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Small-scale behavior of Hall magnetohydrodynamic turbulence
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Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct
numerical simulations with grids up to 7683 points and two different types of initial conditions. Results are
compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative
operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a
function of wave number transitions to a magnetically dominated state. The transition in behavior is associated
with the advection term in the momentum equation becoming subdominant to dissipation. Examination of
autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD
current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is
significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function
at small separations. HMHD current structures are found to be significantly more intense than in MHD and
appear to have an enhanced association with strong alignment between the current and magnetic field, which
may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity
is used, a longer region consistent with a k−7/3 scaling is present for right-polarized fluctuations when compared
to Laplacian dissipation runs.
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I. INTRODUCTION

Turbulence is a ubiquitous phenomenon that is believed
to play a role in the dynamics of a variety of space plasma
environments, including the solar corona [1,2], solar wind
[3–5], planetary magnetospheres [6–11], and the interstellar
medium [12,13]. While viscosity and resistivity are often
invoked to model the dissipation in simulations of magne-
tohydrodynamic (MHD) turbulence, the collisionless nature
of many space plasmas means a more complete description of
the kinetic scales, where the fluid approximation breaks down,
is needed to understand the small scales of plasma turbulence.
Understanding how kinetic processes interact with a turbulent
environment is currently an active area of research [14]
and from a numerical standpoint is made difficult by the
computational challenges associated with both obtaining
the large-scale separations inherent to turbulent flows and
accurately describing the kinetic scales of the plasma.

Nonlinearities associated with turbulence are thought to
be important down into the kinetic scales [15–17]. Kinetic
effects can result in observed changes to the slope of the
energy spectrum and ultimately contribute to the dissipation
of energy from the turbulence [18–24]. A number of kinetic
scale features observed in the solar wind and magnetosphere
are thought to be associated with turbulence. It has been
suggested that observations of electron phase-space holes
and double layers in the Earth’s plasma sheet are caused by
currents generated by turbulence [11,25,26]. The behavior of
Langmuir waves observed in the solar wind has been attributed
to turbulence [27]. Osman et al. [28] found an association
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between kinetic scale instabilities and the turbulent energy
cascade rate. New missions, such as the recently launched
Magnetospheric Multiscale mission [29], with small spatial
separations between multiple spacecraft, will help enhance the
understanding of kinetic scale turbulence and make necessary
approaches using fully kinetic physics or a more complete
generalized Ohm’s law, such as Hall magnetohydrodynamics
(HMHD).

One way to begin looking at kinetic effects in a turbu-
lent environment numerically is to consider more accurate
approximations to the kinetic equations, such as the HMHD
equations. While not a complete model of the kinetic scales,
HMHD begins to incorporate kinetic effects by allowing for
the decoupling of ion and electron motions at scales below
the ion inertial length through the addition of the Hall term
in Ohm’s Law. The Hall effect has been studied extensively
in the context of magnetic reconnection using Harris sheet
configurations and HMHD is found to be the minimum
plasma model necessary to obtain fast reconnection rates
comparable to those obtained from more complete kinetic
plasma simulations [30–32]. Signatures of the Hall term have
been found in the Earth’s magnetosphere [33,34] and in
laboratory plasmas [35]. Under some parameter regimes in
the solar wind, a steepening of the spectral slope from either
a Kolmogorov spectrum [36] or the so-called Iroshnikov-
Kraichnan spectrum [37] has been associated with the ion
inertial length [38]. So-called plasmoids, as observed in the
magnetotail by the Cluster spacecrafts, are viewed as the
signature of multiple reconnection events in the Hall regime
and are linked to substorms [39].

Spectra of HMHD turbulence are expected to be steeper
than MHD at scales below the ion inertial length in both
the strong and weak turbulence regimes, with a power-law
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slope of −7/3 for the magnetic field in strong turbulence [40].
Steepening of the solar wind spectra above the ion cyclotron
frequency has been attributed to HMHD effects [41–43].
Some numerical simulations have reported power-law slopes
similar to −7/3 [44–46]; however, it is difficult to determine
the spectral slope for HMHD at the numerical resolutions
available today. Meyrand and Galtier [47] found that right and
left circularly polarized fluctuations have different power-law
slopes with right polarizations showing a −7/3 slope and left
polarizations showing a −11/3 slope and showed heuristically
that the magnetic field should follow these power laws.

Previous studies of HMHD turbulence have found that
although MHD scales control some important average proper-
ties of the system, such as the energy decay rate [48], the
structures present in the flow can be significantly altered.
Miura and Hori [46] and Miura and Araki [49] examined
the current and vorticity structures and found that there are
smaller scale structures present in HMHD; they speculated
the much lower amplitude vorticity structures were excited by
the enhanced small-scale magnetic field activity in HMHD.
Larger-scale vorticity structures were found to be potentially
more tubular than in MHD, although roll-up of vorticity
sheets as well as current sheets have also been observed
in MHD turbulence [50]. Two-dimensional (2D) simulations
have found reconnection sites in the turbulence become similar
in structure to laminar studies of HMHD reconnection which
exhibit bifurcated current sheets and quadrupolar magnetic
fields [51]. Dmitruk and Matthaeus [52] found that while
the magnetic field was largely unchanged by the addition
of the Hall effect, the electric field was more intermittent.
Using theoretical calculations and low-resolution simulations,
Mininni et al. [53] found that the Hall effect alters the coupling
between the magnetic field and velocity and can result in a
backscattering of energy which is not seen in MHD. Reduced
HMHD models, which describe the system in the presence of
a strong background magnetic field, have also been examined
and it was found that in this context structures widen and
generate internal eddies and currents resulting in an apparent
reduction in intermittency [54–56].

In this paper, we use three-dimensional (3D) direct numer-
ical simulations (DNS) to examine the behavior of HMHD
turbulence in the absence of forcing. The features in both
Fourier and real space are examined to better understand the
small-scale behavior. In Sec. II the HMHD equations and
initial conditions used in the DNS are discussed. Section III A
presents the numerical results in Fourier space and provides
an interpretation for the behavior. Section III B discusses the
numerical results in real space. Section III C briefly presents
runs using hyperdiffusivities and compares the results to the
traditional diffusivity runs presented in Secs. III A and III B.
Section IV summarizes the results and discusses some possible
implications for collisionless plasmas.

II. EQUATIONS

The incompressible HMHD equations in dimensionless
form are given by

∂b
∂t

= ∇ × (v × b) − εH∇ × (j × b) + η∇2b − η′∇4b, (1)

∂v
∂t

= −v · ∇v − ∇P + j × b + ν∇2v − ν ′∇4v, (2)

∇ · v = 0, ∇ · b = 0, (3)

where the velocity v and magnetic field b are in units of a
characteristic velocity U0 with the magnetic field expressed
in Alfvén units, P is the particle pressure, and j = ∇ × b is
the current density. The dissipation coefficients ν and η are
the traditional kinematic viscosity and magnetic diffusivity
respectively, whereas ν ′ and η′ are hyperviscosity and hyper-
diffusivity coefficients respectively associated with Laplacian-
squared dissipative terms. In this paper ν = η, ν ′ = η′, and
only one form of dissipative term is used in any given run
(that is to say, if ν �= 0, then ν ′ = 0 and vice versa). The
mass density is taken to be uniform and is absorbed into the
nondimensionalization of the pressure. With the addition of
the Hall term, the dimensionless parameter εH = di/L0 giving
the ratio of the ion inertial length to the characteristic length
scale of the system enters into the equations. If εH = 0, then the
HMHD equations reduce to the MHD equations. The electric
field in HMHD is given by

e = −v × b + εH j × b + ηj − η′∇2j. (4)

Since multiple nonlinear terms are present in the HMHD
system, three distinct “dissipation” scales can be defined by
comparing the time scales associated with the nonlinear terms
to the dissipation time scale. Using dimensional analysis, the
conditions for these scales can be written as

1

ν

√
EV (kA)

kA

= 1,
EM (kL)

ν
√

kLEV (kL)
= 1,

(5)
εH

√
kHEM (kH )

η
= 1,

for traditional viscosity and diffusivity and as

1

ν ′

√
EV (kA)

k5
A

= 1,
EM (kL)

ν ′
√

k5
LEV (kL)

= 1,

(6)
εH

η′

√
EM (kH )

k3
H

= 1,

for hyperviscosity and hyperdiffusivity. EV (k) and EM (k) are
the kinetic and magnetic energy spectra respectively, kA is the
dissipation wave number associated with the advection term
(v · ∇v), kL is the dissipation wave number associated with the
Lorentz force (j × b), and kH is the dissipation wave number
associated with the Hall term (εH∇ × [j × b]). For ν = η or
ν ′ = η′, kA is identical to the dissipation wave number for
∇ × (v × b). In MHD, where the Hall term is absent and there
is generally near equipartition between magnetic and kinetic
energy in the small scales [57], all of the dissipation scales
coincide. The largest of the wave numbers kA, kL, and kH

corresponds to the overall dissipation scale of the system where
all nonlinearities are subdominant to dissipation. In this study,
the numerical spectra output by the DNS are used in computing
the dissipation wave numbers so as not to require assumptions
for the spectral slopes that develop.
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The HMHD equations can alternatively be written in the
form [58]

∂b
∂t

= ∇ × [(v − εH j) × b] + η∇2b − η′∇4b, (7)

∂

∂t
(b + εHω) = ∇ × [v × (b + εHω)] + ∇2[ηb + εHνω]

−∇4[η′b + εHν ′ω], (8)

with ω = ∇ × v the vorticity. In the ideal system (neglecting
dissipative terms), the fields �R ≡ b and �L ≡ b + εHω are
frozen into the fields uR ≡ v − εH j and uL ≡ v respectively.
That is to say, they obey the flux-conservation equations

∂t�R = ∇ × [uR × �R], ∂t�L = ∇ × [uL × �L]. (9)

The fields uR,L are equivalent to the HMHD version of the
Elsässer variables in the limit εHk � 1 [40].

The ideal invariants for the MHD system are the total
energy (ET ), magnetic helicity (HM ), and cross helicity (HC)
defined as

ET = EV + EM = 1
2 〈|v|2 + |b|2〉,

(10)
HM = 1

2 〈a · b〉, HC = 1
2 〈v · b〉,

with 〈...〉 denoting a volume average and where b = ∇ × a,
a being the magnetic potential. In HMHD, HC is no longer
conserved and instead the generalized helicity defined as

HG = 1
2 〈(a + εH v) · (b + εHω)〉 = HM + 2εHHC + ε2

HHV

(11)

is conserved [59]. HV = 〈v · ω〉/2 is the kinetic helicity,
which is an invariant in ideal hydrodynamics. Relative
helicities are defined as

σM = a · b
|a||b| , σC = v · b

|v||b| ,
(12)

σG = (a + εH v) · (b + εHω)

|a + εH v||b + εHω| , σV = v · ω

|v||ω|
and measure the degree of alignment (cosine of angle)
between the vectors in the conserved helicities. Additional
alignments considered in this study are

σR = uR · �R

|uR||�R| , σL = uL · �L

|uL||�L| , σjb = j · b
|j||b| . (13)

These alignments inform us on the strength of the nonlinear
terms appearing in the primitive equations. In Fourier
space these alignments are defined using cross-spectra.
The magnetic polarization, which measures the direction of
circular polarization relative to the magnetic field, is given by
PM = σMσC computed in Fourier space. PM > 0 and PM < 0
correspond to left and right circularly polarized fluctuations
respectively [47].

For ν = η, the average energy dissipation in the system
for both MHD and HMHD is given by ν�T , where �T =
〈|j|2〉 + 〈|ω|2〉 is the total enstrophy. For decaying turbulence,
the time at which �T is maximum corresponds to when the
turbulence is most fully developed. In the hyperdiffusive case,
when ν ′ = η′, the average energy dissipation in the system is
given by ν ′PT , where PT = 〈|∇2b|2〉 + 〈|∇2v|2〉 is the total
palinstrophy.

The linearized incompressible HMHD equations support
two types of wave modes; the right circularly polarized
whistler wave and the left circularly polarized ion cyclotron
wave [60]. For the whistler and ion cyclotron modes PM = −1
and PM = 1, respectively. At small wave numbers the two
modes merge onto the same dispersion relation consistent with
MHD where circular polarization is not a relevant parameter
and there is only one wave mode, the Alfvén wave. The linear
ratio of magnetic to kinetic energy is given by

EM (k)

EV (k)
= k2ε2

H

4

(
±1 +

√
1 + 4

k2ε2
H

)2

(14)

with k the wave number and + or − giving the right- and
left-polarized modes respectively. In the limit of kεH �
1, the whistler mode is magnetically dominated with
EM (k)/EV (k) = k2ε2

H and the ion cyclotron mode is kinet-
ically dominated with EM (k)/EV (k) = (k2ε2

H )−1.
An alternative way to “linearize” the system is if the

fluctuations have perfect alignment between uR and �R

and between uL and �L, which makes all nonlinear terms
zero [42,58]. This type of configuration is referred to as a
double curl Beltrami solution and gives equivalent solutions
to the small-amplitude linear fields but for arbitrary amplitude
fluctuations. The necessary alignments would need to occur
as a result of the nonlinear dynamics and it is not obvious the
alignment should occur in any arbitrary turbulent system.

A. Initial conditions

All runs are performed using the Geophysical High-
Order Suite for Turbulence (GHOST) code [61]. GHOST is a
general-purpose pseudospectral community code with peri-
odic boundary conditions and parallelized up to in excess
of ≈130 000 processors using a hybrid (MPI-OpenMP)
methodology, which is advantageous at high resolutions.

Two types of initial conditions are examined in this study,
one using a prescribed set of phase relationships and the other
one using randomly phased fluctuations. Details about the runs
are listed in Table I. The first set of initial conditions is a
modification of the Orszag-Tang vortex based on Biskamp
and Welter [62] and extended to 3D in a manner similar to
Politano et al. [63]:

bOT = b0[sin(y + 4.1) + sin(z), −2 sin(2x + 2.3)

+ sin(z), sin(x) + sin(y)], (15)

vOT = v0[sin(y + 0.5), − sin(x + 1.4), 0]. (16)

The values of b0 and v0 are set such that 〈|bOT|2〉 = 0.64
and 〈|vOT|2〉 = 1.36 initially, resulting in nearly equal values
of 〈|j|2〉 and 〈|ω|2〉. Runs are performed at resolutions using
2563, 5123, and 7683 grid points in a cubic box and with
periodic boundary conditions. At all resolutions εH = 0.0 or
0.2. Additionally at 2563, runs with εH = 0.1 and 0.5 are
performed. At 7683, the initial condition for the εH = 0.2 run
is taken to be the peak of dissipation from the 7683 εH = 0.0
run. This method of starting an HMHD run from the peak
of dissipation was tested at 2563 resolution and produced
comparable results to a 2563 HMHD run started from scratch
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TABLE I. Resolution, value of ν (which is the same as the value of η), value of εH , and eddy turn-over time τnl at the peak of �T (or PT for
the hyperdiffusive runs) for the 16 runs performed in this study. In the Run ID, OT stands for the Orszag-Tang initial condition, R stands for the
random initial condition, M stands for MHD, H stands for HMHD, the number after H gives 10εH , and K4 indicates the use of hyperdiffusivity.
Run OTH2c is started from the OTMc peak of �T .

Run ID Resolution ν or ν ′ εH τnl

OTMa,b,c 2563, 5123, 7683 1 × 10−2, 5 × 10−3, 3.3 × 10−3 0.0 5.77, 4.39, 4.01
OTH1 2563 1 × 10−2 0.1 5.88
OTH2a,b 2563, 5123 1 × 10−2, 5 × 10−3 0.2 6.07, 5.11
OTH2c 7683 3.3 × 10−3 0.2 4.11
OTH5 2563 1 × 10−2 0.5 6.26
RMa,b,c 1283, 2563, 5123 2 × 10−2, 1 × 10−2, 5 × 10−3 0.0 3.61, 3.43, 3.16
RH2a,b,c 1283, 2563, 5123 2 × 10−2, 1 × 10−2, 5 × 10−3 0.2 3.26, 3.07, 2.84
RH2K4a,b 2563 2.5 × 10−5, 7 × 10−6 0.2 2.53, 2.30

using the Orszag-Tang initial conditions. The initial relative
helicities for all Orszag-Tang runs are σM ∼ σC ∼ −0.2 and
σV ∼ 0.0. Furthermore, at εH = 0.2, σG ∼ −0.28, whereas
for both εH = 0.1 and 0.5, σG ∼ −0.26 initially. Runs using
this initial condition are denoted with an OT in Table I.

The second set of initial conditions initialize the fields uL

and uR with random phases and power spectra which follow
the form EL,R(k) = CL,Rk4 exp(−k2/k2

0). The wave number
k0 is set such that the spectra peak at k = 2 and CL and CR

are set such that 〈|uL|2〉 = 1.00 and 〈|uR|2〉 = 0.5. Noting
that ε2

H 〈|j|2〉 = 〈|uR|2〉 + 〈|uL|2〉 − 2〈uR · uL〉, the correlation
between uL and uR is set such that the initial 〈|j|2〉 and
〈|ω|2〉 are nearly equal. In the case of MHD, identical initial
conditions to the HMHD case are used even though εH = 0 in
MHD. Random runs are performed at resolutions 1283, 2563,
and 5123 with εH = 0.0 and 0.2 in all cases. Initially σM ∼
0.24, σC ∼ 0.01, σV ∼ −0.04, and σG ∼ 0.17. Two HMHD
runs with this initial condition have also been performed using
hyperdiffusivity for comparison with the regular diffusivity
results. This initial condition is denoted with an RM or RH
(for MHD and HMHD respectively) in Table I.

Physically, the OT configuration is structured with an X
point centered on a stagnation point (with a sinusoidal variation
in the third direction) so current sheets are known to form
rather rapidly. In the formulation of the OT configuration
presented here, phase shifts are introduced that break some
of the symmetry present in the traditional configuration. On
the other hand, random initial conditions are possibly more
representative of a natural flow, with less symmetries and thus
possibly more complicated to analyze in terms of structures
in physical space. Both types of initial conditions are studied
here to cover a larger dynamical range. The relative helicity
coefficients are chosen to represent generic data; indeed, if zero
or 1, they represent very specific and unlikely configurations
unless one imposes the symmetries (such as in the case of
the Taylor Green or Beltrami configurations). Moreover, when
taking the relative helicities close to unity, the nonlinear terms
are strongly damped and the evolution out of that state will be
slow [64].

The eddy turn-over time is defined as τnl ≡ Lint/〈|v|2〉1/2,
where Lint is the integral scale defined as

Lint = 2π

∫
[EV (k)/k]dk∫

EV (k)dk
. (17)

Table I also gives the value of τnl for each run computed at the
peak of �T or PT .

III. NUMERICAL RESULTS

Figure 1 plots ET and �T as a function of time for runs
RH2c and RMc. The following sections are focused on data
taken from near the peak of �T (for the two runs shown in
Fig. 1 this corresponds to t ∼ 1.925 for run RH2c and t ∼
1.75 for run RMc in simulation units) unless otherwise noted.
Despite HMHD showing enhanced small-scale activity (see
Fig. 2), HMHD tends to show slightly smaller �T than MHD
resulting in slightly different profiles of ET . The smaller �T

is linked to the steepening of the HMHD spectrum at scales
below the ion inertial length. The predicted spectral slope for
magnetic fluctuations in HMHD is steeper than −2. In the
DNS presented here the total energy spectrum also tends to
become steeper than k−2 at near 1/εH and since �T (k) =
k2ET (k), the peak of the �T spectrum will be near 1/εH . The
steepening of the spectrum is not necessarily present in MHD
until dissipation becomes significant and therefore a broader
profile to the �T (k) spectrum can be formed resulting in a
larger average value of �T when the spectrum is integrated.
Even with smaller values of �T on average, locally currents are
enhanced significantly in HMHD (see Sec. III B). Figure 1 also
shows the ratios of magnetic to kinetic energy and mean-square
current to mean-square vorticity for the same runs. In both
MHD and HMHD the flows tend to be magnetically dominated
as interpreted from either ratio; for the random initial condition
it is slightly less so in HMHD. The OT initial conditions and
other resolutions (not displayed) behave similarly except for
some slight differences in the ratios.

The behavior of the relative helicities as a function of time
are similar between MHD and HMHD and therefore are not
displayed. In all cases, σM shows the most growth over the
course of the run. The value of σG also shows significant
growth over the course of the HMHD runs likely associated
with the presence of HM in the definition of HG.

A. Behavior in Fourier space

Figure 2 shows ET (k) for the runs analyzed in this study.
The most distinct feature of the HMHD spectra is the excess
of energy relative to MHD in the small scales in all cases,
which is associated with the magnetic energy. The excess
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FIG. 1. (Color online) (a) Total energy (black circles) and enstrophy (red squares) as a function of time for RMc (dashed lines) and RH2c
(solid lines). (b) Ratio of magnetic to kinetic energy and ratio of mean-square current to mean-square vorticity as a function of time for the
same runs and in the same format as in panel (a).
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FIG. 2. (Color online) (a) ET (k) for runs OTMa, OTH1, OTH2a, and OTH5, which have varying values of εH . Vertical dashed lines mark
1/εH with colors and markers corresponding to the run. (b) ET (k) for runs OTMa,b,c and OTH2a,b,c, which have varying Reynolds numbers.
(c) ET (k) for runs RMa,b,c and RH2a,b,c, which have varying Reynolds numbers. In panels (b) and (c), Reynolds numbers Re = 〈|v|2〉Lint/ν

at the peak of �T are given in the legend. (d) Ratio of ET (k) for run RH2c to ET (k) for run RMc. The region of negative slope indicates where
HMHD is steeper than MHD. In panels (b)–(d) vertical dashed lines show 1/εH .
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of energy becomes more pronounced as εH is increased
[Fig. 2(a)]. While the spectra are similar for small wave
numbers, at moderate wave number above 1/εH , the HMHD
spectra tend to be slightly steeper than MHD consistent with
theory (however, the exact spectral slope cannot be determined
at the resolutions here) [40]. For reference, in the case of
run RH2c, the steeper region lasts from roughly k ∼ 6 to
k ∼ 20 as shown in Fig. 2(d). However, dissipation in the MHD
cases quickly causes the MHD spectra to become steeper than
HMHD; indeed, we take the same viscosity for the MHD and
HMHD runs, but due to the fact that in MHD the production
of small scales is not as intense as for HMHD, the runs have
a larger dissipation range. In runs OTH1 and OTH2a, the
steeper region is likely not evident because of the location
of the dissipation scale. Run OTH2c likely does not show a
steeper region because the run was continued from the peak
of dissipation of the MHD version and the small to moderate
wave numbers did not change significantly in the time it takes
to reach the new peak in �T .

As suggested by Meyrand and Galtier [47], another way
of examining the spectra in HMHD is to look at the energy
spectra of strongly circularly polarized fluctuations. Figure 3

plots energy spectra constructed using only wave vectors with
PM > 0.3 and PM < −0.3 or PM > 0.7 and PM < −0.7. In
both the random and OT initial conditions the left-polarized
spectra are steeper than the right-polarized spectra, as was
found by Meyrand and Galtier [47] using hyperdiffusivities,
indicating the excess energy at small scales seen in Fig. 2
is associated with right-polarized fluctuations. However, in
the random case the left-polarized spectrum dominates in the
large scales, whereas right and left polarizations are roughly in
equipartition in the large scales of the OT runs. This behavior
is likely related to the mean-square values of uR and uL

which are roughly equal initially in the OT runs and set to
be a factor of two apart initially in the random runs. Using a
threshold of |PM | > 0.3, short regions where the right and left
spectra may be compatible with spectral slopes of −7/3 and
−11/3 respectively can be found [Fig. 3(b)], consistent with
the results of Meyrand and Galtier [47]. When the threshold
is set to 0.7 [Fig. 3(c)], the −7/3 scaling extends over a wide
range in the right-polarized spectrum in run RH2c, but the
left-polarized spectrum is even steeper than −11/3. The break
in the −7/3 spectrum for run RH2c in Fig. 3(c) at k ∼ 65
roughly corresponds with the wave number kH .
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FIG. 3. (Color online) (a) Spectra for fluctuations with |PM | > 0.3 for runs OTH2b and RH2c. (b) Spectra for the same values of PM as
panel (a) but compensated by either k11/3 for positive PM (left-polarized ion cyclotron fluctuations) or k7/3 for negative PM (right-polarized
whistler fluctuations) as predicted and observed in hyperdiffusive simulations by Meyrand and Galtier [47]. (c) Spectra with |PM | > 0.7
compensated by either k11/3 for positive PM or k7/3 for negative PM . The compensated spectra are for runs RH2a, RH2b, and RH2c, which
have various Reynolds numbers. In all panels, vertical dashed lines mark 1/εH .
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the linear prediction for whistler waves. At lower wave numbers
the energy is roughly in equipartition, consistent with the behavior
of MHD. The random HMHD runs tend to be more kinetically
dominated than the OT runs or the random MHD runs at low wave
numbers.

Figure 4 plots EM (k)/EV (k) for a variety of HMHD runs.
The spectra in MHD are found to be in near equipartition
(within a factor of 2) at all scales (see, for example, Stawarz
et al. [57]), and this is the case for all of the MHD runs
performed in this study (not shown). In HMHD, the spectra
are in near equipartition at large scales and then transition
to a magnetically dominated state in the small scales, where
the spectra exactly match the whistler wave linear prediction.
In the context of a shell model for HMHD, Galtier and
Buchlin [65] also noted that a magnetically dominated regime
could be obtained under certain parameter regimes. The wave
number at which the transition occurs is above 1/εH in most
cases and moves to larger wave number as the Reynolds
number is increased. In the region of near equipartition, the
random runs have relatively more kinetic energy than the OT
runs, likely because |uR| < |uL| and left-polarized fluctuations
(expected to be kinetically dominated from linear theory)
dominate the spectra in the large scales. Based on Fig. 3, it
is not surprising the small scales are magnetically dominated
since the left polarizations fall off more steeply than the right
polarizations.

One possible explanation for the seemingly linear behavior
observed in the small scales in Fig. 4 is through the presence
of the double curl Beltrami configuration in the small scales.
To examine the role of this configuration in the dynamics
of HMHD turbulence, Fig. 5 plots σR and σL computed in
Fourier space [see Eq. (13) for the real-space formulation] for
run RH2c. Absolute values are performed before averaging
over spherical shells in Fourier space to create the spectra
to avoid cancellations of positive and negative alignment.
All HMHD runs analyzed behave similarly to the displayed
curves. If both σR and σL correspond to full alignment,
then the nonlinear dynamics stop and in the presence of a
uniform background magnetic field, B0, the linear solution is
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FIG. 5. (Color online) Spectra of the alignments associated with
the double curl Beltrami state [58] for run RH2c. The solid black
curve gives σR and the red dashed curve gives σL. An absolute value
is taken before averaging over spherical shells to avoid cancellation
of positive and negative alignment. The vertical dashed line marks
1/εH .

obtained. In the simulations presented here, no B0 is explicitly
imposed; however, it is possible for the largest scale magnetic
fluctuations to appear as a quasiuniform field to the small-scale
fluctuations, provided there is enough scale separation [37].
Starting at roughly 1/εH , σR and σL are constant at a value of
roughly 1/2. At k ∼ 40 for run RH2c, σL begins to decrease
significantly and then increases somewhat at k ∼ 100. The lack
of both large σR and σL in the small scales seems to contradict
the idea that the small scales are in a double curl Beltrami
state. However, the effect may be obscured by the difficulty of
separating B0 from the fluctuations in the current simulations.
The theory of Krishan and Mahajan [42] only requires the
nonlinear fluctuations, and not the background field, to have
the double curl Beltrami alignments.

To better understand the change in behavior present in
Fig. 4, consider the Fourier transform of the induction and
vorticity equations [Eq. (1) and the curl of Eq. (2)] neglecting
dissipation

∂bk

∂t
= ik × ([v × b]k − εH [j × b]k) (18)

∂ωk

∂t
= ik × ([v × ω]k + [j × b]k), (19)

where i = √−1, k is the wave vector, and subscript k denotes
the Fourier transform of a quantity ([...]k is the Fourier
transform of a whole nonlinear term). From dimensional
analysis, one might expect the Hall term to dominate the
induction equation at scales below the ion inertial length
(εHk � 1), so at small scales the [v × b]k term will be
neglected and v no longer influences the evolution of b.
However, it is unclear from dimensional analysis alone which
terms may be important in the vorticity equation. An important
distinction between the MHD scales and HMHD scales is that
in terms of powers of k the nonlinear terms in the induction
equation scale as the momentum equation at MHD scales and
the vorticity equation at HMHD scales.
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Different behaviors of the vorticity and therefore the
velocity fluctuations will occur depending on the relative
importance of the [v × ω]k and [j × b]k terms. If k × [j × b]k
dominates the vorticity equation, which could happen if v is
significantly more aligned with ω than b is with j, if |v||ω| �
|j||b|, or if the angles between the nonlinear terms and k are
significantly different, then the vorticity equation (with a factor
of −εH ) will evolve identically to the induction equation. We
can then write −εH ∂tωk = ∂tbk , which, assuming small-scale
fluctuations are initially zero, can be integrated to obtain
−εHωk = bk . Since each component of ωk and bk are equal the
magnitudes must be equal and, using the fact that |ωk| = k|vk|,
an expression for the ratio of magnetic to kinetic energy can be
written

EM (k)

EV (k)
= ε2

Hk2. (20)

This expression is true for both linear and nonlinear
small-scale HMHD fluctuations where the [j × b]k term
dominates over the [v × ω]k term in the vorticity equation.
Equation (20) can similarly be obtained from the magnetic
vector potential and velocity equations if the pressure term
is neglected. In the linear solution, obtaining the lower
frequency and kinetic energy dominated ion cyclotron wave
requires the influence of the [v × b]k term, which has been
neglected in obtaining Eq. (20). Equation (20) is equivalent to
the linear prediction for whistler waves in the limit εHk � 1,
which is the region where the ratios in Fig. 4 match up
with the linear prediction. Galtier and Buchlin [65] also
found a relationship between magnetic and kinetic energy
consistent with Eq. (20) for some parameters, as well as an
alternative kinetically dominated regime in other parameter
regimes based on shell-model results and it was noted through
heuristic arguments involving the balance of nonlinear time
scales that various behaviors of EM (k)/EV (k) may be linked
to the wide range of spectral slopes observed at subion scales
in the solar wind. The DNS results presented in this study
only show a transition to the magnetically dominated state.

To understand the state described by Eq. (20) in more
physical terms, first note that v is a mass weighted average
of ion and electron velocities and since ions have much
more mass than electrons, v is approximately the ion fluid
velocity. Also note that εH j is the difference between ion
and electron velocities. Therefore, the dominance of the Hall
term in the induction equation corresponds to a state where
ions are approximately stationary compared to electrons and
only electron motions are carrying the currents in the small
scales. With the Lorentz force dominating over advection
in the vorticity equation, small-scale fluctuations in v are
simply responding to the magnetic field fluctuations and in
turn electron velocity fluctuations without any significant
advection or feedback on the evolution of the magnetic field.
This behavior is similar in some ways to the electron MHD
approximation.

The relative importance of the various nonlinear terms in
run RH2c is examined in Figs. 6(a) and 6(b), which show
the ratios of the spectra associated with the nonlinear terms
[j × b]k , [v × ω]k , and [v × b]k and their curls. In the magnetic
vector potential equation, εH [j × b]k dominates over [v × b]k
at wave numbers larger than 1/εH . Since the derivative in time

of a is given by the electric field, this means that the Hall
term is dominating the electric field at wave numbers above
1/εH . The actual wave number where the Hall term becomes
dominant occurs at k ∼ 8, which is consistent with the energy
in the initial conditions mainly being located between k = 1
and k = 2, making L0 slightly smaller than 2π . In the induction
equation, εH k × [j × b]k is comparable to k × [v × b]k at
wave numbers above 1/εH but does not become dominant
until larger wave numbers. Based on the linear solution, left-
polarized waves have equipartition between εH k × [j × b]k
and k × [v × b]k at wave numbers above 1/εH [similarly
to the midrange wave numbers in Fig. 6(b)], while in the
right-polarized waves the Hall term dominates.

In the velocity equation, the term [j × b]k is found to
be comparable to [v × ω]k into the Hall regime, but in
the small scales [j × b]k is dominant. The wave number at
which the ratio [j × b]2

k/[v × ω]2
k begins to increase roughly

corresponds to the wave number where EM (k)/EV (k) begins
to increase towards the prediction of Eq. (20). In the vorticity
equation, the ratio of k × [j × b]k to k × [v × ω]k decreases
with k × [v × ω]k dominating at wave numbers above 1/εH ;
however, the ratio begins to increase at moderate wave numbers
and k × [j × b]k dominates at the largest wave numbers. The
change in behavior of the nonlinear terms in the vorticity
equation seems to be associated with the change in behavior
in the nonlinear terms of the velocity equation. The scale at
which these changes in behavior occur appear to be associated
with the scale kA, which roughly is consistent with where
EM (k)/EV (k) begins to increase. The association with kA is
consistent with the transition to the magnetically dominated
state occurring at larger wave number for higher Reynolds
number as seen in Fig. 4. While k × [j × b]k does not dominate
the vorticity equation at the scale where the energy begins to
become magnetically dominated, k × [j × b]k does dominate
the vorticity equation at the scales where EM (k)/EV (k) follows
Eq. (20) as expected. kA is smaller than the overall dissipation
wave number of the system (in this case kH ), indicating that the
interplay of dissipation with the various nonlinear terms can
lead to different regimes of HMHD turbulence. Similar results
to run RH2c are found for the other HMHD runs. Figure 6(c)
shows spectra of σjb, σV , and σC , which are the alignments
associated with the nonlinear terms. The spectra of σjb and σV

are similar at small scales indicating it is the magnitudes of
the vectors that are causing [j × b]k to dominate the velocity
equation rather than the angles between the vectors.

Although in the example shown kL seems to roughly
correspond to a change in behavior in [v × b]2

k/(ε2
H [v × ω]2

k)
and in |k × [j × b]k|2/|k × [v × ω]k|2, examination of other
runs reveals that kL is not associated with strong changes in
behavior as is the case with kA. In the runs at resolution 5123,
kH seems to be associated with the Hall term dominating the
induction equation; however, at lower resolutions this is not
necessarily the case.

The decrease in σL in Fig. 5 may be associated with
the increase in the importance of v × b compared to the
εH v × ω term [Fig. 6(a)] and increase in σC to the value of
σV [Fig. 6(c)]. Both of these quantities are relevant to σL

and show significant changes in behavior at k ∼ 40, which
is where σL begins to decrease. σL begins to increase again
when σC ∼ σV .
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FIG. 6. (Color online) (a) Ratios of the spectra of the nonlinear terms present in the magnetic vector potential, velocity, and “uncurled” �L

equations. The horizontal dashed line marks a value of unity, and the vertical dashed lines mark the ion inertial length (1/εH ) and dissipation
scales given by Eq. (5) (kA, kL, and kH ). (b) Same as in panel (a) but for the nonlinear terms in the induction, vorticity, and �L equations.
(c) Spectra of the cosine of the angles between the vectors involved in the nonlinear terms (σjb, σV , and σC). In creating the spectra, the absolute
value of the correlation is taken before averaging over spherical shells to avoid cancellation of positive and negative alignment. The vertical
dashed line gives the ion inertial length. All three plots are for run RH2c. Other HMHD runs show the same general behavior.

B. Behavior in real space

The occurrence of strong localized structures at small
scales is a hallmark of turbulent flows, for incompressible
fluids [66] (see Ref. [67] for the supersonic case), as well
as in MHD [68,69], where it can lead to finite dissipation
in the limit of small viscosity and resistivity [50]. Indeed,
in real space, coherent structures in the current, associated
with intermittency [70,71, and references therein], play an
important role. In the context of resistive MHD and Hall
MHD, velocity gradients and currents are responsible for
local dissipation of energy [50,63,68] (see also Ref. [72]). In
collisionless plasmas, the current structures in particular are
thought to play a key role in dissipation [11,73–75]; directional
discontinuities are observed as well, often attributed to the Hall
regime although they are also present in MHD at sufficiently
high Reynolds numbers [76,77].

Figure 7 shows 2D cuts for the current, vorticity, and σjb

near the peak of �T for run OTH2b. The 2D cuts are for a subset
of the domain located around the current structure containing
the maximum current. For the cut in σjb, alignments less than
0.9 are masked out to highlight the most aligned structures. In

Fig. 7, white curves mark the half-maximum current contours
and the white + marks the location of the maximum current. It
is found that for both types of initial conditions, strong currents
tend to be associated with regions of highly aligned magnetic
field and current (σjb ≈ ±1). σR shows similar results to σjb;
however, this is not unexpected since in the small scales the
Hall term dominates, which should give σR ∼ −σjb. We also
observe that in the vicinity of regions of high alignment,
σjb can vary in sign (corresponding to parallel or antiparallel
configurations of the fields), as was already observed in MHD
for the velocity-magnetic field correlation [78].

To further examine this association, Fig. 8 plots probability
distributions (PDFs) for various alignments conditioned on
the strength of the current being greater than 75% of the
maximum for runs OTH2b and RH2c. Since only a limited
number of current structures form within the domain for
the runs presented in this study, it is possible to obtain
false peaks near strong alignment in the conditional PDFs
if the current structures randomly coincide with regions of
strong alignment. However, if the current structures are not
fundamentally associated with a given alignment, the shape of
the conditional PDF can significantly change in time as current
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structures move or new current structures form. Based on the
simulations presented here, times slightly after the peak of �T

appear to have more strong current structures providing better
statistics in the conditional PDFs. Conditional PDFs have been
examined at additional times for both types of initial conditions
(see Figs. 8(a) and 8(b) for an example] and while the PDFs
for most of the alignments change shape with time, peaks at
strong alignment consistently occur for σjb. Examination of
conditional PDFs in the MHD runs (not shown), reveals that,
while there may be some association between strong currents
and highly aligned σjb, the association tends to be stronger in
HMHD. Evidence has also been found that the inclusion of
the Hall term can generate magnetic field-aligned currents in
laminar reconnection [79,80].

Figure 9 shows PDFs of the parallel and perpendicular
magnitudes of the current with respect to the magnetic field
(|j||| = |j · b|/|b| and |j⊥| = √|j|2 − |j|||2) for runs OTH2b,
OTMb, RH2c, and RMc. Both |j||| and |j⊥| have similar
PDFs, particularly for the random initial conditions. Even
though on average �T is weaker in HMHD, the PDFs extend
to greater magnitudes in the case of HMHD consistent with
more intermittent behavior. The value of |j||| reaches nearly
the magnitude of the maximum current consistent with the
findings of Fig. 7. Stawarz et al. [11] have suggested that
the destabilization of field-aligned currents plays a key role
in the dissipation of collisionless plasma turbulence, partic-
ularly in the Earth’s magnetotail. The association of intense
currents with σjb and enhancement in current magnitudes in
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FIG. 10. (Color online) (a) Autocorrelation functions of the current, vorticity, and electric field for runs OTH2b (solid lines) and OTMb
(dashed lines). In MHD, the current and vorticity autocorrelation functions are nearly identical consistent with current and vorticity structures
that are of similar scales. In HMHD, the current autocorrelation function is narrower and the vorticity autocorrelation function is wider,
consistent with thinner current structures and wider vorticity structures. Electric field structures are much narrower and follow the current
autocorrelation function at small separations in HMHD. (b) Spectra of e (Fourier transform of e autocorrelation function) for runs OTMB
(black circles) and OTH2b (red squares). The vertical dashed line marks 1/εH .
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HMHD may mean that Hall physics helps to enhance this
dissipation mechanism in collisionless plasmas.

From Fig. 7 it appears that the currents are not only
significantly more intense than the vorticity in HMHD but
also significantly thinner. One way of quantifying the size
of structures on average in a turbulent system is by con-
sidering the autocorrelation function. Figure 10(a) plots the
autocorrelation functions for j, ω, and e for runs OTH2b
and OTMb. The autocorrelation functions are normalized
by the mean-square value of each quantity such that the
value at zero separation is unity. While in MHD j and ω
have virtually identical autocorrelation functions consistent
with structures of similar size, HMHD has a narrower j
autocorrelation function and wider ω autocorrelation function.
At larger separations the HMHD j autocorrelation crosses both
the MHD autocorrelation functions indicative of more peaked
current structures in HMHD. For MHD the correlation length
defined as the integral of the autocorrelation function is 0.042
for both j and ω. For HMHD, the correlation lengths are 0.04
for j and 0.049 for ω (compared to the total box size of 2π ).
The behavior of j and ω autocorrelation functions is likely a

manifestation of the effect described in Sec. III A which causes
ω to scale identically to b in the small scales. If ω ∼ b, then j,
which is the curl of b will end up being at smaller scale (unless
the field is force free).

The HMHD autocorrelation function for the electric field
e is nearly identical to that of j at small separations and then
departs from j, ultimately becoming wider with a correlation
length of 0.048. The presence of j structures narrower than
e structures is consistent with the findings of Bhattacharjee
et al. [81] in 2D HMHD laminar reconnection. The MHD e au-
tocorrelation function is significantly wider than HMHD with
a correlation length of 0.081. At small separations the MHD
e autocorrelation is not identical to j. Enhanced small-scale
e activity has also been observed in 3D HMHD turbulence
simulations by Dmitruk and Matthaeus [52]. Smaller-scale e
activity in HMHD is expected because the Hall term, present
in Eq. (4), is important at small scales.

The e spectra, which are the Fourier transform of the
autocorrelation function, are also shown in Fig. 10(b). At
wave numbers below 1/εH the HMHD and MHD electric field
spectra are similar and at wave numbers above 1/εH HMHD
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FIG. 11. (Color online) (a) Energy spectra for Fourier modes with |PM | > 0.3 for the two hyperdiffusive runs, as well as run RH2b for
comparison. The spectra for negative PM are compensated by k7/3 and the positive PM spectra are compensated by k11/3. The vertical dashed
line marks 1/εH . (b) EM (k)/EV (k) for the two hyperdiffusive runs with runs RH2b and RH2c (note that this run has 5123 resolution) for
comparison. The vertical dashed line marks 1/εH . (c) Ratio of nonlinear terms in the magnetic vector potential equation, momentum equation,
and “uncurled” �L equation for run RH2K4b. The horizontal dashed line denotes unity and the four vertical dashed lines mark the wave numbers
1/εH , kA, kL, and kH . (d) Autocorrelation functions for the current, vorticity, and electric field in run RH2K4b and RH2c for comparison.
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has significantly enhanced electric field activity over MHD.
The behavior of the electric field spectra are consistent with
that reported by Dmitruk and Matthaeus [52].

C. Comparison to hyperdiffusive runs

As has been pointed out by numerous authors [32,41,47],
the time scale associated with the Hall term dimensionally
scales as k−2, which is the same as the scaling for the diffusive
time scale associated with Laplacian dissipation. As such, it
has been suggested that from a numerical perspective utilizing
hyperdiffusivity may produce better results in that it will allow
dissipation to cut in more sharply in the small scales resulting in
a better developed HMHD inertial range. The results may then
be more comparable to the subion scale nonlinear dynamics
present in collisionless plasmas, while still providing sufficient
dissipation for the numerics. In order to test if the method
of dissipation (regular Laplacian dissipation or hyperdiffusive
Laplacian-squared dissipation) alters the results of the previous
sections, two hyperdiffusive HMHD runs (see Table I for
parameters) are performed and compared to the runs using
regular diffusivity. The hyperdiffusive runs are analyzed at the
time of maximum of PT .

In general, runs using hyperdiffusivity give comparable
results to the regular diffusivity runs. Some examples are
shown in Fig. 11. In Fig. 11(a) the energy spectra for Fourier
modes with |PM | > 0.3 are given. While 5123 resolution
regular diffusivity runs seen in Fig. 3 show only short regions
that may be consistent with k−7/3 scaling for PM < −0.3, the
hyperdiffusive runs show regions consistent with k−7/3 scaling
from just above 1/εH until k ∼ 30 in the case of run RH2K4b.
However, PM > 0.3 still does not show a significant range of
k−11/3 scaling. Figure 11(b) shows EM (k)/EV (k) for both the
hyperdiffusive runs with regular diffusivity runs RH2b and
RH2c for comparison. In all runs a transition occurs at scales
much shorter than the ion inertial length to a magnetically
dominated state following the prediction of Eq. (20) and the
wave number of the transition moves to larger values as the dif-
fusivity coefficients are decreased. In the hyperdiffusive runs
the transition from near equipartition to EM (k)/EV (k) = ε2

Hk2

is steeper than in the regular viscosity runs. When examining
the ratios of the nonlinear terms in the magnetic vector
potential (equivalent to the electric field equation), momentum,
and “uncurled” �T equations for run RH2K4b [Fig 11(c)]
similar features are seen to the the regular diffusivity run
shown in Fig. 6(a). The Hall term dominates the electric
field at wave numbers above k ∼ 8. At kA ∼ 28 a transition
occurs in the momentum equation where the Lorentz force
becomes increasingly important and eventually dominates the
equation. The wave number kA also roughly coincides with
the beginning of the transition to the magnetically dominated
state in Fig. 11(b) as also found in the regular diffusivity runs.
Figure 11(d) shows the autocorrelation functions of j, ω, and
e for runs RH2K4b and RH2c (also see Fig. 10 for another
regular diffusivity example). Again the curves show similar
general features between hyperdiffusive and regular diffusive
runs. At small separations the ω autocorrelation tends to be
wider than the j autocorrelation with a crossover that occurs
at larger separations. The e autocorrelation is similar to the
j autocorrelation at small separations but ultimately wider at

large separations. Other results discussed in this paper, but not
shown in Fig. 11, are likewise similar between hyperdiffusive
and regular diffusivity runs.

IV. DISCUSSION AND CONCLUSIONS

In this study, 3D direct numerical simulations of Hall MHD
turbulence are examined in both Fourier and real space and
compared to MHD simulations. Runs using both traditional
Laplacian dissipation and hyperdiffussive Laplacian-squared
dissipation are performed and similar results are obtained
regardless of the dissipation operator used. It is found that
at small to moderate wave numbers, which can extend to
scales below the ion inertial length, EM (k)/EV (k) is in near
equipartition. Unlike MHD, at large wave numbers the ratio
becomes magnetically dominated and scales as ε2

Hk2 which
is consistent with the behavior of linear whistler waves.
However, it is shown that this scaling is also consistent
with nonlinear fluctuations when the j × b terms (Lorentz
force and Hall terms) are dominant in the equations. The
transition to the magnetically dominated state, which may
be akin to the electron MHD regime where ions are taken
to be a dynamically unimportant neutralizing background, is
found to occur when the v · ∇v term becomes subdominant to
dissipation. Unlike MHD, this length scale potentially differs
from the overall dissipation scale of the system. The near
equipartition of energy into the Hall regime is strongly linked
to the nonlinearity of the system, since the v · ∇v term does
not contribute to the linearized system. While the simulations
presented here are performed in the presence of viscous and
resistive dissipation, the results suggest that examination of the
ratio of magnetic to kinetic energy spectra may provide insight
into the behavior of dissipation in collisionless plasmas or at
least provide an indication of the relative importance of the
various nonlinearities in the system.

The spectra of right- and left-polarized fluctuations in
HMHD turbulence have also been examined in the man-
ner proposed by Meyrand and Galtier [47]. The ratio of
〈|uR|2〉/〈|uL|2〉 in the initial conditions seems to have an
effect on the relative amplitudes of the right- and left-polarized
spectra and therefore affects the exact ratio of EM (k)/EV (k) in
the near equipartition region. Smaller ratios of 〈|uR|2〉/〈|uL|2〉
appear to be associated with more kinetic energy. The slope
of the right- and left-polarized spectra have short regions
that may be consistent with k−7/3 and k−11/3 respectively
when considering moderate to large polarizations (|PM | >

0.3) and regular diffusivity. However, when considering just
strongly polarized fluctuations (|PM | > 0.7) left-polarized
fluctuations show a much steeper spectrum than k−11/3 while
right polarization has a significant k−7/3 region. When using
hyperdiffusivity the region consistent with k−7/3 is somewhat
enhanced for PM < −0.3.

Current structures in HMHD are found to be narrower
and more intense than in MHD, as has been noted by
various other authors [46,49,51]. In particular, it is found that
while current and vorticity structures have nearly equal sizes
on average in MHD, in HMHD current structures become
narrower and vorticity structures become broader. Evidence
is also found that there may be a relationship between the
strong current structures and alignment between the current
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and magnetic field. This behavior somewhat differs from the
idea of strong currents forming in the boundary between
regions of strong alignment, which has been proposed in the
context of MHD [78,82]. Alignment between j and b within
strong current structures may be of particular importance in
collisionless plasmas where intense field-aligned currents can
be unstable.

Electric field autocorrelation functions are found to be
significantly narrower in HMHD than in MHD and to behave
similar to the current autocorrelation function at small separa-
tions. The similar behavior to the current autocorrelation may
be of use for in situ measurements of space plasmas, since the
electric field is often easier to obtain than the current. However,
further understanding of how additional kinetic effects alter
this behavior is necessary to use this feature in space plasmas.

Additional simulations may provide further insight into
some of the results found here. In light of the EM (k)/EV (k)
findings, studies varying the magnetic Prandtl number such
that ν �= η (in particular ν < η) may be interesting in HMHD,

since this can alter the ordering of the various dissipation scales
and could produce different behavior. Simulations with an
explicitly imposed B0 could provide more insight into the role
of the double curl Beltrami configuration in the small scales.
Finally, simulations with smaller-scale initial conditions or
forcing, such that more strong current structures are generated
and better statistics are obtained, would help to characterize
the relationship between current structures and alignments.
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