n−1∑
i=1

iai

n+1−� i+1
2 �∑

j=1

(−1)n+1−� i+1
2 �−j(

n + 1 − ⌈
i+1

2

⌉ − j
)
!
a2j+2� i−1

2 �−i

⎫⎬
⎭

(6)

and the U-case:

a2n = 1

(2n)sp

{
± (2n − 1)!!

(2n − 2)!!

n∑
i=1

(−1)n−i

(n − i)!
a2i−1

−
2n−1∑
i=1

iaia2n−i

}
, (7)

where � � and � � represent the ceiling and floor algorithms,
respectively.

The odd-index terms {a2n+1} for the P-case are given by:

a2n+1 = 1

(2n + 1)sp

{
sp

[
± (−2)n

(2n − 1)!!

2

π

+
n∑

i=1

(−1)n−i

(n − i + 1)!
(2i − 1)a2i−1

]

± (2n)!!

(2n − 1)!!

2

π

n∑
i=1

(−1)n−i

(n − i)!
a2i

−
2n∑
i=1

iai

n+1−� i+1
2 �∑

j=1

(−1)n+1−� i+1
2 �−j(

n + 1 − ⌊
i+1

2

⌋ − j
)
!

×a2j+2� i+1
2 �−i−1

}
(8)

and the U-case:

a2n+1 = 1

(2n + 1)sp

{
± (2n)!!

(2n − 1)!!

2

π

[
sp

(−1)n

n!

+
n∑

i=1

(−1)n−i

(n − i)!
a2i

]
−

2n∑
i=1

iaia2n+1−i

}
. (9)

The coefficient series {an} of the above Maclaurin series
shows two important properties. First, those coefficient se-
quences for the radial ranges of s > sp and s < sp, denoted as
{a+

n } and {a−
n }, satisfy the relations:

a+
2n = a−

2n , a+
2n+1 = −a−

2n+1, (10)

which are identical for both the P- and U-cases and can be
easily verified from the recurrence formulas (6) to (9). Hence
{a+

n } and {a−
n } exhibit the same convergence or divergence

performance which is determined from the modulus series

Index n
0 5 10 15
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n
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-3

-2

-1
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n
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-2

-1

0

1
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4
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( a )

( b )

P-case

U-case

FIG. 1. (Color online) Coefficient series {an} of the Maclaurin
approximant for (a) the P-case and (b) the U-case with sp = 0.4 (�)
and 1.6 (©).

{|an|}. Following these notations, the outer and inner boundary
locations (sb and sa) are determined from:

dx±

dρ
=

∞∑
i=1

ia±
n ρi−1 = 0, (11)

where x has to be represented in the truncated form of the
Maclaurin series (4), i.e., the Maclaurin series approximant,
for a real computation with finite bits. This equation yields the
solution of the square root of the dimensionless potential ρb

and ρa at respective outer and inner boundaries, and they are
used to calculate the boundary locations sb = x(ρb) + sp and
sa = x(ρa) + sp.

Second, the recurrence relations (6) to (9) show that {an}
is a function of the dimensionless peak position sp of the
plasma density in the annulus, and the computational results
suggest that {an} is only convergent for large values of sp for
which some typical values are listed in Fig. 1 as an illustration.
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The results of {a+
n } with sp = 1.6 for the P-case [{a−

n } can
be found using relations (10) and not plotted], represented
by open circles in Fig. 1(a), present a convergent sequence.
The open triangles for coefficient values with sp = 0.4 show
a divergent oscillating behavior. The results for the U-case
are given in Fig. 1(b) and show a similar performance. The
divergent characteristics of {an} for a small sp is clearly seen
in the two panes. The convergence of {an} has been found
being satisfied when the value of sp is above a lower limit of
about 0.72 for the P-case and about 0.95 for the U-case. If
the coefficient series {an} is convergent, then the recurrence
relations (6) to (9) have been shown to be a stable algorithm:
When an error (e.g., due to roundoff) was added to the initial
two elements a1 and a2, the following elements obtained from
the recurrence algorithm presented a damped deviation along
the index sequence.

The divergence of {an} as a function of sp can be
characterized by the radius of convergence Rc (within which
the Maclaurin power series would be a valid function).
Considering the alternating performance of {an} as shown in
Fig, 1, the Cauchy-Hadamard theorem is chosen to determine
the radius of convergence [18]: 1/Rc = lim supn→∞ |an| 1

n ,
where “sup” represents the limit superior. The radius of
convergence is the same for the radial ranges of s > sp and
s < sp as can be seen from relations (10). Considering that
an infinite index is not approachable in a real computation, a
truncated radius of convergence R∗

c is defined as:

1

R∗
c

= sup
{|an| 1

n : 20 � n � 25
}
, (12)

which is a truncated approximation using a finite integer
instead of infinity. In Fig. 2 both the P-case (solid line) and
the U-case (dash-dotted line) show a decreasing truncated
radius of convergence towards zero when sp approaches zero,
suggesting that the Maclaurin approximation is not a reliable

sp

0 1 2 3 4 5

R
∗ c

0

0.5

1

1.5

2

2.5

FIG. 2. (Color online) Truncated radius of convergence R∗
c for

the P-case (solid line) and U-case (dash-dotted line) as a function
of sp .

method for solving the T-L integral equation (3) for small
values of sp, where {an} could become highly divergent. A
smaller lower limit of sp ∼ 0.72 for the P-case compared to
sp ∼ 0.95 for the U-case is consistent with the performance
of the R∗

c (sp) curves where the P-case curve is higher than the
U-case and hence has a broader applicable range of sp.

Additionally, the lower limit of sp for the convergence of
{an} is also shown to be the limit ensuring a valid solution
for the boundary condition (11). This coincidence suggests
that the validity of a Maclaurin approximant depends on the
convergence of its coefficient series {an}, which is consistent
with the following: For the P-case, when sp = 0.72 a solution
of ρb ∼ 1 is yielded at the outer boundary which is close to the
respective radius of convergence of R∗

c ∼ 1.2 identified from
Fig. 2 and for the U-case a similar phenomenon is observed. It
will be shown in Sec. V that the annular ratio of inner radius to
outer radius Rio = ra

rb
= sa

sb
has a positive correlation with sp,

hence the Maclaurin approximant should be used for annular
geometries with relatively large inner radii. It should be noted
that the Maclaurin approximant is convergent and valid for
the cylindrical geometry (i.e., a zero inner radius) and for the
plane-parallel geometry, both cases having no even-index
terms in the power series [1]. The recurrence relations for
the cylindrical and plane-parallel plasmas are also given in the
Appendix A for reference.

IV. PADÉ RATIONAL APPROXIMANT

In order to solve annular geometries with small inner radii,
the Padé rational approximant is introduced to extrapolate
the limit determined by the Maclaurin approximant. It uses
a rational function, whose numerator and denominator can
be directly calculated from the pre-calculated Maclaurin
approximant [14,15], to approximate an underlying solution.
The genuine advantage of the Padé approximant, over most
other approximation methods, is that it can still work even
if the Maclaurin series is divergent. A general analysis to
evaluate the validity of a Padé approximant is a complex task,
especially for the present case where the mathematics of the
T-L integral equation (3) has not been fully solved. Here we
verify the validity of the Padé approximant by substituting the
obtained solution curve x(ρ) into the T-L integral equation and
by checking the error magnitude (as shown in Sec. V).

The Padé approximant has the following form:

[M/N] =
∑L

i=0 piρ
i

1 + ∑M
i=1 qiρi

, (13)

where a diagonal rational approximation, i.e., M = N , is con-
sidered for the present study. Its denominator coefficients {qi}
are calculated from the coefficient series {an} of the Maclaurin
approximant following the formulas below, which can be
found in the literature about Padé approximant [14,15,19]:

⎡
⎢⎢⎣

aN aN−1 · · · a1

aN+1 aN · · · a2
...

...
. . .

...
a2N−1 a2N−2 · · · aN

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q1

q2
...

qN

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

aN+1

aN+2
...

a2N

⎤
⎥⎥⎦ (14)
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and the numerator coefficients {pi}:

pi =
i∑

k=0

qk ai−k, (15)

where q0 = 1 and p0 = a0 = 0. The denominator and numer-
ator coefficients for the radial range of s > sp, {q+

i } and {p+
i },

are calculated from {a+
i }, and those ({q−

i } and {p−
i }) for s < sp

from {a−
i }. In this case the outer and inner boundary locations

(sb and sa) of an annular plasma are determined by:

dx±

dρ
=

(∑L
i=1 ip±

i ρi−1
)(

1 + ∑M
i=1 q±

i ρi
) − (∑L

i=0 p±
i ρi

)(∑M
i=1 iq±

i ρi−1
)

(
1 + ∑M

i=1 q±
i ρi

)2 = 0. (16)

The reliability of a Padé approximant is determined by
the accuracy of linear algebraic equation (14). There are a
number of algorithms designed to calculate the Padé approx-
imant, depending on the preferred criteria (e.g., reliability
or efficiency) and among all, the direct routine of “matrix
inversion” is the most stable and reliable method though
at the cost of some efficiency [14,19]. The validity of the
matrix inversion method is further enhanced by the fact that
a low-order Padé rational function is normally chosen for
calculation as an excessively high order sometimes causes
computational instabilities accumulated from both roundoff
and truncation errors [15], especially when a singular matrix
[a] occurs in Eq. (14). Morris [19] suggested a general order
principle of N � 10 for single-precision computing and hence
N � 20 for double precision which is defaulted for the present
study. Considering the possible degeneration of the parametric
matrix [a] which is likely the case for small values of sp, the
LU decomposition is used to solve the algebraic equation (14)
and an iterative improvement is also supplemented to refine
the solution [15,19]. An order of 7 to 12 is suggested for the
diagonal Padé approximant in this paper, and their stability
has been verified: When a small error was added to the first
few coefficients of Maclaurin series ({an}), the related Padé
coefficients showed a negligible magnitude of deviation.

To show the advantage of the Padé approximant for small
values of sp, i.e., annular geometries with small inner radii, a
value of sp = 0.4 for the P-case is used as an example where
the Maclaurin approximant is divergent as shown in Fig. 1. The
solution curve x(ρ) obtained from a Padé approximant [9/9]
is given for the outer radial range of s > sp and it is shown
in Fig. 3(a) as the solid line [the boundary value of ρb ∼ 1 is
determined by Eq. (16)]. Substituting the calculated x(ρ) and
dx
dρ

into the T-L integral equation (3) yields a residual value,
and a relative error is defined to reflect the deviation of the
approximant solution using:

�(ρ) =
∣∣∣∣∣∣
−(sp + x∗)e−ρ2 ± ∫ π

2
0 (sp + x∗

z )e−c ρ2
z

dx∗
z

dρz
dθ

−(sp + x∗)e−ρ2

∣∣∣∣∣∣, (17)

where the superscript “∗” refers to the computational results.
The validity of the Padé approximant is verified by the error
curve �(ρ) represented by the solid line in Fig. 3(b) which
is within the magnitude of 10−4. The solution curve x(ρ)
obtained from the Maclaurin approximant (dash-dotted line),
which uses the first 25 elements (excluding a0 = 0) in the
power series, is also shown in Fig. 3(a) as a comparison and
it presents a clear discrepancy from the Padé approximant
result beyond ρ ∼ 0.7. The Maclaurin approximant is not a

valid method for solving the T-L integral equation in this
case as a divergent �(ρ) curve is shown in Fig. 3(b), with
an error value of 100% at ρ ∼ 0.8. When sp is set to be a large
value (e.g., sp = 1.6), the Padé and Maclaurin approximants
give consistent solution curves and both of their �(ρ) curves
approach zero.

ρ
0 0.2 0.4 0.6 0.8 1

Λ

-0.2

0

0.2

0.4

0.6

0.8

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

( b )

( a )

FIG. 3. (Color online) For a P-case annular plasma with sp =
0.4, (a) solution curve x(ρ), and (b) relative error curve �(ρ) in the
outer radial range (s > sp) calculated by the Maclaurin approximant
(dash-dotted line) and the Padé approximant (solid line).
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V. ANNULAR LIMITS

The T-L integral equation (3) can be rewritten as:

sp

[
−e−ρ2 ±

∫ π
2

0
e−c ρ2

z
dxz

dρz

dθ

]

+
[
−xe−ρ2 ±

∫ π
2

0
xze

−c ρ2
z

dxz

dρz

dθ

]
= 0. (18)

On the left-hand side, the expression in the first square
brackets has the same form for a plane-parallel plasma, and the
expression in the second brackets for a cylindrical plasma. It is
interesting to notice that the equation for an annular plasma is
a combination of a weighted plane-parallel part (by a factor of
sp) and a cylindrical part. Hence what would be expected is that
the annular solution approaches the cylindrical case for small
values of sp, and when sp is large it should be close to the plane-
parallel case, indicating that the annular radio (of inner radius
to outer radius) Rio = sa

sb
should be an increasing function of

sp which is verified by the results shown on Figs. 4 and 5.
The Rio(sp) curve for the P-case, calculated by the first

25 elements of the Maclaurin series approximant (excluding
a0 = 0), is shown as the dash-dotted line in Fig. 4(a). It
has a lower limit of sp at 0.75 determined by the relation
sup {�(ρ) : sa < s(ρ) < sb} < 10−3 which states that for each
value of sp on the curve, its respective solution curve x(ρ) to the
T-L integral equation (3) has a maximum relative error smaller
than 10−3 across the annulus. Hence the calculated Rio(sp)
curve satisfies a well-defined accuracy. Figure 4(b) shows the
results from the Padé approximant with a diagonal order of
[9/9] to [12/12] represented by the solid line, which has the
same solution accuracy of a maximum relative error being less
than 10−3 for the T-L integral equation. The Rio(sp) curves
calculated by both approximants present quite consistent
results for the range of sp > 0.75 (overlapped if plotted on
one figure), and the Padé approximant further extrapolates
the lower limit of sp from 0.75 determined by the Maclaurin
approximant to 0.3 as marked by the vertical dashed lines
in Figs. 4(a) and 4(b). Consequently, the lower limit of the
annular ratio Rio is extrapolated from 0.35 to 0.1 by the Padé
approximant whose range can cover most annular geometries.
The Rio(sp) results for the U-case are plotted in Figs. 5(a)
and 5(b) where the Maclaurin and Padé approximants give
very consistent results for the range of sp > 1.05 (overlapped
if plotted on one figure), and the latter extrapolates the lower
limit of sp from 1.05 to 0.27, and the limit of Rio from 0.5
to 0.1. Hence, in summary, the Maclaurin approximant has a
valid range of annular ratios of greater than 0.35 for the P-case
and greater than 0.5 for the U-case, and the Padé approximant
extends the valid ratio range to greater than 0.1 for both the P-
and U-cases.

The results in Figs. 4(b) and 5(b) show that the annular
ratio Rio and the dimensionless peak position sp have a
positive injection relation and hence they are equivalent
representations. Rio approaches zero (i.e., cylindrical case)
when sp has a small value and it is close to unity (i.e.,
plane-parallel geometry) when sp becomes large, consistent
with the qualitative conclusion deduced from equation (18).
Though the Padé approximant can be successfully applied to
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FIG. 4. (Color online) For the P-case plasma, annular ratio Rio

of inner radius to outer radius as a function of sp calculated by
(a) the Maclaurin approximant (dash-dotted line) and (b) the Padé
approximant (solid line). The vertical dashed lines mark the lower
limit of sp for validated solutions of the two approximants (followed
by Fig. 5).

most annular geometries, there is still a small gap between the
annular geometries of Rio ∼ 0.1 to 0 being unfilled [Figs. 4(b)
and 5(b)] where the Maclaurin coefficient series {an} becomes
highly divergent and the Padé approximant calculated from
these coefficients also loses validity.

VI. MODELLING RESULTS

The solution curve x(ρ) to the T-L integral equation,
obtained from the Maclaurin approximant (Sec. III) and
Padé approximant (Sec. IV), is used to investigate the radial
transport of charged particles in collisionless annular plasmas.
Radial profiles, for which the radial position is represented
by s = x + sp as given in Sec. II, of the normalized plasma
density and mean drift velocity of ions (electrons have been
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FIG. 5. (Color online) For the U-case plasma, annular ratio Rio

as a function of sp calculated by (a) the Maclaurin approximant
(dash-dotted line) and (b) the Padé approximant (solid line).

assumed to be in equilibrium) are carefully characterized, and
their values are calculated as follows: The former is determined
by the Boltzmann relation n̂ = e−η, where η = ρ2, and the lat-

ter, normalized by the Bohm velocity uB =
√

eTe

mi
, is given by:

û =
±√

2
∫ s

sp
sze

−c ηz dsz∫ s

sp
sze−c ηz (η − ηz)−

1
2 dsz

=
±√

2
∫ π

2
0 (sp + xz)e−c ρ2

z
dxz

dρz
ρ cosθdθ∫ π

2
0 (sp + xz)e−c ρ2

z
dxz

dρz
dθ

, (19)

where the numerator and denominator represent the ion flux
and plasma density, respectively. The normalized plasma
density and mean drift velocity are only functions of the
dimensionless peak position sp or, more practically, the
annular ratio Rio which is monotonically connected to sp as
shown by Figs. 4 and 5, and hence their radial profiles are

general results that are independent of the specific gas type and
of the Paschen number (i.e., gas pressure and physical size) of
the discharge. The following Sec. IV A shows these general
profiles for different annular geometries, and in Sec. IV B,
the annular modeling is applied to an argon plasma and the
electron temperature is calculated as a function of the Paschen
number Pas = pgrb, where pg and rb are the gas pressure and
the physical outer radius of the annulus, respectively.

A. General radial profiles

Radial profiles of the normalized plasma density for annular
geometries of Rio = 0.2 to 0.8 are given in Fig. 6(a) for the
P-case, with the radial position being normalized by r̂ = r

rb
=

r̂
0.2 0.4 0.6 0.8 1

û

-1.5
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0.5

1

n̂

0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r̂p

( a )

( b )

P-case

FIG. 6. (Color online) For the P-case plasma, radial profiles of (a)
normalized plasma density n̂, and (b) normalized mean drift velocity
of ions û for different annular geometries of Rio = 0.2, 0.4, 0.6,
and 0.8. The dash-dotted lines represent overlapped results that can
be calculated by both the Maclaurin and Padé approximants, and
the solid line represents the result that is only valid using the Padé
approximant (followed by Fig. 7).
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FIG. 7. (Color online) For the U-case plasma, radial profiles of
(a) normalized plasma density n̂ and (b) normalized mean drift
velocity û for different annular geometries of Rio = 0.2, 0.4, 0.6,
and 0.8.

s
sb

. The solid line for Rio = 0.2 is obtained from the Padé
approximant where the Maclaurin approximant fails as shown
in Fig. 4, while the dash-dotted lines can be obtained from
both approximants which give very consistent (overlapped)
results. The boundary densities at the inner and outer sides are
about 0.35 to 0.5 of the maximum density with the inner-side
value being slightly higher than the outer. The peak position
of the density profile is closer to the inner boundary due to a
larger loss area at the outer side. The density profile becomes
more symmetric as the annular ratio Rio increases from 0.2
to 0.8 (approaching the plane-parallel case). The mean drift
velocities at the inner and outer boundaries, as shown in
Fig. 6(b), have a value of ∼1.15 times the Bohm velocity
as a result of the infinite-field boundary conditions governed
by Eqs. (11) or (16).

Figures 7(a) and 7(b) show the results for the U-case where
the plasma density and the mean drift velocities present similar

behaviors to those of the P-case. By carefully comparing
Figs. 6(a) and 7(a), the normalized density is found greater
for the U-case by about 1% to 5% compared to the P-case
for different annular geometries in the radial range of r̂ > r̂p,
and the mean drift velocity thereby, as shown in Figs. 6(b)
and 7(b), is greater in the P-case than the U-case due to a larger
proportion of high-velocity ions in the plasma flux moving
towards the boundary.

B. Electron temperature in argon plasma

The electron temperature is included in the dimensionless

position parameter s = rν
(P/U )
iz√
2uB

where the ion generation rate

ν
(P/U )

iz and the Bohm velocity uB are functions of the electron
temperature Te. For the P-case the ionization (generation) rate
is given by ν

(P )

iz = ngμiz, where ng is the gas density and the
rate constant μiz over Maxwellian electrons in an argon plasma
is given in Appendix B. As for the U-case the value of ν

(U )

iz is
the ratio of the ion generation density to the maximum plasma
density as stated in Sec. II. However, in the U-case the ion
generation rate is determined by the external ion supply or the
diffusion from an extra dimension (e.g., axial dimension), and
these effects have not been included within the present scope.
Hence the results of electron temperature are only given for
the P-case which is governed by the self-consistent particle
conservation. In order to present the electron temperature as
a function of the Paschen number, the position parameter at
the outer boundary which includes the physical dimension the
discharge is first given by:

sb = rbνiz√
2uB

= μiz√
2uB

Pas

eTg

, (20)

Pas [Torr · cm]
10-4 10-3 10-2 10-1 100

T
e

[e
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]
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FIG. 8. (Color online) Electron temperature Te as a function of
the Paschen number Pas for the P-case argon plasmas (with sb

calculated by the Padé approximant) for different annular geometries
of Rio = 0.2 (dash-dotted line), 0.4 (solid line), 0.6 (dashed line), and
0.8 (dotted line).
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whose value can be calculated from the boundary condi-
tions (11) or (16).

Here we present the results of electron temperature in a low-
pressure (collisionless) argon plasma. The input parameters are
the Paschen number and the annular ratio which determines
the value of sb, and the output parameter is the electron
temperature Te by solving the above equation (20). The argon
has a atomic mass of mg = 39.95 u (u = 1.6605 × 10−27 kg is
the atomic mass unit) and a room temperature of Tg = 0.026 V
is used for the neutral argon gas. The electron temperature
for which sb is calculated using the Padé approximant, is
plotted in Fig. 8 as a function of the Paschen number ranging
from 10−4 to 1 Torr cm for different annular geometries of
Rio = 0.2 to 0.8. The Te(Pas) curve has a higher level for
larger annular ratios and the difference is more dramatic in the
low-Paschen-number range. For the high Paschen numbers the
electron temperatures of different annular ratios converge to a
similar value of ∼2.4 eV at Pas = 1.

VII. CONCLUSION

In this paper, the Maclaurin and Padé approximants are
used to solve the Tonks-Langmuir theory for an annular
plasma in the P-case or U-case. The coefficient series of
the Maclaurin approximant is represented in forms of recur-
rence relations which are convenient for computation. This
approximant method has been shown to have a lower limit
for the annular ratio, below which it becomes divergent and
invalid. The Padé approximant is consequently introduced and
shown to be a more robust method. Though its numerator
and denominator are calculated using the coefficients of the
Maclaurin approximant, it extrapolates the annular ratio limit
to a broader range which can include annular geometries with
small inner radii and cover most annular geometries. However,
there is still a small gap between the annular ratio of 0.1
to 0 (cylindrical geometry) where the coefficient series of
the Maclaurin approximant is highly divergent and the Padé
approximant also loses its validity. The validity of the two
approximants is tested by substituting their solution curves
into the T-L integral equation and by checking the magnitude
of the error.

The annular modeling is applied to different annular
geometries and obtains general radial profiles of the normal-
ized plasma density and mean drift velocity of ions across
the annulus. Both profiles are independent of the gas type
and the Paschen number of the discharge, and they are
asymmetric about the maximum density position and present
similar performance for the P-case and U-case. The electron
temperature is calculated in argon for the P-case as a function
of the Paschen number and shows positive correlation with the
annular ratio as enhanced ionization is needed to balance an
increased ion loss at the boundaries.
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APPENDIX A: RECURRENCE RELATIONS FOR
CYLINDRICAL AND PLANE-PARALLEL PLASMAS

For a cylindrical plasma the even-index coefficient terms
{a2n} of the Maclaurin series (4) are zero, and the odd-index
terms {a2n+1}, where a1 = 1 are given in forms of recurrence
relations for the P-case:

a2n+1 = 1

2(n + 1) − (2n+1)!!
(2n)!!

⎧⎨
⎩
[

(2n + 1)!!

(2n)!!
− 1

]

×
n∑

i=1

(−1)n+1−i

(n + 1 − i)!
a2i−1 −

2n∑
i=2

iai

×
n+2−� i+1

2 �∑
j=1

(−1)n+2−� i+1
2 �−j(

n + 2 − ⌈
i+1

2

⌉ − j
)
!
a2j+2� i−1

2 �−i

⎫⎬
⎭
(A1)

and the U-case:

a2n+1 = 1

2(n + 1) − (2n+1)!!
(2n)!!

{
(2n + 1)!!

(2n)!!

n∑
i=1

(−1)n+1−i

(n + 1 − i)!

× a2i−1 −
2n∑
i=2

iaia2n+2−i

}
. (A2)

Similarly, for a plane-parallel plasma the even-index terms
{a2n} are zero, and the odd-index terms {a2n+1} (a1 = 2

π
) are

given for the P-case:

a2n+1 = 1

(2n + 1)

{
(−2)n

(2n − 1)!!

2

π

+
n∑

i=1

(−1)n−i

(n − i + 1)!
(2i − 1)a2i−1

}
(A3)

and the U-case:

a2n+1 = (−2)n

(2n + 1)!!

2

π
. (A4)

APPENDIX B: IONIZATION RATE CONSTANT FOR
MAXWELLIAN ELECTRONS IN ARGON PLASMA

The rate constant used for the argon ionization calculation
in Eq. (20) is given by:

μiz =
(

8e

πmTe
3

)1/2 ∫ ∞

0
σiz(εe)e− εe

Te εe dεe, (B1)

where εe is the electron energy and σiz is the ionization cross
section for which Phelps’s formula [20] is used:

σiz = 970

(ε + 70)2 (ε − 15.8) + 0.06e− ε
9 (ε − 15.8)2, (B2)

where σiz is in the unit of 10−20 m2.
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