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To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis
ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-
spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular
activator substances in the environment, causing the whole body to translate and rotate. The concentration of the
chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the
body for diffusive movements; also the variation of activator substance’s concentration in the environment breaks
the symmetry of linkers’ preferred state, resulting in the drift of the random walker along the gradient of the
density of activators. External food or danger sources may attract or repel the body by producing or consuming
the chemical activators of the organism’s enzymes, inducing chemotaxis behavior. Generalization of the model
to three dimensions is straightforward.
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The problem of swimming at a low Reynolds number is
relevant to life on the microscale [1]. But swimming is not
enough as the living cells should look for what they need.
Although at a first glance the movement of a single-cell
microorganism seems random, the ability to approach food
resources or escape from hazards (chemotaxis) is essential for
life [2,3]. Many simple and self-propelled microswimmers at
low Reynolds numbers have been suggested [4–7]. To find
how such swimmers can simulate a chemotaxis process, one
should investigate the problem in more than one dimension.

Recently Najafi and Golestanian have introduced a simple
swimmer and showed that it works well at low Reynolds
number [8]. The swimmer consists of three solid beads
contacting with two extensible tiny linkers in a line. The
linkers change their length in a nonreciprocal but cyclic way.
Because of the screening effect the viscous friction, applied
to the beads by the fluid, depends not only on their speed but
also on the distance between the beads. Thus the swimmer
displacements do not cancel each others in a full period, and
it swims. Simplicity of this swimmer makes it very interesting
with the hope of construction of artificial swimmers [9], but
life is not so simple. Cells are three-dimensional bodies with
membrane walls.

Here we introduce a 2D variant of this low-Reynolds-
number swimmer. The model again is constructed with three
solid beads,with radius R, but connected by three arms with
negligible thickness and length L, forming a triangle (Fig. 1).
The triangular swimmer can easily be generalized to three
dimensions in triangulated mesh membrane models [10].

The proposed swimmer is based on a chemical mechanism
in which arms can change their length as a result of interaction
with chemical substances in the environment. Interactions
make the movement stochastic and result in random movement
of the whole body with drift. Considering the symmetry of the
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system, it is expected that the swimmer only moves in the
plane of the triangle. Thus we call it a 2D swimmer.

There have been other attempts to introduce 2D and 3D
swimmers [5–7,11]. Random movement of the swimmer
in a low Reynolds number in a noisy environment has
been reported ([12,13]). Also enhanced diffusion caused by
reciprocal swimming [14] and stochastic swimming [15] are
discussed in recent literature. However, our swimmer model
shows chemotaxis behavior and could simply be generalized
to three dimensions.

In the model swimmer, any linker of the triangle body
may reduce its length from L to (1 − ε)L with a speed
W or restore its original length with the same speed. For
low Reynolds numbers, the nonlinear term of Navier-Stokes
equation is negligible and the equation that describes the
hydrodynamics of the swimmer in an incompressible flow
condition, ∇ · u = 0, is μ∇2u − ∇p = 0, where p and u
represent the pressure and velocity fields and μ denotes the
fluid viscosity. Zero velocity at far distances, and a no-slip
boundary condition on each sphere, are assumed, and the
dynamical effects of the linkers on the swimmer’s motion are
neglected. Following Ref. [8] the linear form of the equations
lets us find a relation between velocity of the sphere (Vi) and
the force applied to it (Fi) as Vi = ∑3

j=1 Hij Fj , where Hij

is the symmetric Oseen tensor that depends on the geometry
[11]. By considering Newton’s laws and conservation of linear
and angular momentums (

∑
Fi = 0 and

∑
ri × Fi = 0), the

set of equations are complete and can be treated numerically.
The limited number of possible configurations of the body lets
us solve the equations for any geometry once and save them
to perform our simulations.

An advanced swimmer’s movement can be explained by
an ordered model in which arms open and close in a specific
order. A full period of the cycle consists of six steps as shown
in Fig. 1. Starting from a relaxed situation, in half of one
cycle the linkers shrink in turn, and then they relax in the
next half cycle in the same order. After a full cycle, the body
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FIG. 1. (Color online) A full regular cycle started by contraction
of one of the arms (e.g., arm 1–2 here) while the other arms follow it.
After a half cycle they revert to their relaxed states in the same order.
The last snapshot compares displacement of the swimmer after a full
cycle with its initial position.

returns to its initial configuration but with a net displacement
of the center of mass (COM) and a net rotation around it
because of the hydrodynamic interactions between the balls.
The total rotation and displacements of the body after a full
cycle are shown in Fig. 2. If the swimmer keeps continuing its
regular cycles, displacements in the end of the cycles are the
same with just a constant rotation. Hence the swimmer’s COM
completes a circular path of radius ρ = | ��|/�θ after 2π/�θ

full cycles. The radius of the rotation [Fig. 2(b)] is smaller
than R for possible values of ε, and much less than the size of
the swimmer, L; hence in this mechanism the swimmer rotates
almost in place and acts as a fixed rotator.

However, it is quite probable that sources of randomness,
e.g., thermal or chemical fluctuations, perturb our swimmer’s
regular cycles. For example, we suppose that in the end of any

cycle the swimmer continues this cycle with a probability
(1 − p) or starts a new cycle with probability p which is
different from the old one either in the cycle direction or in
the starting arm. Therefore, the swimmer follows circular arcs
which are kinked in points of perturbation. This introduces a
very interesting run and tumble 2D walk which is composed
of curved runs with 120◦ kinks in between (see Fig. 3). For
p � 1 we can use a continuum approximation by introducing
the rate of direction change η = p/�θ , which results in
a diffusion coefficient D = ωρ2η/[2(1 + η2)], where ω =
�θ/τ is the angular velocity of the swimmer along the arcs
and ρ = �R/�θ is the radius of regular movement. Detailed
calculations are presented in the Supplemental Materials [16].
As one expects for very small values of p the diffusion
coefficient vanishes, because most of the time the swimmer
acts like a fixed rotator and does not move far.

Similarly in the case of a linear swimmer (a swimmer
alternatively switching the direction of its cycle), such noise
results in a much more familiar random walk with 120◦
kinks and straight steps. As in the previous case, we suppose
a probability p per cycle for a change in the swimmer
direction, which results in D = v2τ/2p2, where v = �R/τ

is the velocity of moving in a straight line. In this case
the diffusion coefficient is a descending function of p in
contrast to the first mechanism. The reason is that, whereas
with the first mechanism the swimmer almost rotates in place
and randomness helps it to move, in the latter mechanism
the swimmer moves forward with a constant velocity, v, and
randomness perturbs its directed motion.

The proposed model demonstrates a moving mechanism
with a tendency for moving toward a particular direction. The
proposed scenario may seem ad hoc without an unrealistic
assumption; however, this idea can easily be modified to
design a purposeful moving mechanism based on the physical
foundations of the microworld. First, we will show that having
a regular cycle after launching the first arm is not necessary for

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

10
−1

10
0

10
−6

10
−4

10
−2

m=2

Δθ/10

(a) (b)

ΔY/R

ΔX/R

FIG. 2. (Color online) (a) After a full cycle, the body both rotates and moves. The movement, ��, can be decomposed to the component
parallel, �X, and perpendicular, �Y , to the initial direction of the starter linker. (b) The displacements and rotations are shown for relaxed
arm length L = 10R as a function of contraction, ε. Inset shows the displacements in a log-log plot, which indicates that they are second order
with respect to ε. The triangular geometry of the swimmer restricts ε to be not greater than 1/2 (see intermediate steps in Fig. 1).
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FIG. 3. (Color online) A typical path of the swimmer in 500
cycles for L = 10 and ε = 3, which is perturbed by the probability
p = 0.1. All the arcs have the same radius. The kinks are 120◦

because of the triangular symmetry of the swimmer. The arc lengths
are random and have an exponential distribution.

moving in a specific direction. Second, we present a chemical
mechanism for perturbing the probability of selecting arms:
consider the situation in which micromachines, which are
responsible for the change of the length of the linkers, are sen-
sitive to the concentration of chemicals in their environment.
For instance, we can assume the presence of some chemical
nearby linkers that affect chemical equilibrium according to Le
Châtelier’s principle: the probability of staying in the closed
state for linkers, such as mechanochemical enzymes, may be
dependent on the concentration of chemicals near that linker,
and bonding with the linker results in expansion. In the case
of space-varying concentration of activator chemicals, the
transition rate between relaxed and contracted states of body
arms is not symmetric, so the swimmer may be drifting to a
particular high or low concentration zone.

We can assume that microchemical motors of arms act
like enzymes, which we call E, and they can contribute
microchemical reactions. It changes the substitute, S, to a final
chemical product of P : the enzyme, E, combines with S and
produces ES; then ES becomes EP ; and finally, E takes apart
from P :

S + E ⇐⇒ ES ⇐⇒ EP ⇐⇒ P + E. (1)

ES and EP are states in which the enzyme has a different
form from E; we can assume that in states ES and EP the
arm is open and in state E the arm is closed. These reactions
are shown in Eq. (1). All the reactions are bilateral, but we
can assume that transition from EP to P + E is fast and one
way because of the low concentration of P in the environment.
Thus we can simplify the reaction with the given rates:

S + E
k1⇐⇒
k2

ES
k3=⇒ P + E. (2)

Transformation from S + E to ES is also proportional to
the concentration of S in the environment, cs , so it is equal
to k1 · cs . Transformation ES to S + E does not depend

on the concentration of S, thus it is equal to k2. Also the
transformation of ES to P + E does not depend on the
concentration of chemicals and is just equal to k3. Thus we
can find the probability of an arm remaining closed or open
for time interval t as

p(t) = e
−t
τ , (3)

where τ is characteristic time of being in closed or open states,
respectively. Here we conclude that to is constant,

to = 1

k2 + k3
, (4)

and tc depends on chemical concentration,

tc = to
km

cs

, (5)

where km = (k2 + k3)/k1.
Now we consider a given configuration for the swimmer

with three links are numbered from 1 to 3, which may be in
either open or closed state. Having the time constants of the
transitions [Eqs. (4) and (5)], the probability that one of the
links, e.g., number 1, changes its state before two others is
given by

t2t3

t1t2 + t2t3 + t1t3
, (6)

where ti is the time constant of i’s arm that according to its
state can be either to or tc. Consider the case that cs is equal to
km, so that to is equal to tc and the probability of choosing an
arm is independent of the state and is equal to 1

3 . As well, if
cs � km,to � tc, thus the closed arms are chosen sooner than
the others for changing state, and after some transformation
the body reaches the state in which all three arms are open;
after that each arm is chosen to be closed by probability 1

3 , and
if an arm is chosen to be closed, the same arm is chosen in the
subsequent step to become open. On the other hand, in the case
that cs � km,to � tc and the open arms are chosen before the
others, the system will reach the state in which all of the arms
are closed; in this stage each of the arms is chosen to become
open with equal probability, but the same arm will be selected
for closing again. In both of the limit cases, after transitory
steps, each state change for a given arm is quickly reversed,
because of the tendency for being in a particular state. Hence,
the consecutive state changes cancel each other out, because of
the reversible feature of the microworld, and movement ability
fails. Therefore, if the swimmer wants to move, cs should be
on the order of km. It means that the swimmer is designed to
swim in a specific concentration.

Now consider a special case that the concentration of S,cs

is homogeneous in space, so the time constant of arms in
each state is the same for all arms; by simulation, we have
driven the diffusion coefficient as a function of cs

km
, depicted in

Fig. 4. As discussed above, in the limits cs � km and cs � km

the diffusion coefficient converges to zero. Also, there is an
asymmetry in the figure between the diffusion coefficient in
low and high concentrations. At low cs , the time of an arm
remaining closed is so large and the time of an arm remaining
open is unchanged so that arms are mostly closed. In this
case the average time between steps is tc which is too large
compared with to. On the other hand, at high cs the time of an

063035-3



EBRAHIMIAN, YEKEHZARE, AND EJTEHADI PHYSICAL REVIEW E 92, 063035 (2015)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−5

s
/k
m)

D

 

 

Numerical Values
Fitted Curve

In(c

FIG. 4. (Color online) Diffusion coefficient is as function of
log cs

km
. The length of arm in the long state L = 10R and the

contraction ratio ε = 0.3.

arm remaining closed becomes small and the time of an arm
remaining open is unchanged, so in most times all arms are
open; however, in this case the average time between steps is
to, which is much less than the average time between steps in
case low cs . Therefore, the body moves more often than the
case of low cs , so the diffusion coefficient is larger.

In the previous discussion the concentration of activator
substance, S, is assumed to be homogeneous in space; consider
the case in which concentration is varying in space. In this case
if all arms are open, because to is independent of concentration,
the probability of changing states is the same, but when one or
more of the arms are closed, the probability of changing state is
different, so the symmetry of the movements is broken and the
body may move to high or low concentrations, demonstrating
a diffusion with drift.

In the first order of expansion with respect to concentration
variation, the drift velocity can be written in the form
u = f (c)∇ log(c), where c is the concentration of chemical
activator and f (c) determines the slope of drift with respect to
environmental variations. Figure 5 plots the simulation results
for f (c). The unit of f (c) is R2/τo, where R is the radius of
spheres and τo is expected time of an arm to stay relaxed. It
can be seen again that in limit cases cs � km and cs � km

the movement ability fails, because as discussed above, the
consecutive state changes cancel out each other. The figure also
shows an asymmetry similar to Fig. 4, which can be explained
again by the fact that the time between steps is different in the
two limit cases.

In the proposed model, the presence of chemicals adopts
the preference of arms to be in their relaxed state. As a result,
on average the swimmer moves towards the high concentration
area, and it escapes the low concentration area. Thus the
swimmer shows a perfect chemotaxis behavior. It approaches
food resources when the closest arm to the food is more
probable to revert to the restored state, and it escapes when
the closest arm to the hazards prefers to be in the shortened or
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FIG. 5. (Color online) The average drift velocity response of a
swimmer to variation slope of space-dependent concentration of
chemical activators, as a function of concentration. For c = 1,
expected time of being in a closed or open state for each arm is
equal. Numerical results are based on enough number or time of
simulations to reach precise average values.

relaxed state because of release or consumption of chemical
stimulator by foods or dangerous objects.

To demonstrate this effect, we introduce a low-Reynolds
predator-prey system. A tiny prey is swimming in the media.
We assume that the hydrodynamic effect of the prey on
the motion of the predator is negligible, but its metabolism
somehow changes the chemistry of its environment in a way
that our swimmer’s (predator’s) arms prefer to be in the
relaxed state when the predator is close enough (to sense
the chemistry). Figure 6 shows the geometry of our model
predator and prey. The chemical concentration of environment
is affected by the prey, which changes by 1

r
in the environment,

where r is the distance from the prey. The probability of
changing the states of arms from closed and open states are

FIG. 6. (Color online) To introduce the predator it is supposed
that the prey is a source of chemicals which affect the linkers’
dynamics. The large red and small blue circles indicate the size and
COM of predator, respectively. The arms of the predator swimmer
are presented by blue triangles. The prey is the blue point with green
circle.
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simulated by the rules discussed in Eqs. (3) and (6). The movie
in the Supplemental Material [16] shows how the swimmer
chases its prey. In movie s1 the swimmer is chasing an escaping
animal. The smaller body (prey) is doing a simple random walk
and avoids the predator only with a simple hard core repulsive
potential. It can be seen that the predator follows the prey with
random perturbation showing the chemotaxis behavior.

Finally, it can be seen that extending the predator swimmer
model to three dimensions is very straightforward. The
simplest geometry is a tetrahedron of four spheres, connected
by six arms. Again, each arm can change the length as in a 2D
model. At any step one arm changes its state. The equations of
motions are similar to the 2D case, and we should only solve a

bigger system of equations to find the spheres displacements.
The translational and rotational displacements corresponding
to this motion are smaller but still on the same order as
the 2D swimmer, because the screening effect is weaker in
the 3D case. Again, if we consider asymmetry in the rates
of transitions, the chemotaxis effect on the motion of the
swimmer is observed and can help it to move toward (or escape
from) the sources of perturbations in 3D space.
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