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Radiation-pressure-induced nonlinearity in microdroplets
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High quality (Q) factor whispering gallery modes (WGMs) can induce nonlinear effects in liquid droplets
through mechanisms such as radiation pressure, Kerr nonlinearity, and thermal effects. However, such nonlinear
effects, especially those due to radiation pressure, have yet to be thoroughly investigated and compared in the
literature. In this study, we present an analytical approach that can exactly calculate the droplet deformation
induced by the radiation pressure. The accuracy of the analytical approach is confirmed through numerical
analyses based on the boundary element method. We show that the nonlinear optofluidic effect induced by the
radiation pressure is stronger than the Kerr effect and the thermal effect under a large variety of realistic conditions.
Using liquids with ultralow and experimentally attainable interfacial tension, we further confirm the prediction that
it may only take a few photons to produce measurable WGM resonance shift through radiation-pressure-induced
droplet deformation.
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I. INTRODUCTION

Optical whispering gallery modes (WGMs) in dielectric
microspheres have been extensively investigated for various
applications such as quantum electrodynamics [1] and chemi-
cal and biological sensing [2,3]. Due to the high quality factor
(Q factor) and small mode volume of WGMs, many nonlinear
optical effects can be significantly enhanced in such resonators
[4–6]. While most existing research used solid structures as
WGM resonators, it has been shown that a microsized liquid
droplet immersed in a fluid with lower index can also serve as
a good optical resonator [7,8].

During the past decade, there has been significant devel-
opment in the field of optofluidics, where one used fluids
to achieve various optical functionalities such as lasing
[9], sensing [3], and tunable photonic devices [10]. Optical
techniques have also been used in the characterization of liquid
properties [11,12]. The mechanical interplay between optical
fields and solid structures has been widely explored in the
context of optomechanics [13–16]. By contrast, the impact of
optical force on fluidic systems have only been investigated
in a limited number of cases [17–23]. In general, optical
fields can interact with the fluid system through radiation
pressure, scattering force, or thermal capillary force. Ashkin
et al. [17] first demonstrated that a flat liquid surface can
be deformed using focused laser pulses. Later experiments
on flat and spherical fluid interfaces with different fluid
properties confirmed the effect of radiation pressure on fluid
interfaces [18,20–23]. Brasselet et al. [22], for example,
showed that a stable liquid column can be generated and
sustained by the radiation pressure on a system with ul-
tralow interfacial tension (∼1.75 × 10−7 N/m). Theoretical
and boundary element models were developed to study fluid
motion and interface deformations of a flat fluid interface
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produced by the radiation pressure [20,24]. For liquid droplets,
analytical theories were also developed to predict the radiation-
pressure effect [19,25–27]. A theoretical description of the
droplet shape dynamics was developed in the aforementioned
work to quantify the effect of radiation pressure on the drop
interface. In a recent work [28], large droplet deformation
under optical pressure was also predicted numerically when
low interfacial tension was assumed (∼1 × 10−6 N/m).

Most research to date analyzed the interplay between
optical fields and liquids in isolation and did not consider them
as a single coupled system. For example, Refs. [19,20,25–27]
investigated the deformation of liquid systems due to the
radiation pressure of a focused laser beam. The impact of
the deformed liquid systems on the optical fields, however,
was not considered. In a recent work [29], we first considered
optical fields and liquids as a single system coupled together
through optical radiation pressure. Under such a framework,
we predict many interesting phenomena such as optofluidic
solitons and single-photon-level nonlinearity. In particular,
we demonstrated that the existence of radiation pressure on
microsized droplets can lead to a large WGM resonance shift
that is analogous to the Kerr effect, which is a classical
third-order nonlinear process. However, our previous analysis
in [29] was based on several approximations. The validity
of these approximations was not justified through rigorous
analyses. Additionally, the exact shape of the deformed droplet
was not obtained.

A major objective of this work is to present an analytical
framework that can exactly calculate the deformation of the
droplets induced by the radiation pressure of the WGMs. The
validity of this analytical method shall be confirmed through
direct comparison with numerical fluid simulations based on
the boundary element method. The results of our analytical
and numerical calculations can also be used to justify the
approximation we made in [29]. Additionally, in this study,
we quantify the magnitudes of nonlinearities associated with
the thermal and Kerr effects, as well as the optofluidic effect
induced by the radiation pressure. Specifically, in Sec. II,
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deformations of the droplet interface are solved analytically
by force balance on the interface and numerically by the
boundary element method (BEM). Section III discusses the
thermal effects of the WGM on the refractive index and
droplet volume using the BEM. Nonlinearities associated with
droplet interface deformation and thermal and Kerr effects
are compared in Sec. IV. Finally, the effect of fluid interface
tension and the feasibility of single-photon-level nonlinearities
are analyzed in Sec. V.

II. RADIATION-PRESSURE-INDUCED DROPLET
DEFORMATION

A. WGM in a droplet

We consider a high-Q WGM circulating along the equator
of a high-index liquid droplet (core) immersed in a low-index
immiscible fluid (cladding). For a typical drop, its radius a is
of the order of 100 μm, and the density difference �ρ between
two fluids is about 200 kg/m3. Such an optofluidic system pos-
sesses a low Bond number (Bo = �ρga2/σ ∼ 10−3, where
the surface tension σ ∼ 30 mN/m) and a low Reynolds num-
ber (Re = ρUa/μ ∼ 10−2, where the characteristic velocity
U = 10−3 m/s and fluid viscosity μ = 13 mPa s). Given the
low Bond and Reynolds numbers, we can safely ignore gravity
and inertia effects in our analysis. In this paper, we denote
variables associated with the core phase with subscript “co”
and the cladding phase with subscript “cl”.

To simplify our analysis, the optical field in the resonator
is assumed to be a transverse electric (TE) mode, which can
be expressed as [30]

�Elm = gl(kr) �Xlm(θ,φ),
(1)

�Hlm = − i

kZ
�∇ × [gl(kr) �Xlm(θ,φ)],

where mode numbers l and m satisfy l > 0, − l � m � l; ω

and k are the frequency and wave number, respectively, of
the WGM, where k = kco = ωco/c in the droplet core and
k = kcl = ωcl/c in the cladding region; Z is the impedance of
the liquid; �Xlm(θ,φ) is the vector spherical harmonic function;
gl(kr) is either the spherical Bessel function (if in the core
phase) or the spherical Hankel function (if in the cladding
phase),

gl(kr) =
{

Acojl(kcor), r � a,

Aclh
(1)
l (kclr), r > a,

(2)

where Aco and Acl are two constants to be determined by
matching the optical field across the drop interface. The field-
matching process also gives the frequency ω of the WGM. We
denote the WGM in Eq. (1) as |l,m〉. Once the WGM frequency
is known, we can readily determine the field distribution of
the WGM using Eqs. (1) and (2). For more details, refer
to Ref. [29]. In this paper, we are primarily interested in
the fundamental WGM with l = m � 1, which corresponds
to a high-Q WGM circulating along the droplet equator, as
illustrated in Fig. 1.

As demonstrated in [29] and illustrated in Fig. 1, the
radiation pressure of the WGM can deform the liquid resonator
and produce a large shift in the WGM resonance frequency.

FIG. 1. (Color online) Schematic of a droplet containing a high-
Q WGM circulating along the equator with a deformed interface.
A spherical coordinate system (r,θ,φ) is defined to assist further
analysis.

The radiation pressure of the WGM can be calculated as [29]

popt = 1
2ε0

(
n2

co − n2
cl

)| �Esurf|2, (3)

where ε0 is the free space permittivity, nco and ncl are refractive
indices of the liquid core and cladding, respectively, and �Esurf

is the electric field on the interface. Given the expression in
Eq. (3), the radiation pressure popt of the WGM is proportional
to the total circulating power (PWGM) associated with the
WGM. As in [29], PWGM can be calculated through a surface
integration of the Poynting vector component Sφ over a cross
section on any φ = constant plane (as shown by the dashed
rectangle in Fig. 1),

PWGM =
∫∫

SφdA. (4)

In Secs. II B and II C, we describe two different approaches
that can calculate the interface deformation and fluid motions
induced by the radiation pressure on the droplet.

B. Balanced interface shape

On a stationary fluid interface, the forces on the interface
must be balanced by the interfacial tension. When the optical
radiation pressure is applied on the interface, the Young-
Laplace equation implies

σ �∇ · n̂ = pco − pcl + popt, (5)

where σ is the interfacial tension and n̂ is the unit normal
vector to the surface. Bulk pressures in the core and cladding
phases are pco = p0

co + �p and pcl = p0
cl, respectively. Here,

p0
co and p0

cl are equilibrium pressures in the core and cladding
phases before deformation, which satisfy 2σ/a = p0

co − p0
cl.

�p is the pressure increase inside the droplet caused by
the optical pressure, which is determined later. The Young-
Laplace equation for a spherical droplet with the radiation
pressure becomes

σ �∇ · n̂ = σ
2

a
+ �p + popt. (6)

Assuming axial symmetry and using spherical coordinates,
we can describe the interface shape as r(θ ) = a + �R(θ ),
where �R(θ ) is the interface deformation. Hence, the interface
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curvature ( �∇ · n̂) can be calculated based on the form of
�R(θ ). We can further normalize the shape deformation
by a as h(θ ) = �R(θ )/a. Under the assumption of small
deformation (h � 1), the Young-Laplace equation (6) is
linearized as

h′′(θ ) + cot(θ )h′(θ ) + 2h(θ ) = − a

σ
(�p + popt). (7)

The unknown �p value in Eq. (7) serves as a Lagrange
multiplier to ensure the volume conservation of droplet. For
a given trial value of �p, Eq. (7) is integrated numerically
to produce a solution h(θ ), from which the droplet volume is
calculated. Among all the trial values of �p, the only �p that
satisfies the conservation of the droplet volume is assumed to
be the true value.

Due to the linearity of Eq. (7), it is clear that h(θ ) is
proportional to 1/σ and the magnitude of popt (∝PWGM)
(see Appendix A). This relation holds as long as the small
deformation assumption is valid.

C. Boundary element method

The motions of the fluid interface and volume are governed
by the Navier-Stokes equations. Stokes equations can be
applied to this problem as a consequence of the low Reynolds
number. Stokes equations and incompressibility condition are
written as

−�∇p + μ∇2 �u = 0, �∇ · �u = 0. (8)

Stokes equations can be solved numerically by the BEM
[31]. For a two-phase fluid system with a sharp interface, the
interfacial velocity and pressure are related by the following
boundary integral equations,

�u(�x0) = − 1

4πμcl(1 + λ)

∫
S

(σ �∇ · n̂ − popt)n̂ · U(�x0,�x)

× dS(�x)+ (1−λ)

4π (1+λ)

∫
S

�u(�x) · K (�x0,�x) · n̂(�x) dS(�x),

(9)

where λ = μco/μcl is the viscosity ratio of the core and
cladding phases; “S” denotes the interface of the droplet; and
position vectors �x and �x0 are located on the fluid interface.
Also, U and K are Green’s functions for Stokes flow in free
space,

U(�x,�y) = 1

d
I + 1

d3
�d �d, K (�x,�y) = − 6

d5
�d �d �d, (10)

with �d = �x − �y, d = |�x − �y|, and I is the identity tensor.
Due to the axisymmetric nature of the geometry and bound-

ary conditions, we can integrate Eq. (9) over the φ variable
analytically to simplify the numerical implementation. The
resulting boundary integral equations and Green’s functions
are well known and available in literature [31,32].

In our simulations, the fluid interface on the φ = constant
plane is discretized into N circular arc elements, and �x0 are
located at the center of each element. Assuming constant
surface velocity and pressure on each element, Eq. (9) can
be discretized and written as a linear system relating the
unknown interface velocity ({vi}) and the known pressure

({fi} = (σ �∇ · n̂ − popt){n̂i}) vectors,

Aijvj = Bijfj , (11)

where [Aij ] and [Bij ] are 2N × 2N matrices whose entries are
integrals of U and K on the interface elements.

The solution to the above linear system gives the velocity
at the center of each element on the interface. Velocities at the
end points of each element are interpolated by a cubic spline
with vanishing derivatives at θ = 0,π . The element edges and
center displacements are integrated over time by an explicit
Euler scheme, i.e., ��x = �u�t , and a new interface shape is
obtained for the following time step. The time step size is
chosen by the criteria �t � τm = (μco + μcl)l/(2σ ), where
l is the element size [33]. This process is iterated until the
maximum velocity magnitude |�u| is sufficiently small.

In our simulations, we find that N = 128 elements are
sufficient to resolve the interface shape. Each numerical
simulation takes about 10–12 h of CPU time until a convergent
interface shape is obtained.

III. THERMAL NONLINEARITY

The optical power (PWGM) carried by the WGM in the
resonator can possibly be absorbed by the liquid and converted
into thermal energy. Therefore, the droplet temperature may
change, which should lead to changes in the optical properties
of the droplet as well as the WGM. In this section, we provide
an order of magnitude estimate on the thermal effects.

First, we define the steady-state temperature change (T ) as
the temperature variation induced by the WGM energy. The
spatial variation of T in the liquid, which is induced by a heat
flux associated with the absorption of the WGM, is governed
by the Poisson equation

∇2T (�x) = g(�x), (12)

where g(�x) = −αSφ/κco [34], α is the absorption constant of
the droplet core, and κco is the thermal conductivity of the
core liquid. Here we assume that optical absorption occurs
predominantly in the droplet core, and all absorbed optical
energy is converted to heat.

The solution of temperature field within the droplet core
can be easily obtained from the results in [30]

T (�x0) = −
∫

V

g(�x)G(�x,�x0)dV (�x)

−
∫

S

G(�x,�x0)[n̂(�x) · �∇T (�x)]dS(�x)

+
∫

S

T (�x)[n̂(�x) · �∇G(�x,�x0)]dS(�x), (13)

where G = 1/(4π |�x − �x0|) is the free space Green’s function
and “V ” denotes the core fluid volume. The temperature
change in the cladding phase is also governed by Eq. (13)
with corresponding fluid properties.

In our simulations, we assume the continuity of temperature
and heat flux at the droplet interface. We also assume that in
the cladding region far away from the droplet, liquid temper-
ature remains unchanged. Similar to the techniques used in
Sec. II C, we also take advantage of the axisymmetry of the
problem and introduce a discretization of the boundary on the
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φ = constant plane. We can then relate the discretized interface
temperature values ({Ti}) to the known volume integral ({I v

i })
at the boundary elements by a linear system similar to Eq. (11),

HijTj = I v
i , (14)

where [Hij ] is an N × N matrix whose entries are integrals of
the Green’s function on the interface elements.

The thermally induced refractive index change (denoted as
�nT ) can be estimated by

�nT = dn

dT
Tmax, (15)

where (dn/dT ) is the thermal coefficient of refractive index
and Tmax is the maximum temperature change in the droplet.

The droplet may also expand in size as its temperature
increases. To estimate the effect of thermal expansion, we
consider the change in droplet radius near its equator, �RT ≡
�R(θ = π/2)/a. To simplify our analysis, we “overestimate”
its magnitude by assuming that the mode volume of the WGM
is uniformly heated to the maximum temperature within the
droplet (Tmax). The relative change of radius is then

�RT = 1
3αT Tmax, (16)

where αT is the thermal expansion coefficient.

IV. NONLINEAR EFFECTS IN LIQUID DROPLETS

The properties of the WGMs depend on the liquid refractive
indices as well as the size and shape of the resonator. In
our studies of nonlinear effects, we choose a liquid system
based on an oil droplet immersed in water. The fluid we
used for the droplet core is an index-matching fluid (Series
AA14500, Cargille Laboratories). Fluid viscosities of the core
and cladding media are μco = 13 mPa s and μcl = 1 mPa s,
and the heat conductivities are κco = 0.126 W/m K and κcl =
0.60 W/m K, respectively. The oil-water interfacial tension is
measured by a goniometer (Model 590, ramé-hart instrument
co.) to be around σ = 30 mPa s.

This system has the highest Q factor at the wavelength
of λ ≈ 700 nm, since optical absorption is lowest at this
wavelength. At λ ≈ 700 nm, the effective refractive indices of
the core and cladding phases are nco = 1.44 and ncl = 1.33,
respectively. We apply the procedure in [29] to determine the
resonance frequency of the WGMs resonator. We first consider
the fundamental mode |l,l〉, which corresponds to an optical
field with a single maximum along the polar direction. The
angular mode number l’s of the WGMs are chosen so that λ’s
are close to 700 nm. Table I gives the angular mode number l

TABLE I. Angular mode number l and resonance wavelength λ

of WGMs in liquid droplets.

a (μm) 400 300 250 200 150 120

l 5145 3847 3204 2569 1918 1529
λ (nm) 699.35 700.66 700.45 698.05 699.95 701.26

a (μm) 100 80 70 60 50 40
l 1275 1018 889 761 632 504
λ (nm) 699.75 699.65 700.05 699.75 700.55 700.59

and the resonance wavelength λ of the WGMs in droplets with
different radii a.

Assuming that absorption in the droplet core is the only
source of the energy loss, we can estimate the WGM Q

factors of the above resonators to be Q = 2πnco/(αλ) ≈
108 with absorption constant α = 0.125 m−1 (according to
the specification of the index-matching fluid). The interface
deformations of the above resonators are computed using both
the analytical method in Sec. II B and the numerical method
in Sec. II C. Nonlinearities due to interface deformation,
temperature change, and Kerr effect are estimated separately.

A. Nonlinear effects

In this section, we consider nonlinearities associated with
the fundamental WGM |l,l〉, with the mode number l given
by Table I. The electric field across the droplet interface
is calculated by Eq. (1). As an example, the electric field
intensity in a droplet with a = 100 μm is shown in Fig. 2.
The total WGM power of the electric field is then given
by Eq. (4). Since nonlinear effects induced by the radiation
pressure are proportional to PWGM, we only need to analyze
droplet deformation at a specific WGM power level. In this
paper, the electric field is normalized such that the total WGM
power is PWGM = 1 W. With known electric field intensity on
the interface, droplet interface deformations induced by the
radiation pressure are computed by the force balance Eq. (7)
and BEM Eq. (9).

In Fig. 3, we compare the interface deformation obtained
using the analytical method in Sec. II B and the numerical BEM
simulations described in Sec. II C. The equilibrium interface
shapes obtained by the BEM are in excellent agreement with
the force balance predictions given by Eq. (7). The BEM
solutions also produce a velocity distribution in the droplet,
as shown in Fig. 4.

As discussed in Sec. II B, the maximum droplet interface
deformation �R/a is linearly dependent on the values of 1/σ

and PWGM, which is also implied by the approximated solution
in literature [29] [Sec. IV B, Eq. (17)]. Therefore, the interface

r/a
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a
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6

FIG. 2. (Color online) | �E|2 distribution in the droplet on a φ =
constant plane. The electric field has been normalized so that on
the interface the maximum intensity | �E|2max = 1. The white curve
represents the droplet interface.
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FIG. 3. (Color online) Solutions of the balanced interface defor-
mation by the Young-Laplace equation and the BEM simulations for
radii a = 50, 100, 200, and 400 μm.

shapes under arbitrary WGM powers and interfacial tension
values can be linearly extrapolated from the solutions in Fig. 3.

The temperature change due to the optical absorption of the
WGM can be computed numerically as described in Sec. III.
Again, we assume that the circulating WGM power is 1 W
and that all optical energy absorbed by the core liquid (α =
0.125) is converted to heat. Based on Eqs. (12) to (14), we
can calculate temperature distribution within the droplet. The
results are shown in Fig. 5. Figure 6 gives the changes in
refractive index and the size of the liquid core as estimated by
Eqs. (15) and (16), where we assume the core liquid possesses
a thermal coefficient of (dn/dT ) = −3.9 × 10−4 K−1, and a
thermal expansion coefficient of αT = 8 × 10−4 K−1. In terms
of their impact on the WGMs, these two thermal processes are
nearly the same, as can be seen from Fig. 6.

Kerr effect is a classical third-order nonlinear process,
where the material refractive index depends linearly on
optical field intensity [35]. For the liquid resonator, the
refractive index change as a result of the Kerr effect can be
estimated as �n ≈ χ (3)| �E|2max, where χ (3) is the third-order
nonlinear optical susceptibility and | �E|max is the maximum
electric field intensity in the droplet. To provide an order
of magnitude estimate of the Kerr effect, we use water
and carbon disulfide (CS2) (χ (3)

water = 2.5 × 10−22 m2/V2 and
χ

(3)
CS2

= 3.1 × 10−20 m2/V2) to calculate the refractive index
change.

We now compare the impact of the three nonlinear
processes—radiation pressure effect, thermal effects, and Kerr

−1 −0.5 0 0.5 1
0

0.5

1

z/a

r/a

 

 

0

5

10

15

x 10−4

FIG. 4. (Color online) Fluid velocity direction (arrows) and mag-
nitude (color) distribution on the x = 0 plane at time t = 0. Velocity
values are normalized by σ/μ.
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T 
(K
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a=200μm
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a= 50μm

FIG. 5. (Color online) Changes in fluid temperature in the liquid
core due to optical absorption. (a) Temperature distribution in the x =
0 plane for a droplet with radius a = 100 μm. (b) Radial temperature
distribution at θ = π/2 for droplets with radii a = 50, 100, 200, and
400 μm.

effect—on liquid droplets. Let us define the interface deforma-
tion at the equator as �R(θ = π/2)/a ≡ �Rp. As shown in
Fig. 6, interface deformation induced by the radiation pressure
(�Rp) is a few orders of magnitude higher than the Kerr effect
(�n/n). Additionally, for smaller liquid droplets, nonlinearity
caused by the radiation pressure is also significantly higher
than the thermal nonlinearity. However, for millimeter-sized
droplets, the radiation-pressure effect and the thermal effects
can be comparable in magnitude. However, even for cases
where thermal effects are significant, it might be possible

10210−10

10−8

10−6

10−4

10−2

a (μm)

ΔR
/a

 a
nd

 Δ
n/

n

FIG. 6. (Color online) Comparison of the strength of nonlinearity
due to radiation pressure, thermal effects, and Kerr effect. The vertical
axis is either relative deformation at the droplet equator [�R(θ =
π/2)/a, caused by radiation pressure and thermal expansion] or
refractive index changes (�n/n, caused by thermo-optic effect and
Kerr nonlinearity). Droplet radius changes �RT associated with
thermal expansion overlap with the refractive index changes �nT /n

induced by temperature changes.
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to distinguish radiation-pressure effect and thermal effects
through direct measurements of the interface deformation.
According to Fig. 6, for a droplet with 100 μm radius and
typical interfacial tension (σ = 30 mN/m), a WGM with 1 W
power can deform the droplet radius by approximately 100
nm. Many optical interferometry techniques are capable of
measuring this estimated interfacial deformation. For example,
the methods reported in Refs. [36–38] can all measure
surface deformation with nanometer or subnanometer spatial
resolutions.

B. Comparison of the exact solution and the approximate
solution

In [29], we gave an analytical formula that can estimate
the magnitude of the nonlinearity induced by the radiation
pressure. In that approach, the droplet deformation was
approximated by an ellipsoid and the radius change at the
equator [�R(θ = π/2)/a] was given by

�Rp = �lm
θ ε0λ

4�σσnco

(
n2

co − n2
cl

)∣∣ �Epeak
surf

∣∣2
, (17)

where �σ ≈ 1.01 is given by the ellipsoid assumption and
�lm

θ is associated with the angular dependence of the radiation
pressure,

�lm
θ = −ncoa

λ

∫ π

0
flmY20(θ ) sin(θ ) dθ, (18)

where flm is the normalized radiation pressure whose maxi-
mum value on the interface is one.

With the help of Clebsch-Gordan coefficients, Eq. (18) can
be simplified as (Appendix B),

�lm
θ = − ncoa

λ

1

2π | �Xlm|2max

[
1 − 3

l(l + 1)

]√
5

4π

× 〈2,l; 0,m|l,m〉〈2,l; 0,0|l,0〉. (19)

Note that, taken together, Eqs. (17) and (19) give an analytical
estimate for the droplet deformation induced by the radiation
pressure. The accuracy of this analytical approximation is
investigated here.

The exact interface deformation can be expressed in terms
of the spherical harmonics YLM as

�R(θ )

a
=

N∑
L=2

√
4π�LYL0(θ ), (20a)

�R(π/2)

a
=

N∑
L=2

(�Rp)L, (20b)

where YL0(θ ) is the spherical harmonic function YL0(θ,φ)
with φ = 0, �L is the expansion coefficient, and (�Rp)L =√

4π�LYL0(π/2) denotes droplet deformation at the equator
due to the YL0 term. Due to the rotational symmetry (with
respect to the z axis) and the mirror reflection symmetry
(with respect to the z = 0 plane), the droplet deformation
does not contain any YLM term with odd L number or with
M �= 0. The values of (�Rp)L up to L = 50 are shown
in Fig. 7 for interface deformations of droplets with four
different radii. Note that we must have (�Rp)0 = 0 to satisfy

2 10 20 30 40 50
10−7

10−5

10−3

 

 
a=400μm
a=200μm
a=100μm
a= 50μm

FIG. 7. (Color online) Spherical harmonics expanded terms
[|(�Rp)L|] in Eq. (20b) for four cases shown in Table I. Coefficients
with odd indices are zero and are not shown here.

the volume conservation. Figure 7 shows that the value of
|(�Rp)L| decreases rapidly as L increases, with (�Rp)2

being the dominant term. A comparison of the L = 2 term
in Fig. 7 with the solution in Eq. (17) is shown in Table II.
In Fig. 8(a), we also compare the exact droplet deformation
given by the current work with the approximate solution in
Eq. (17). The results show that the first-order approximation
in Eq. (17) can provide a reasonably accurate prediction of
the interface deformation caused by the radiation pressure.
In fact, if we change the constant �σ in Eq. (17) from
�σ = 1.01 to �σ = 0.643, the slightly modified analytical
formula [“modified approx.” in Fig. 8(a)] agrees very well
with the equator deformation �Rp as given by the exact
solutions. This excellent agreement can be explained by the
observation that for the simulation parameters considered in
this work, the interfacial deformation �R(θ )/a can be factored
into a product of the equator deformation �Rp and an angular
shape function f (θ ), with f (θ ) being mostly independent of
parameters such as droplet radius, interfacial tension, and
optical power. This observation can be easily confirmed by
normalizing various orders of (�Rp)L with the leading term
(�Rp)2, as shown in Fig. 8(b). Regardless of droplet radius, the
normalized deformation factors, (�Rp)L/(�Rp)2, are almost
identical, which indirectly confirms the shape independence
of the radiation-pressure-induced deformation.

V. SINGLE-PHOTON-LEVEL NONLINEARITY

In this section, we discuss perhaps the most important
prediction of our theoretical analysis, namely the feasibility
of single-photon-level nonlinearity.

As proposed in [29], for the ultralow interfacial tension fluid
systems that have been demonstrated in the past experiments,

TABLE II. The approximate analytic solutions of droplet de-
formation [�Rp according to Eq. (17)] and the leading spherical
harmonic expansion term [(�Rp)2, due to Y20 only] of the exact
interface deformation solution.

a (μm) �Rp (�Rp)2

400 1.247 × 10−4 1.246 × 10−4

200 2.490 × 10−4 2.488 × 10−4

100 4.967 × 10−4 4.962 × 10−4

50 9.891 × 10−4 9.882 × 10−4
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FIG. 8. (Color online) (a) Comparison of the maximum interface
deformation between exact solutions given by the current work with
approximated solutions in [29]. (b) Spherical harmonics expanded
terms [|(�Rp)L|] normalized by the first nonzero term |(�Rp)2|.

the radiation-pressure-induced droplet deformation may lead
to a measurable WGM shift at the single-photon energy
level. In contrast with our earlier work [29] based on the
approximate solution, here we estimate the magnitude of the
WGM resonance shift induced by the radiation pressure using
the exact solution presented in Sec. IV.

The general framework of our analysis is as follows. First,
we expand the exact solution of the deformed droplet using
spherical harmonic functions. Then, based on the perturbation
theory in [39], we can sum over the frequency shift due to each
spherical harmonic term and obtain the total resonance shift
for a specific WGM mode |l,m〉. Mathematically, this means

�ω

ω
=

∞∑
L=2,4,6,...

�ωL

ω
= −

∞∑
L=2,4,6,...

�LF (L,l,m), (21)

where the expansion coefficients �L are given in Eq. (20a),
and F (L,l,m) can be derived as

F (L,l,m) =
√

4π

∫∫
| �Xlm|2YLM d�

=
[

1 − L(L + 1)

2l(l + 1)

]√
2L + 1

× 〈L,l; M,m|l,m〉〈L,l; 0,0|l,0〉. (22)

The expression in Eq. (22) is derived in Appendix B. Values
of |(�ωL/ω)/(�ω2/ω)| up to L = 50 in Eq. (21) are shown
in Fig. 9 for several representative cases. Clearly, the leading
contribution is due to the lowest-order deformation (i.e., the
L = 2 term).

As proposed in [29], droplet deformation due to a single
photon can occur if fluids with low interfacial tensions are
used. The WGM frequency shifts induced by the interface
deformation as a result of WGM with single-photon energy
(�ω) are shown in Fig. 10. Terms up to L = 200 are considered

2 10 20 30 40 50
10−4

10−2

100

 

 
a=400μm
a=200μm
a=100μm
a= 50μm

FIG. 9. (Color online) Contribution to WGM frequency shift as a
result of different YLM terms in shape deformation �ωL/ω in Eq. (21),
normalized by the leading contribution �ω2/ω.

in the summation (21). The results for a lower interfacial
tension assumption (σ = 1 mN/m) are also shown in the same
plot. The solid lines in Fig. 10 correspond to the exact solutions
given by Eq. (21), whereas the dashed lines are based on
the approximate solutions in [29]. The frequency shifts given
by the exact solution are actually larger than our original
estimates given in [29]. Experimentally, frequency shift as
small as �ω/ω ∼ 10−8 has been measured [40]. Based on this
value and the results shown in Fig. 10, it should be feasible
to detect the frequency shift induced by a single photon if the
droplet diameter is around 10 μm and the interfacial tension
is of the order of σ = 1 mN/m. Again, our results confirm
the possibility of optical nonlinearity induced by only a few
photons.

It is worth mentioning that droplets with low interfacial
tensions (σ � 1 mN/m) have been obtained in different
studies [41–43]. With the help of surfactant, an interfacial
tension as low as 1 μN/m was obtained in an emulsion system
[44].

To investigate the nonlinear optofluidic effects for higher-
order WGMs |l,m〉 with m < l, we also calculate the droplet
interface deformations and the frequency changes induced
by such modes. The results are shown in Fig. 11 as blue
(dark gray) bars, which give the frequency shifts of the |l,m〉
mode. For these results, the radiation pressure is produced by

10210−12

10−10

10−8

a (μm)

|Δ
ω

/ω
|

 

 

σ = 30 mN/m
σ = 1 mN/m

FIG. 10. (Color online) WGM frequency shift induced by the
radiation pressure of a single photon for interfacial tension σ =
30 mN/m and σ = 1 mN/m. Solid lines are the frequency shift
values computed by the exact interface shape, while dashed lines are
computed from the first-order approximated interface deformation.
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FIG. 11. (Color online) Resonance frequency shift in a droplet
with radius a = 100 μm and interfacial tension σ = 30 mN/m for
WGMs |l,m〉 with the same l = 1275 but different m numbers. The
blue (dark gray) bars give the frequency shifts of the |l,m〉 mode that
is caused by the radiation pressure of itself, i.e., the |l,m〉 mode. The
red (light gray) bars are the frequency shift of the |l,m〉 mode, where
radiation pressure is produced by the fundamental mode |l,l〉.

the |l,m〉 mode itself. Note that the fundamental mode |l,l〉
generates the largest frequency shift. Since the droplet is no
longer a sphere, the (2l + 1)-fold degeneracy of the WGM
should be broken. To quantify this effect, we also calculate
the frequency shifts of the |l,m〉 mode, where the radiation
pressure is produced by the fundamental WGM mode |l,l〉.
The results are again shown in Fig. 11 as red (light gray)
bars. As expected, WGMs with the same l but different m

numbers are no longer degenerate. All results in Fig. 11 are
based on a droplet with radius a = 100 μm, with l = 1275
and PWGM = 1 W for the WGMs.

In the calculation of the thermal effects, we neglected the
thermocapillary effect caused by the temperature increase. To
justify this, here we estimate the interfacial tension increase
and the resulting shear stress on the interface. Based on the
well-known Eötvös rule [45], the interfacial tension of the fluid
system is given by σ = k̄(Tc − T )/V̄ 2/3, where k̄ and V̄ are
material properties and Tc is the critical temperature of the
fluid. Using the critical temperature of water Tc = 374 ◦C and
a temperature increase of 1 ◦C from room temperature (25 ◦C),
the change in interfacial tension is �σ/σ = −0.28%. Along
the arc length of the droplet interface, s, the shear stress is
roughly, ∂σ/∂s ≈ 1.8 × 10−3(σ/a). Compared with the max-
imum radiation pressure on the interface of the a = 100 μm
droplet, pmax

opt ≈ 6 × 10−2(σ/a), we have (∂σ/∂s)/pmax
opt ≈

3%. Thus, the thermocapillary effect can be neglected in our
calculations of the interface deformation.

Our calculations on droplets with lower surface tension
show that a single photon can possibly produce measurable
interfacial deformation. However, recent studies show that
the effect of thermal fluctuations may become important for
interfaces with low interfacial tension [46,47], and thus it might
be difficult to distinguish the single-photon effect from those
due to thermal fluctuations. To reduce the effect of thermal
fluctuation experimentally, we may consider using liquid drops
at low temperature. For example, the surface tension of a liquid
helium droplet at temperature T < 1 K is σ ∼ 0.38 mN/m
[48], which is low enough to admit single-photon nonlinearity.

In summary, this section confirms the feasibility of single-
photon-level nonlinearity if the interfacial tension of the liquid
droplet is of the order of σ = 1 mN/m or less. Our results also
suggest that radiation-pressure-induced deformation should
lift the degeneracy of the WGMs.

VI. CONCLUSION

In this paper, we investigate the nonlinear optofluidic effect
in microsized liquid resonators. The nonlinearity is induced
by the radiation pressure associated with a high-Q WGM. The
interface deformation of the liquid droplet is calculated both
analytically by force balance and numerically by BEM, which
agree with each other very well. The effect of temperature
change is also quantified by BEM. The nonlinearity induced
by the radiation pressure is shown to be higher than the
temperature effect and the Kerr effect. Based on our analytical
and numerical models, we confirm the possibility of mea-
surable optofluidic nonlinearity at the single-photon energy
level. The conditions that may allow one to experimentally
observe single-photon-level nonlinear optofluidic effects are
also discussed. Experimental measurement of the nonlinearity
induced by the radiation pressure will be performed using the
white light interferometry technique for future research.
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APPENDIX A: LINEAR RELATION
BETWEEN �p AND popt

We claim that the value of �p is proportional to PWGM.
To prove this, let us assume a �p1 and p1

opt (corresponding to
P 1

WGM) result in an interface deformation h1(θ ) that satisfies
Eq. (7) and volume conservation, i.e.,

h1′′
(θ ) + cot(θ )h1′

(θ ) + 2h1(θ ) = − a

σ

(
�p1 + p1

opt

)
. (A1)

If we change the WGM power to αP 1
WGM, then the optical

pressure will be αp1
opt, where α is a constant. We now show

that α�p1 gives a h(θ ) that satisfies volume conservation.
If we simply substitute α�p1 and αp1

opt on the right hand
side of Eq. (A1), then the solution to Eq. (A1) should be
αh1(θ ), because of the linearity of Eq. (A1). Since h1(θ )
give zero volume change, αh1(θ ) should also preserve the
volume. Therefore, α�p1 is the real �p value. Here we used
the linearized volume change for small h(θ ),

�V/V = 3
∫ π/2

0
h(θ ) sin(θ ) dθ + O(h2). (A2)
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APPENDIX B: CLEBSCH-GORDAN EXPRESSION FOR �lm
θ

From the radiation pressure Eq. (3) and electric field Eq. (1) expressions, we can write the normalized pressure flm as

flm = | �Xlm|2
| �Xlm|2max

. (B1)

Note that the expression of �lm
θ in Eq. (18) can be transformed into a surface integral,

�lm
θ = −ncoa

λ

1

| �Xlm|2max

∫ π

0
| �Xlm|2Y20(θ ) sin(θ ) dθ = −ncoa

2πλ

1

| �Xlm|2max

∫∫
| �Xlm|2Y20 d�. (B2)

With the Clebsch-Gordan expression for surface integral [39]∫∫
| �Xlm|2YLM d� =

[
1 − L(L + 1)

2l(l + 1)

]√
2L + 1

4π
〈L,l; M,m|l,m〉〈L,l; 0,0|l,0〉, (B3)

Eq. (19) can be obtained with L = 2,M = 0. Equation. (22) can also be obtained by Eq. (B3).
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