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Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation
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We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium
in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates
in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system,
zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first
considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with
the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature
oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case
of higher frequency oscillations and the case of weakly soluble solids and liquids.
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I. INTRODUCTION

Diffusion transport in bubbly media [1–4] and media with
a condensed nondissolved phase [2,5–7] appears to possess
unique features under isothermal conditions and is even more
intriguing under nonisothermal ones. For these systems, the
nondissolved phase makes the local solute concentration equal
to the solubility. The solute concentration is no longer a
free variable, but a function of temperature and pressure.
Simultaneously, the nonzero divergence of the solute flux
determined by the solubility gradient does not change the
enslaved solute concentration but redistributes the mass of
the nondissolved phase. Thus, for the dynamics of systems
with a nondissolved phase, novel phenomena and mechanisms,
which never appear for undersaturated solutions, come into
play. These phenomena are especially strongly pronounced for
systems where the nondissolved phase is immobilized (e.g., in
porous media) and solubility is low [3]. For an immobilized
nondissolved phase, mass transport operates only through the
solution, and when the solubility is low the mass accumulated
in the nondissolved phase can be several orders of magnitude
larger than the dissolved mass.

In Ref. [4], we reported the effect of surface temperature
oscillations, which produce a solubility wave, on the diffusive
transport in porous media where the nondissolved phase is
present everywhere and discussed the physical systems for
which the effect is relevant. Systems where zones with a
nondissolved phase can coexist with zones of undersaturated
solution can exhibit richer and more sophisticated dynamics.
A liquid-saturated porous medium in contact with a reservoir
of weakly soluble substance (e.g., atmosphere) is a system
of this kind. In this paper we consider the effect of surface
temperature oscillation on diffusive transport in the porous
medium half-space in contact with a reservoir of a weakly
soluble substance.

For the sake of definiteness, we consider transport of gases
in detail and comment on how the results can be extended to
the case of weakly soluble solids (e.g., limestone) and liquids
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(e.g., crude oil). The case of solids and liquids is different from
the case of gases only in the insensitivity of the solubility to
pressure. From the viewpoint of mathematics, for the processes
under consideration, the case of gas hydrates is also identical
to the case of weakly soluble solids.

Mathematically, the contact with the atmosphere is repre-
sented via the boundary condition; at the contact boundary
the solute concentration equals the solubility at any instant
in time. The same boundary condition and, consequently, the
phenomena we report in this paper will hold for the case of
contact with a reservoir of any substance.

In this paper, we reveal that the temperature wave leads to
the formation of a near-surface bubbly horizon and “oversat-
uration” of the medium with the atmosphere gas compared to
the period-mean solubility. In particular, the net molar fraction
(nondissolved phase + solution) of the gas molecules in pores
next to the surface equals the maximal-over-period solubility.

The phenomenon we report is common and can be impor-
tant for various systems with different origins of the surface
temperature oscillations, including technological systems (fil-
ters, porous bodies of nuclear and chemical reactors, etc.).
However, for the sake of convenience, we first focus on the
case characterized by the hydrostatic pressure gradient, which
is significant for geological systems, where pressure doubles at
the depth of 10 m, leading to a significant change in solubility.
The no-pressure-gradient case is considered as well.

The effect of enhanced filling of water-saturated ground
with atmospheric gases creates more favorable conditions
for local microflora and fauna and influences conditions
for geochemical processes. With weakly soluble solids, the
effect provides opportunities for filling the porous matrix with
some weakly soluble “guest” substance in technology; the
spatial mass distribution pattern of the guest substance can be
controlled by the surface temperature waveform. For natural
methane hydrate deposits in seafloor sediments, the effect of
temperature waves on the deposit and the gas release from it is
of interest in relation to the natural glacial-interglacial cycles
[8] and potential global climate change [9].

The paper is organized as follows. In Sec. II A, we
introduce the physical model for diffusion transport of a
weakly soluble substance in the presence of a nondissolved
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phase and governing equations. With the results of numerical
simulation of governing equations for a single-gas-component
atmosphere, we demonstrate the phenomenon of formation
of a bubbly horizon in Sec. II B. The analytical theory of
the phenomenon is developed in Sec. II C. In Sec. II D, we
report the dependence of the integral quantifiers of the bubbly
horizon on the control parameters of the system. In Sec. III, the
case where the hydrostatic pressure gradient has no effect is
studied (this case corresponds to high-frequency temperature
oscillations or solutions of condensed phases). The results are
summarized in Sec. IV, the Conclusion.

II. DIFFUSION IN SATURATED AND UNDERSATURATED
SOLUTIONS

A. Physical model and governing equations

The diffusion transport of solute in the presence of a
nondissolved phase is essentially controlled by the solubility.
For moderate pressure and far from the solvent boiling point
the solubility of gas in liquid reads [10]

X(0)(T ,P ) � X(0)(T0,P0)
T0

T

P

P0
exp

[
q

(
1

T
− 1

T0

)]
, (1)

where the molar solubility X(0) is the molar amount of solute
per 1 mol of solvent, T0 and P0 are reference values, the choice
of which is guided merely by convenience, and X(0)(T0,P0)
is the solubility at the reference temperature and pressure;
the parameter q ≡ −Gi/kB , with Gi being the interaction
energy between a solute molecule and the surrounding solvent
molecules and kB being the Boltzmann constant, is listed in
Table I for several typical gases. For condensed matter (solids
and liquids) the solubility is nearly independent of the pressure
and approximately reads

X
(0)
cond(T ,P ) � X

(0)
cond(T0,P0) exp

[
q

(
1

T
− 1

T0

)]
. (2)

Geological systems are typically much more uniform in
the horizontal directions than in the vertical one. Hence, it is
reasonable to restrict our consideration to the one-dimensional
case; the system is assumed to be homogeneous in the
horizontal directions. We assume the z axis to be oriented
downwards and its origin to be on the porous medium surface.

Let us consider harmonic oscillation of the surface tem-
perature, T0 + �0 cos ωt , where T0 is the mean temperature,
�0 is the oscillation amplitude, and ω is the temperature

TABLE I. Chemical physical properties of solutions of nitrogen,
oxygen, methane, and carbon dioxide in water. Equation (1), with q

and X(0)(T0,P0) specified in the table, fits the experimental data from
[17]. Equation (10), with provided values of the effective radius Rd

and parameter ν of the solute molecules, fits the experimental data
from [18].

N2 O2 CH4 CO2

q = −Gi/kB (K) 781 831 1138 1850
X(0) (20 ◦C,1 atm) (×10−5) 1.20 2.41 2.60 68.7
Rd (10−10 m) 1.48 1.29 1.91 1.57
ν (10−5 Pa · s) 9.79 16.3 28.3 4.68

oscillation cyclic frequency. In particular, annual oscillations
of the surface temperature deviate only slightly from their
harmonic reduction (e.g., see [11]). The heat diffusion equation
∂T /∂t = χ�T under no-heat-flux conditions deep below the
surface (at infinity) and an imposed surface temperature yields

T (z,t) = T0 + �0e
−kz cos(ωt − kz), k =

√
ω/2χ, (3)

where χ is the heat diffusivity and z is the distance from the
surface of porous medium. The hydrostatic pressure field reads

P = P0 + ρgz, (4)

where P0 is the atmospheric pressure, ρ is the liquid density,
and g is the gravity.

Since the nondissolved phase is immobilized in pores, the
mass transport in the system is contributed solely by the dif-
fusion through the intersticial liquid and governed by the
equation

∂X	

∂t
= ∇ ·

[
DXs

(∇Xs

Xs

+ α
∇T

T

)]
, (5)

where Xs is the molar concentration of the solution, X	 =
Xs + Xb is the net molar fraction of gas molecules in the
interstitial fluid, Xb is the molar fraction of the gaseous
phase (bubbles) in the interstitial fluid, D is the effective
molecular diffusion coefficient, and α is the thermodiffusion
constant [12]. Compared to the molecular diffusion coefficient
in bulk of pure liquid, say Dmol, the effective coefficient is
influenced by the pore network geometry (tortuosity) and the
adsorption of the diffusing agent on the porous matrix (on
the time scales of our interest the adsorption does not lead
to anomalous diffusion; it only changes the effective rate of
normal diffusion [13]). The importance of thermal diffusion
was demonstrated for gases [3] and methane hydrate [6,7] on
geological time scales, although for the system of our interest it
can be neglected [4]. Henceforth, we omit the thermal diffusion
term. The solute concentration

Xs = min{X(0), X	}; (6)

i.e., it equals the solubility X(0) where the net amount of gas
molecules X	 exceeds the solubility and equals X	 otherwise.
In the latter case, Xb = 0.

The formulated mathematical model of the system implies
that the dissolution process (as well as the opposite process of
formation of the nondissolved phase from the solution) occurs
much more rapidly than the change in the temperature field
and the diffusive redistribution of solute mass on macroscopic
scales. In real systems, the dissolution time scales even for
a solid nondissolved phase are assessed as hours (see [14]),
which is short compared to the reference times of temperature
oscillation and diffusive transport on the scale of the system.
The hysteresis effects possible for some phase transformations
in narrow pore channels [15] are neglected in our study.

Note that Eq. (5) is accurate for the case where the
macroscopic porosity is spatially uniform and the nondissolved
phase occupies a negligible fraction of the pore volume, which
holds true for gases and weakly soluble solids and liquids. For
the one-dimensional case, Eq. (5) takes the form

∂X	

∂t
= ∂

∂z

[
D

∂Xs

∂z

]
. (7)
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At the upper boundary we assume contact with the atmosphere,
which means that

Xs(z = 0,t) = X(0)(T (z = 0,t),P0). (8)

Deep below the surface we assume the no-flux condition and
the absence of a nondissolved phase:

∂Xs

∂z

∣∣∣∣
z=+∞

= 0, Xb(z = +∞) = 0. (9)

Note that two boundary conditions are required at z →
+∞; however, due to the specificity of our system, one
boundary condition, Eq. (8), is sufficient at z = 0. Indeed, since
Xs(z = 0) is never less than X(0)(z = 0), the value of Xb at
the point z = 0 does not influence the system dynamics; the
condition for it is redundant.

Generally, all material properties of the system depend
on the temperature and pressure. However, feasible relative
variations of the absolute temperature are small. Hence, one
can neglect variation of those parameters which depend on the
temperature polynomially and consider variation of only those
parameters which depend on the temperature exponentially:
the latter parameters are the solubility, (1), and the molecular
diffusion coefficient D. Moreover, the only parameter sensitive
to pressure is the gas solubility.

We employ the following dependence of molecular diffu-
sion on temperature [12]:

Dmol(T ) = kBT

2πμRd

μ + ν

2μ + 3ν
, (10)

where μ is the dynamic viscosity of the solvent, and Rd is the
effective radius of the solute molecules with the “coefficient of
sliding friction” β, ν = Rdβ/3. The dependence of dynamic
viscosity on temperature can be described by a modified
Frenkel formula [16]:

μ(T ) = μ0 exp
a

T + τ
. (11)

For water, the coefficient μ0 = 2.42 × 10−5 Pa · s, a =
W/kB = 570 K (W is the activation energy), and τ = −140 K.
For the effective diffusion coefficient D we assume the same
relative variation with temperature as for Dmol.

B. Numerical results

Numerical simulation was performed for an atmosphere
composed solely of nitrogen: the single-component atmo-
sphere approximation. Technical details on the numerical
simulation are provided in the Appendix. The simulation
reveals that for any initial condition, after a transient process,
the system reaches a single stable time-periodic regime. Let
us consider this regime.

The linear growth of the solubility with depth owned by the
hydrostatic pressure gradient is modulated by the temperature
wave, (3). The oscillating solubility profile, (1), for the
temperature wave, (3), and pressure, (4), is shown in Fig. 1.
Oscillations of the solubility profile lead to the formation of a
profile of the net amount of gas molecules X	(z) that is nearly
constant in time. The profile of the net molar fraction X	(z)
nearly attains the maximal (midwinter) solubility next to the
surface, z = 0; there the bubbly fraction exists for nearly the

entire year except for the short coldest period. Further, X	(z)
monotonically decreases with depth, along with the decrease
in the time interval when the bubbly phase is present, down
to the depth where the bubbly phase never appears. Below the
latter depth X	(z) = Xs(z) is nearly uniform and only slightly
changes during the year. Nonuniformity of the profile X	(z) in
this zone rapidly decays with depth. The asymptotic value X∞
is close to the annual-mean surface solubility of the gas. These
features of the regime are clearly shown in Figs. 2 and 3.

The net molar fraction profile is nearly constant during
the year because the molecular diffusivity D is 3 orders of
magnitude lower than the heat diffusivity χ , meaning that the
diffusive redistribution of mass is a slow process against the
background of a rapid temperature (and, hence, solubility)
oscillation. This well-pronounced separation of time scales
provides the opportunity to develop an analytical theory of
the process, allowing for better insight into the mechanisms of
the formation of the bubbly horizon. The results of numerical
simulation also can be more comprehensively understood in
the context of this theory.

C. Analytical theory

The principal assumption of our analytical theory is that the
net molar fraction profile X	 is “frozen” for one oscillation
period and the period-mean diffusion flux performs a slow
diffusive transfer of the solute mass. For the analytical
treatment we also linearize temperature dependencies of the
diffusion coefficient,

D ≈ D0(1 + δ1e
−kz cos(ωt − kz)), (12)

and the solubility,

X(0) ≈ X
(0)
0 (1 + bz)(1 − a1e

−kz cos(ωt − kz)), (13)

where a1 = −(∂ ln X(0)/∂T )P �0, δ1 = (∂ ln D/∂T )P �0,
b = ρg/P0.

Prior to constructing the analytical theory, let us emphasize
that this analytical theory is an approximation but not a limiting
case. The linearizations (12) and (13) require a small �0.
Meanwhile, for small �0 the penetration depth of the bubbly
zone is small (below it is shown to be a nearly linear function
of �0) and can become commensurable with the thickness
of the diffusion boundary layer δdiff = √

2D/ω. In the latter
case the approximation of the frozen profile X	(z) is invalid.
Thus, the frozen profile approximation is not compatible with
the limit of vanishing �0. Nonetheless, for moderate �0, both
approximations are satisfactory accurate.

For analytical calculations we take into account the order
of magnitude of the relevant system parameters—a1|�0=15 K ≈
0.2, δ1 ∼ a1, b = 0.1 m−1, and k ≈ 0.8 m−1—for the annual
temperature oscillation in wetlands.

At a steady regime the annual-mean diffusive flux 〈J 〉 is
0. For the porous-medium domain where the bubbly phase
appears for some part of the oscillation period, the mean flux
reads

〈J 〉 = 1

tp

∫ t2

t1

(
−D

dX(0)

dz

)
dt + 1

tp

∫ t1+tp

t2

(
−D

dX	

dz

)
dt,

(14)
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FIG. 1. (Color online) Snapshots of the oscillating solubility profile X(0) of nitrogen for the annual temperature wave in water-saturated
ground (wetland) are plotted by dashed black lines for different surface temperature oscillation phases: (a) midwinter, (b) midspring,
(c) midsummer, (d) and midautumn. For simplicity, the atmosphere is assumed to be pure nitrogen, the molar fraction of which, in the
Earth’s atmosphere, is 78.09%. Dotted (blue) lines represent the solution molar concentration Xs . Solid (red) lines show the net molar fraction
X	 of nitrogen molecules in the pore fluid. The bubbly fraction Xb is given by the difference between the solid (red) and the dotted (blue)
profiles (it does not exist for the cold winter period, when solubility is high). The net molar fraction is nearly unchanging during the year.

where tp = 2π/ω is the oscillation period, and t1 < t2 are the
instants in time between which the local temperature is high
enough so that the local solubility becomes lower than X	 .
Equation (14) can be rewritten in terms of the temperature
oscillation phase ϕ = ωt − kz:

〈J 〉 = 1

2π

∫ ϕ∗

−ϕ∗

(
−D

dX(0)

dz

)
dϕ

+ 1

2π

∫ ϕ∗+2π

ϕ∗

(
−D

dX	

dz

)
dϕ, (15)

with ϕ∗ ∈ (0,π ) determined by the condition X(0)(ϕ = ϕ∗) =
X	 ; i.e.,

1 − a1e
−kz cos ϕ∗ = 1

1 + bz

X	

X
(0)
0

. (16)

After laborious but straightforward mathematical manip-
ulations, to the leading order, the equation 〈J 〉 = 0 with
substitutions (12), (13), (15), and (16) takes the form

b ϕ∗ + a1(−b + k + δ1b)e−kz sin ϕ∗

+ a1kδ1

(
ϕ∗ − 1

2
sin 2ϕ∗

)

+ (π − ϕ∗ − a1δ1e
−kz sin ϕ∗)

×
(
b − d

dz
(a1e

−kz cos ϕ∗)
)

= 0. (17)

The latter equation should be treated as an initial value
problem; it should be integrated from ϕ∗(z = 0) = π till ϕ∗(z)
attains 0, the point zb where ϕ∗ = 0 is the base of the bubbly
zone. For z > zb, the bubbly phase never appears and X	 is
constant. It is more convenient to deal with Eq. (17) in terms
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FIG. 2. (Color online) Profiles of the net molar fraction X	 are plotted for temperature oscillation amplitudes �0 = 15 K (a), �0 = 5 K
(b), and �0 = 0.5 K (c). Solid black lines represent the results of numerical simulation for the real molecular diffusion coefficient of nitrogen
in water; dotted (blue) lines represent the results of numerical simulation with diminished values of the diffusion coefficient: D = 0.01DN2,H2O

(a, b) and D = 10−4DN2,H2O (c). Dash-dotted (red) lines represent the analytical solution, (18); dashed (green) lines represent the limiting-case
analytical solution, (20).

of ξ = (b/a1)z, �ξ = kz, and F = e−kz cos ϕ∗:

dξ

dF
= π − arccos(Fe�ξ )

π + �δ1e−2�ξ arccos(Fe�ξ )

× − a1δ1

√
e−2�ξ − F 2

+ (
a1(k−b)

b
− �δ1

4 F
)√

e−2�ξ − F 2
. (18)

The latter equation should be integrated from F = −1, ξ = 0,
which corresponds to the surface, till the equality F = e−�ξ

is fulfilled, which corresponds to the base of the bubbly zone.
In Figs. 2(a) and 2(b) the result of integration of Eq. (18)
is plotted by the dash-dotted (red) lines. One can see that
the analytical theory is in good agreement with the results of
numerical simulation.

Equation (17) can be simplified for the limiting case a1 → 0
(where the depth of penetration of the bubbly zone is also small,

meaning that kz → 0):

ϕ∗ + (π − ϕ∗)

(
1 + sin ϕ∗

dϕ∗
dξ

)
= 0. (19)

The latter equation can be integrated and yields

(π − ϕ∗) cos ϕ∗ + sin ϕ∗ = πξ. (20)

For solution (20), the coordinate ξ varies from 0 (surface) to
ξb = 1 (the base of the bubbly zone). The net molar fraction
profile is given by X	/X

(0)
0 = 1 + a1ξ − a1 cos ϕ∗. For this

limiting solution, one can determine the scaling properties of
the solution next to the surface for ξ � 1:

X	

X
(0)
0

= 1 + a1 − a1

2

(
3

2
π

) 2
3

ξ
2
3 + · · · .

This limiting solution is plotted in Fig. 2 by the dashed (green)
lines. Unfortunately, this limiting solution is accurate only for
low amplitudes of temperature oscillations, where the diffusive

FIG. 3. (Color online) For a nitrogen atmosphere and water-saturated porous medium the bubbly-horizon quantifiers are plotted vs the
surface temperature oscillation amplitude �0 for annual-mean temperatures T0 = 9, 13, 17, 21, and 25 K [from bottom to top in (a) and from
top to bottom in (b)]. (a) Lines are a quadratic fitting of the calculated data plotted by symbols.
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boundary layer ξdiff = (b/a1)(2D/ω)1/2 is commensurable
with the bubbly-zone thickness ξb = 1 and thus the assumption
of the frozen profile is not valid for typical diffusivities in
liquids.

In order to ensure the correctness of analytical calculations,
numerical simulation was performed for a diminished molecu-
lar diffusion D. The molecular diffusion coefficient was small
enough for both assumptions of the analytical theory to be
simultaneously accurate. In Figs. 2(a) and 2(b), one can see
that the results of analytical theory, (18), match the results of
numerical simulation for a 100-fold diminished D plotted by
dotted (blue) lines. In Fig. 2(c), the limiting analytical solution,
(20), matches the numerical results for the diffusion coefficient
diminished by a factor of 104. Considering the results of
numerical simulation for diminished diffusivity, one can note
the disappearance of the kink near the boundary between the
bubbly horizon and the zone of undersaturated solution, which
is shown in Figs. 1, 2(a), and 2(b) for a “normal” diffusion
strength. Thus, one can conclude that this kink is related to the
finiteness of the ratio D/χ . The X	 profile is not completely
frozen on the time scale of temperature oscillations; at the
point of discontinuity of the solute concentration gradient even
a low diffusivity can result in an observable distortion of the
net profile X	 .

The case of impaired diffusion can also be of physical
interest for porous media where the pore network is not
globally connected and diffusive transport necessarily involves
diffusion through the solid matrix material separating different
connected clusters of pores from each other. In this case the

effective diffusion coefficient will be diminished by several
orders of magnitude compared to the bulk diffusivity in the
pore liquid.

D. Integral quantifiers of the bubbly horizon

The developed analytical theory suggests natural quantifiers
of the X	 profile: the deep solute concentration X∞/X

(0)
0

and the integral strength of the bubbly layer I = 〈∫ [(X	 −
X∞)/X

(0)
0 ]dz〉. These characteristics are good quantifiers of

the system state even for situations where the X	 profile is far
from being frozen (see Fig. 2). In Fig. 3, the quantifiers X∞
and I are plotted for a nitrogen atmosphere and water-saturated
porous medium. The deviation of X∞ from the annual-mean
near-surface solubility is a nonlinear effect, quadratic in
amplitude �0. For nonvanishing �0 the effect is negative;
i.e., the temperature oscillation results in “ventilation” of deep
areas of the porous medium.

III. THE CASE OF NO EFFECT OF THE
PRESSURE GRADIENT

For the annual temperature wave the penetration depth
1/k = √

2χ/ω is about 1 m; for this depth the hydrostatic
pressure increase is comparable to the atmospheric pressure,
and thus, the gas solubility is significantly influenced by the hy-
drostatic pressure gradient. For higher oscillation frequencies
in nature (e.g., daily oscillations) and technological systems

FIG. 4. (Color online) Dynamics of the bubbly horizon in porous medium in the absence of a hydrostatic pressure gradient is presented
for a nitrogen atmosphere. Snapshots of profiles of X(0)(z) [dashed (black) lines], Xs(z) [dotted (blue) lines], and X	(z) [solid (red) lines]
are plotted for different phases ϕ of the surface temperature oscillation: (a) ϕ(z = 0) = 0, (b) ϕ(z = 0) = π/2, (c) ϕ(z = 0) = π , and (d)
ϕ(z = 0) = 3π/2. Results are provided in dimensionless form and are valid for arbitrary oscillation frequency.
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the hydrostatic pressure increase for the wave penetration
depth can be negligible. The case of solutions of solids and
liquids is qualitatively similar to the case of no hydrostatic
pressure gradient, as the solubility of condensed matter is
nearly independent of the pressure [see Eq. (2)].

In Fig. 4, one can see that in the absence of a pressure
gradient the bubbly horizon is not bounded from below. For any
depth z the solubility profile X(0) exceeds the X	 profile (i.e.,
the bubbly phase locally disappears) for a small fraction of the
oscillation period; X	(z) is slightly smaller than the envelope
of the wave of X(0)(z,t). For the limit of vanishingly low ratio
D/χ the X	 profile coincides with the envelope of X(0)(z,t).
While the envelopes of solubility profiles are different for
gaseous and condensed matter, the principle, that the X	(z)
profile tends to coincide with the envelope of the solubility
profile wave, remains valid for solids and liquids. Hence, the
integral strength of the bubbly horizon is approximately

I =
∫ +∞

0
a1e

−kzdz =
∣∣∣∣∂ ln X(0)

∂T

∣∣∣∣
P

�0

k
. (21)

IV. CONCLUSION

We have considered the diffusion transport of a weakly
soluble substance in a liquid-saturated porous medium half-
space in contact with a reservoir of this substance in the
case where the surface temperature harmonically oscillates in
time. The surface temperature oscillation creates a temperature
wave which propagates deep into the porous medium and
decays with depth. The solubility wave associated with the
temperature wave results in time-dependent intermittency of
the zones of nondissolved phase with saturated solution and
the zones of undersaturated solution.

Due to the low value of the ratio D/χ , which is as low
as ∼ 10−3 for transport processes in liquids, the diffusion
transport in the system is much slower than the temperature
(and solubility) variation. As a result, the profile of the net
molar fraction of “guest” molecules in pores, X	 (“net” means
“solute + nondissolved phase”), remains nearly constant over
the oscillation period. We have revealed for gases that the X	

profile nearly attains the maximal-per-period solubility next
to the surface; monotonously decays with depth in the zone
where the nondissolved phase can be observed, the bubbly
horizon; and reaches a constant level beneath the bubbly
horizon (Fig. 2). The bottom boundary of the bubbly horizon
is controlled by the hydrostatic pressure gradient.

Without the pressure gradient, the bubbly horizon is not
bounded from below and the X	 profile is slightly smaller
than the envelope of the oscillating solubility profile (Fig. 4).
At any depth z the bubbly phase disappears for only a short
portion of the oscillation period; in the idealistic limiting
case D/χ → 0 this part of the oscillation period tends to
0. Note that the solubility profile decays with the depth

exponentially, and thus, even though the bubbly horizon is
not formally bounded from below, the volumetric fraction of
bubbles in pores exponentially tends to zero at the depth,
meaning the bubbly horizon to nearly disappear there. The
no-pressure-gradient case is relevant for gases and short-term
oscillations, when the penetration depth of the temperature
wave is small compared to the depth scale of a noticeable
increase in the hydrostatic pressure, and for condensed phases,
the solubility of which is insensitive to pressure.

For the reported results an analytical theory, which lends
better insight into the mechanisms of the phenomenon, has
been developed [Eqs. (18) and (20)].

For an annual temperature oscillation of amplitude 15 K
the atmosphere gas bubbly horizon has been found to have an
0.8-m penetration depth and a near-surface relative increase
in X	 of 20% compared to the no-oscillation solubility
[Fig. 2(a)]. Such an effect can be considered non-negligible for
the local conditions for microflora and fauna. The dependence
of integral quantifiers of the bubbly horizon on the average
surface temperature and temperature oscillation amplitude is
plotted in Fig. 3.

The periods of negative temperatures with frozen ground-
water are beyond the scope of this study and will be considered
elsewhere.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the Gov-
ernment of Perm Region (Contract C-26/0004.3) and the
Russian Foundation for Basic Research (Project No. 14-01-
31380_mol_a).

APPENDIX: NUMERICAL SIMULATION

The evolution of Eq. (7) was simulated with a finite-
difference method, an explicit scheme with central differences.
The time-dependent fields of temperature, molecular diffusion
coefficient, and solubility were precalculated for one cycle
of the surface temperature oscillation on the space-time grid
used for simulation of Eq. (7). The calculation domain was
limited from below by the depth L∞, and boundary condition
(9) was moved to z = L∞; the depth L∞ was chosen so
that perturbations of the solute concentration profile were not
visually resolvable at z = L∞/2. The choice of the space step
size was guided by two requirements. First, a decrease in the
step size by half should not change the results of simulation by
more than 1%. Second, for a diffusion coefficient diminished
by a factor of 10−4 the relative mismatch between the results of
numerical simulation and the unsimplified analytical solution,
(17), should not exceed 0.1%. Practically, grids with 30–50
points per the zone of nondissolved phase were sufficiently
detailed for these requirements to be met. The time step size
was determined by the requirement of stability of the explicit
method.
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