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Wake control with permeable multilayer structures: The spherical symmetry case
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We explore the possibility of controlling the wake and drag of a spherical object independently of each
other, using radial distributions of permeability in the Brinkman-Stokes formalism. By discretizing a graded-
permeability shell into discrete, macroscopically homogeneous layers, we are able to sample the entire functional
space of spherically-symmetric permeabilities and observe quick convergence to a certain manifold in the
wake-drag coordinates. Monte Carlo samplings with 104–105 points have become possible thanks to our new
algorithm, which is based on exact analytical solutions for the Stokes flow through an arbitrary multilayer porous
sphere. The algorithm is not restricted to the Brinkman-Stokes equation and can be modified to account for
other types of scattering problems for spherically-symmetric systems with arbitrary radial complexity. Our main
practical finding for Stokes flow is that it is possible to reduce a certain measure of wake of a spherical object
without any energy penalty and without active (power-consuming) force generation.
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I. INTRODUCTION

Wake of an obstacle in a stationary flow is of interest
because of both its fundamental importance in fluid dynamics
and its direct impact on vessel design. In ship hydrodynamics,
the magnitude of wake determines the key performance
metrics of vessels, such as their drag coefficient and energy
efficiency, as well as their maneuverability and even visibility.
In small-scale hydrodynamics (e.g., microfluidics), wake and
drag coefficients are important in the determination of effective
viscosity and other properties of colloidal mixtures. While ship
hydrodynamics generally deals with high-Re flows, which are
both highly nonlinear and turbulent, microfluidic applications
can benefit from the understanding of the Stokes (low-Re)
limit [1]. The ability to control any wake-related metrics of
small solid objects moving in fluids could impact the field of
fluid rheology, leading to liquid media with novel properties,
and shed light on the process of wake manipulation beyond
the Stokes limit.

Stokes flow and its generalization, Brinkman-Stokes flow
[2], have been studied extensively from the primary standpoint
of hydrology, which deals with creeping flows through perme-
able soils and rocks [3,4]. Unsteady and oscillatory Brinkman-
Stokes flows are also important in acoustics of porous
structures [5,6]. A substantial effort was already devoted to the
homogenization theory of saturated and unsaturated flows in
porous media [7–9]. Through this effort, a rigorous definition
of permeability—an effective parameter describing a fluid-
saturated porous medium—has been produced. Permeability
can be physically defined as the coefficient of proportionality
between the force exerted by the solid component on the
fluid and the macroscopic average flow velocity. At least in
the linear (Stokes) limit, this proportionality has to be linear,
making permeability a well-defined notion and a self-property
of the porous medium in that regime [10]. Notably, this linear
coefficient can be a second-rank tensor, as it relates two vector
fields. Statistically anisotropic porous media are thus described
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by three principal permeabilities and an orthogonal vector
basis in which the permeability tensor is diagonal.

Brinkman originally confirmed his generalization of Stokes
flow by comparing with measurements of viscous forces on
dense swarms of particles [11]. More recently, the Brinkman
term has been experimentally confirmed by measurements of
the settling velocity of porous spheres made of steel wool
[12], which was analytically predicted in Ref. [8]. Within the
context of layered structures, the drag force on solid spheres
coated with a single layer of permeable material has also been
measured and found to agree with the Brinkman-Stokes theory,
where the permeable material was composed of polyester
threads that were attached to the impermeable sphere [13].

In this paper, we analyze stationary Stokes flow past (and
through) a spherically-symmetric solid with an arbitrary radial
distribution of permeability. Several authors analyzed such
flow with respect to an impervious object coated by a single
layer of homogeneous, isotropic permeability [14–16]. In such
systems, if the sphere is subjected to an axisymmetric flow,
then the flow in the exterior (free-fluid) domain is characterized
by exactly two coefficients, indicating that there are two
components of wake [13]. That there are only two such
numbers is a pure consequence of the spherical symmetry
of the system, and this statement remains valid when the
permeability distribution is radially inhomogeneous, or even
uniaxially anisotropic, provided that the diagonal basis vectors
of permeability are aligned with the spherical coordinate basis
vectors everywhere. In Ref. [17], it is shown that it is possible
to simultaneously null both of these wake coefficients, if
permeability has a certain distribution that contains negative
values, whose significance is that the solid produces volumetric
thrust (acceleration). A mentioned example of a candidate
material that may provide the volumetric thrust in an active
hydrodynamic metamaterial is an array of active micropumps
[18–21]. A negative-permeability structure was named an
active hydrodynamic metamaterial (AHM); here, to describe
media that contain no thrust-generating active elements we
also use the name passive hydrodynamic metamaterials, or
PHM. Reference [17] presented only a single, numerical and
approximate solution, leaving out important questions, such
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as (a) to what extent the wake coefficients can be controlled
with a passive medium and (b) how can one control each of the
two wake coefficients individually, rather than nulling both of
them simultaneously.

We address these and other questions analytically in the
Stokes limit for the class of spherically-symmetric, possibly
anisotropic, permeable structures with essentially arbitrary
radial permeability distributions. Our approach to a general
radially-graded permeability map is to stratify it into a series
of concentric layers, such that permeability in each of them
can be treated as constant. Stokes flow through a homogeneous
permeability layer has analytical solutions, which, in some
cases, involve special functions. We show, however, that these
special functions are well-known standard functions, which
have been available in several industry-standard numerical and
symbolic computation packages for at least a decade.

Our approach is inspired by the transfer matrix formalism
used in electromagnetics to describe wave propagation through
multiple homogeneous layers. Such formalism was used to
determine reflection and transmission coefficients in planar
geometries, and scattering coefficients in cylindrical and
spherical geometries, the latter known as Mie theory [22–24].
In this formalism, the unknown fields are first expanded in
each layer in the basis of general solutions to the master
partial differential equation (PDE), such as the Helmholtz
equation in optics, or the Brinkman-Stokes equation in our
case. The field continuity conditions [25] are then used to
generate a sequence of linear relations between the unknown
magnitudes of the basis solutions in each layer. Finally,
one constructs a combined transfer matrix relating these
magnitudes in the exterior domain with those in the core
domain (the spherical domain containing the geometric center
of the structure), similar to the transfer matrices used in optics
[26,27]. The dimension of this matrix is equal to the order
of the master PDE, which, in our case, is 4. The boundary
conditions at infinity and at the origin, which stem from
the requirement of field and energy finiteness, are then used
to express the unknown coefficients through the magnitude
of the incident field, i.e., the velocity of the plug flow in
the hydrodynamic case. This strategy is very similar to the
calculation of the scattering coefficients in electromagnetics
[28] and fluid acoustics, and it can be generalized to scattering
theories that deal with either higher-rank tensor fields, such
as elastodynamics and gravitational wave theory, or with
higher-order PDEs, such as nonlocal wave theories.

II. STOKES FLOW IN SPHERICAL
PERMEABLE STRUCTURES

As was stated, the strategy that we employ to solve
the multilayer sphere problem is inspired by Mie theory in
electromagnetics. This process begins by first finding the
fundamental solutions to the stationary Brinkman equation
in spherical coordinates and in a material with constant
permeability. The flow in each layer of the multilayer sphere
will then be expanded in terms of these fundamental solutions,
and the boundary conditions of the problem will be used
to set up a matrix equation that solves for the coefficients.
We therefore begin by considering the Brinkman equation for

Stokes flow through a uniform permeable medium,

μ̃∇2u − μ

k
u = ∇p, (1)

where μ is the viscosity, μ̃ is the effective viscosity in the
medium, and k is the permeability. The problem at hand
is assumed to be axisymmetric, and therefore all quantities
are functions only of the radial coordinate r and the polar
angle θ . Expanding the vector Laplacian, this equation can be
reexpressed as

μ̃∇(∇ · u) − μ̃∇ × ∇ × u − μρu = ∇p, (2)

where ρ ≡ 1/k is the flow resistivity. Equation (1) assumes
that the flow is incompressible, which results in two further
simplifications. The first is that the first term in the equation
above becomes zero:

−μ̃∇ × ∇ × u − μρu = ∇p (3)

The second simplification is that the velocity can be
expressed as the curl of an arbitrary vector function, u =
∇ × A. If the body under consideration is axisymmetric, then
this vector function can be shown to have only one component
[29],

A = −ψ(r,θ )
φ̂

r sin(θ )
, (4)

where φ̂ is the unit azimuthal vector. This definition for the
so-called Stokes’s stream function has the property that

∇ × ∇ ×
(

−ψ
φ̂

r sin(θ )

)
= φ̂

r sin(θ )
E2ψ, (5)

where the operator E2 is given by

E2 = ∂2

∂r2
+ sin(θ )

r2

∂

∂θ

(
1

sin(θ )

∂

∂θ

)
. (6)

The pressure term in Stokes’s equations may be eliminated
by taking the curl of both sides, and applying the identity that
the curl of the gradient of a scalar function is zero. Therefore,
for spherical flow problems, the stream function follows the
differential equation

E2(E2 − ρ̃)ψ = 0 (7)

in a domain where the permeability and effective viscosity
are constant, and the variable ρ̃ = ρμ/μ̃ has been used for
the effective flow resistivity. The equation is fourth order
with respect to the polar angle, so there are four fundamental
angular solutions. However, the only solution that satisfies
the boundary conditions of plug flow at infinity is sin2(θ ).
Therefore the general solution for the stream function has the
form

ψ(r,θ ) = U∞
2

a2 sin2(θ )
∑

i

Aiψi(r), (8)

where a is the inner diameter of the permeable layer, and
the radial basis functions ψi(r) are solutions to the ordinary
differential equation[(

∂2

∂r2
− 2/r

)2

− ρ̃

(
∂2

∂r2
− 2/r

)]
ψi(r) = 0. (9)
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FIG. 1. Illustration of a sphere coated in multiple layers of
permeable material. Each layer has permeability κi and inner
radius ai .

This equation is fourth order, and its fundamental solution is a
linear combination of four basis functions, which are derived
below.

We now consider the geometry depicted in Fig. 1: a free
flow domain with ρ = 0 at r > b, and a permeable shell with
radially-variable, piecewise-constant permeability in the shell
a < r < b. In the free flow region, ρ = 0, and the solution is
given by

ψ1(r) = a/r, (10a)

ψ2(r) = (r/a), (10b)

ψ3(r) = (r/a)2, (10c)

ψ4(r) = (r/a)4. (10d)

This particular normalization has been chosen so that both
the basis functions and the coefficients Ai are dimensionless.
When the flow resistivity is nonzero and constant, the solution
is

ψ̃1(r) = a/r, (11a)

ψ̃2(r) = cosh(r
√

ρ̃)

r
√

ρ̃
− sinh(r

√
ρ̃), (11b)

ψ̃3(r) = (r/a)2, (11c)

ψ̃4(r) = sinh(r
√

ρ̃)

r
√

ρ̃
− cosh(r

√
ρ̃). (11d)

The normalization of the permeable basis is also chosen to
yield dimensionless coefficients, and shows the correspon-
dence of ψ̃1(r) and ψ̃3(r) with ψ1(r) and ψ3(r). The last two
basis functions in the free flow region, ψ2(r) and ψ4(r), can
be recovered from the basis in permeable flow by forming
the appropriate linear combination of the permeable basis and
taking the limit as ρ → 0. To find the exact correspondence
between the permeable flow basis and the free flow basis,
we expand each basis function in its Taylor series, create a
linear combination of these basis functions that reproduces
either ψ3(r) or ψ4(r), and then take the limit as ρ → 0. The
permeable basis functions ψ̃2(r) and ψ̃4(r) can be expressed
in terms of their Taylor series as

ψ̃2(r) =
∞∑

n=0

(
√

ρr)2n−1

(2n)!
− (

√
ρr)2n+1

(2n + 1)!

= 1√
ρr

− √
ρr/2 + O(

√
ρr)3, (12a)

ψ̃4(r) =
∞∑

n=0

( −2n

2n + 1

)
(
√

ρr)2n

(2n)!

= −ρr2/3 − ρ2r4/30 + O(
√

ρr)6. (12b)

The expansion of ψ̃2(r) only contains odd powers of r ,
so this function must be related to ψ1(r) and ψ2(r), while
the expansion of ψ̃2(r) only contains even powers of r , so it
must correspond to ψ3(r) and ψ4(r). Using this observation to
guide the derivation, the limiting form of the permeable basis
functions can be mapped to the free flow basis by

ψ1(r) = ψ̃1(r), (13a)

ψ2(r) = lim
ρ→0

(
2ψ̃1(r)

a2ρ
− 2ψ̃2(r)

a
√

ρ

)
, (13b)

ψ3(r) = ψ̃3(r), (13c)

ψ4(r) = lim
ρ→0

(
−10ψ̃3(r)

a2ρ
− 30ψ̃4(r)

a4ρ2

)
. (13d)

The singularities in each of the two terms that are involved
in taking the limit cancel each other out, and the higher order
terms seen in Eqs. (12a) and (12b) go to zero. The result is that
the functions in Eqs. (10a) to (10d) are reproduced. From this
point on in this paper, the tilde in the notation ψ̃i(r) that is used
to distinguish it as a basis function for nonzero permeability
will be dropped, and it will be implied from the context that if
the flow is in a free flow region then the basis from Eqs. (10a)
to (10d) should be chosen, while if the flow is in a permeable
region then the basis from Eqs. (11a) to (11d) should be chosen.

III. DERIVATION OF FIELDS IN ISOTROPIC
PERMEABILITY STRUCTURES

Solving the multilayer sphere problem requires applying
the boundary conditions that the velocity and stress tensor
are both continuous everywhere. In this section we derive
a set of operators that, when applied to the stream function
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radial basis functions, will reproduce the velocity vector field
and the stress tensor field. Since the only difference between
the free flow solution and the permeable solution lies in the
radial basis functions, all of the expressions here will be left
in terms of an operator acting on an arbitrary radial basis
function.

A. Expressions for the velocity field

Expanding out the curl equation for the velocity, u = −∇ ×
(ψ(r,θ ) φ̂

r sin(θ) ), the velocity can be expressed as

ur = −1

r2 sin(θ )

∂

∂θ
ψ(r,θ ), (14)

uθ = 1

r sin(θ )

∂

∂r
ψ(r,θ ). (15)

When the stream function in Eq. (8) is substituted into these
equations, we obtain

ur = U∞ cos(θ )
∑

i

Ai

(−a2

r2

)
ψi(r), (16)

uθ = U∞ sin(θ )
∑

i

Ai

(
a2

2r

)
∂

∂r
ψi(r). (17)

B. Expressions for the pressure field

Stokes’s equation can be used to relate the stream function
to the gradient of the pressure:

∇ ×
(

φ̂

r sin(θ )
E2ψ

)
− ρ̃∇ ×

(
ψ

φ̂

r sin(θ )

)
= − 1

μ̃
∇p.

(18)
This last equation can be written out in components for the
partial derivatives of the pressure:

∂p

∂r
= − μ̃

r2 sin(θ )

(
∂

∂θ
E2ψ − ρ̃

∂

∂θ
ψ

)
, (19)

∂p

∂θ
= μ̃

sin(θ )

(
∂

∂r
E2ψ − ρ̃

∂

∂r
ψ

)
. (20)

Substituting the stream function in these equations, and using
the property that

E2ψ = 1

2
U∞ sin2(θ )

∑
i

a2Ai

(
∂2

∂r2
− 2

r2

)
ψi (21)

we obtain the following expressions for the derivatives of the
pressure:

∂p

∂r
= μ̃U∞ cos(θ )

∑
i

Ai

(
a2

2

)(
2

r2

)(
ρ̃ + 2

r2
− ∂2

∂r2

)
ψi(r),

(22a)
∂p

∂θ
= −μ̃U∞ sin(θ )

∑
i

Ai

(
a2

2

)
∂

∂r

(
ρ̃ + 2

r2
− ∂2

∂r2

)
ψi(r).

(22b)

If the pressure is to be part of the solution of Stokes’s
equation, then the derivatives must satisfy an exact differential,

dp = ∂p

∂r
dr + ∂p

∂θ
dθ , so that they are integrable. The condition

that they form an exact differential is

∂2

∂r2

(
ρ̃ + 2

r2
− ∂2

∂r2

)
ψi(r) =

(
2

r2

)(
ρ̃ + 2

r2
− ∂2

∂r2

)
ψi(r),

(23)

which is equivalent to Eq. (9), and therefore any valid stream
function will render a scalar field under this operator that is
integrable. The solution for the pressure is found by integrating
Eq. (22b) with respect to the polar angle:

p = p∞+U∞ cos(θ )
∑

i

Ai

(
μ̃

a2

2

)
∂

∂r

(
ρ̃ + 2

r2
− ∂2

∂r2

)
ψi(r).

(24)

The pressure in free flow is then given by the same linear
operator, but excluding the ρ̃ term:

p = p∞ + μ̃U∞ cos(θ )
∑

i

Ai

(
a2

2

)
∂

∂r

(
2

r2
− ∂2

∂r2

)
ψi(r).

(25)

C. Stress tensor in isotropic, spherically-symmetric systems

The stress tensor is most commonly computed using the
pressure and derivatives of the velocity. The velocity in any
permeable material is related to the stream function in the
same way that it is related to the stream function when it is in
free space, and this relationship is given in Eqs. (16) and (17).
However, the operator that defines the relationship between the
stream function and the pressure depends on the permeability
of the medium.

In the permeable layer, the components of the stress tensor
are

Trr = −p + 2μ̃
∂

∂r
ur , (26)

Trθ = μ̃
1

r

∂

∂θ
ur + μ̃

(
∂

∂r
− 1

r

)
uθ . (27)

Substituting the equations for the velocity, these become

Trr = U∞ cos(θ )
∑

i

Ai(μ̃a2/2)

(
∂3

∂r3
− ∂

∂r

6

r2
− ρ̃

∂

∂r

)
ψi,

(28)

Trθ = U∞ sin(θ )
∑

i

Ai(μ̃a2/2)

(
2

r3
− 2

r2

∂

∂r
+ 1

r

∂2

∂r2

)
ψi.

(29)

These become the equations for the stress tensor in a free flow
regime in the limit of infinite permeability.

IV. THE CASE WITH ANISOTROPIC-PERMEABILITY
LAYERS

In Sec. II, the Brinkman equation was presented with
an isotropic permeability. The total solution space may be
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expanded by allowing this permeability to anisotropic. The
Brinkman equation may be more conveniently rewritten in
terms of the flow resistivity instead of the permeability, where
the flow resistivity is allowed to be a tensor:

∇ × ∇ × u + ρ̃u = − 1

μ̃
∇p. (30)

Because we assume spherical symmetry, only the radial
and azimuthal components of the resistivity are allowed to be
nonzero, which we shall see immediately below. Following
the approach that was taken Sec. II, the stream function
form of the vector potential is substituted for the velocity
and the curl is taken of both sides to remove the pressure
dependence:

∇ × ∇ × ∇ × ∇ × −ψ(r,θ )

r sin(θ )
θ̂ + ∇ ×

(
ρ̃∇ × −ψ(r,θ )

r sin(θ )

)
= 0. (31)

The first term on the left reduces to a repeated operator of E2

in the usual way,

−θ̂

r sin(θ )
E4ψ + ∇ ×

(
ρ̃∇ × −ψ(r,θ )

r sin(θ )

)
= 0, (32)

but the term on the right cannot be reduced in the same
way because the resistivity matrix is no longer a spherical

tensor. Instead, we obtain

∇ ×
(

ρ̃∇ × −ψ(r,θ )

r sin(θ )

)
= θ̂

r sin(θ )

[
ρ̃rrE

2

+ (ρ̃θθ−ρ̃rr )
∂2

∂r2
− ρ̃rθL

]
ψ(r,θ ),

(33)

where

L = sin(θ ) + 1

r sin2(θ )

∂

∂θ

∂

∂r
− 1

r2

∂

∂θ
. (34)

Putting these equations together, the stream function is now
a solution to the differential equation(

E4 − ρ̃rrE
2 − (ρ̃θθ − ρ̃rr )

∂2

∂r2
+ ρ̃rθL

)
ψ(r,θ ) = 0. (35)

If the off-diagonal elements remain zero such that the
principal eigenvectors of the resistivity matrix preserve the
symmetry of the system, then the L operator drops out.
The angular dependence is then unperturbed, and sin2(θ )
remain a separable solution. In what follows, we assume that
ρ = diag(ρr ≡ ρrr ,ρθ ≡ ρθθ ). The four radial basis functions,
ψi(r), must satisfy the fourth-order ordinary differential
equation((

∂2

∂r2
− 2/r2

)2

+ 2ρ̃r/r2 − ρ̃θ

∂2

∂2
r

)
ψi(r) = 0. (36)

The solutions to this equation are

ψ1(r) = r
√

ρ̃θF2,3

({
1/4 −

√
8ρ̃r + ρ̃θ

4
√

ρ̃θ

,1/4 +
√

8ρ̃r + ρ̃θ

4
√

ρ̃θ

}
,{−1/2,1/2,2},r2ρ̃θ /4

)
, (37a)

ψ2(r) = r4ρ̃2
θ F2,3

({
7/4 −

√
8ρ̃r + ρ̃θ

4
√

ρ̃θ

,7/4 +
√

8ρ̃r + ρ̃θ

4
√

ρ̃θ

}
,{2,5/2,7/2},r2ρ̃θ /4

)
, (37b)

ψ3(r) = G
2,2
2,4

({[
5/4 −

√
8ρ̃r + ρ̃θ

4
√

ρ̃θ

,5/4 +
√

8ρ̃r + ρ̃θ

4
√

ρ̃θ

]
,[ ]

}
,{[−1/2,1/2],[1,2]},r2ρ̃θ /4

)
, (37c)

ψ4(r) = G
2,2
2,4

({[
5/4 −

√
8ρ̃r + ρ̃θ

4
√

ρ̃θ

,5/4 +
√

8ρ̃r + ρ̃θ

4
√

ρ̃θ

]
,[ ]

}
,{[1,2],[−1/2,1/2]},r2ρ̃θ /4

)
, (37d)

where F is the hypergeometric function and G is the Meijer
G function.

A. Stress tensor in anisotropic spherically-symmetric systems

In the case of anisotropic permeability, the operator that
relates the pressure to the stream function can be expressed in
terms of only one component of the permeability tensor. In this
section the operator is derived explicitly in terms of the polar
component of the flow resistivity tensor, since the approach
using that component is somewhat simpler.

Once the solution for the stream function has been found,
the derivatives of the pressure can be extracted from Stokes’s
equation:

∂p

∂r
= − μ̃

r2 sin(θ )

(
∂

∂θ
E2ψ − ρ̃r

∂

∂θ
ψ

)
, (38a)

∂p

∂θ
= μ̃

sin(θ )

(
∂

∂r
E2ψ − ρ̃θ

∂

∂r
ψ

)
. (38b)

Given that the angular solution is sin2(θ ), the derivatives of
pressure can be expressed solely in terms of radial derivatives
of the radial basis functions:

∂p

∂r
= μ̃U∞ cos(θ )

∑
i

Ai

(
a2

2

)(
2

r2

)(
ρ̃r+ 2

r2
− ∂2

∂r2

)
ψi(r),

(39a)

∂p

∂θ
= −μ̃U∞ sin(θ )

∑
i

Ai

(
a2

2

)(
∂

∂r

)(
ρ̃θ+ 2

r2
− ∂2

∂r2

)
ψi(r).

(39b)
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The condition that these equations be integrable is(
2

r2

)(
ρ̃r + 2

r2
− ∂2

∂r2

)
ψi(r)

=
(

∂2

∂r2

)(
ρ̃θ + 2

r2
− ∂2

∂r2

)
ψi(r), (40)

which is equivalent to Eq. (36), just as in the isotropic case.
The pressure is found by integrating Eq. (39b) with respect to
the polar angle:

p =p∞ + μ̃U∞ cos(θ )
∑

i

Ai

(
a2

2

)(
∂

∂r

)

×
(

ρ̃θ + 2

r2
− ∂2

∂r2

)
ψi(r). (41)

The stress tensor is therefore

Trr = U∞ cos(θ )
∑

i

Ai(μ̃a2/2)

(
∂3

∂r3
− ∂

∂r

6

r2
− ρ̃θ

∂

∂r

)
ψi,

(42)

Trθ = U∞ sin(θ )
∑

i

Ai(μ̃a2/2)

(
2

r3
− 2

r2

∂

∂r
+ 1

r

∂2

∂r2

)
ψi.

(43)

V. ALGORITHM FOR SOLVING THE
MULTILAYER PROBLEM

One unique aspect of Mie theory problems is the arrange-
ment of the boundary conditions. For an Mth order differential
equation there will be M linearly independent solutions in each
of the domains, which correspond to M unknown coefficients
for each of these solutions in each layer of the system. Then
there will be M boundary conditions relating each layer to
its adjacent layer in either direction. For a problem with N

domains there will be N − 1 interfaces between the domains,
so only N − 1 sets of M equations. These boundary conditions
allow the interior domains to be connected in such a way
that the coefficients of the basis functions in the outermost
domain are related to the coefficients of the innermost domain
by a linear map. The final M equations needed to solve the
problem are given by the boundary conditions for the global
problem. In this particular case, M = 4, and there are two
boundary conditions on the innermost spherical shell and
two boundary conditions on the limiting form of the free
flow region, which is the final domain. The challenge is to
arrange the problem so that these two sets of two boundary
conditions can be combined together to provide a final set
of M equations that allow the entire problem to be solved.
Stokes’s stream function here assumes a piecewise form,
ψ(r) = ∑4

i=1 A
j

i ψ
j

i (r), aj < r < aj+1, j = 1, . . . ,N , where
the ψ

j

i (r) in each layer are given by

ψ̃
j

1 (r) = aj/r, (44a)

ψ̃
j

2 (r) = cosh(r
√

ρ̃j )

r
√

ρ̃j

− sinh(r
√

ρ̃j ), (44b)

ψ̃
j

3 (r) = (r/aj )2, (44c)

ψ̃
j

4 (r) = sinh(r
√

ρ̃j )

r
√

ρ̃j

− cosh(r
√

ρ̃j ) (44d)

in the permeable layers and

ψ
j

1 (r) = yaj/r, (45a)

ψ
j

2 (r) = (r/aj ), (45b)

ψ
j

3 (r) = (r/aj )2, (45c)

ψ
j

4 (r) = (r/aj )4 (45d)

in the free-flow domain, which is when j = N .
For the interfaces between the domains, the boundary

conditions are that velocity must be continuous, and the
components of the stress tensor must also be continuous. At
the outer radius of the j th layer, r = aj+1, this means that∑

i

A
j

i L
j
rrψ

j

i (aj+1) =
∑

i

A
j+1
i Lj+1

rr ψ
j+1
i (aj+1), (46)

∑
i

A
j

i L
j

rθψ
j

i (aj+1) =
∑

i

A
j+1
i L

j+1
rθ ψ

j+1
i (aj+1), (47)

∑
i

A
j

i L
j
r ψ

j

i (aj+1) =
∑

i

A
j+1
i Lj+1

r ψ
j+1
i (aj+1), (48)

∑
i

A
j

i L
j

θψ
j

i (aj+1) =
∑

i

A
j+1
i L

j+1
θ ψ

j+1
i (aj+1), (49)

where

Lj
rr = (μ̃j a

2
j /2)

(
∂3

∂r3
− ∂

∂r

6

r2
− ρ̃θ

∂

∂r

)
, (50)

L
j

rθ = (μ̃j a
2
j /2)

(
2

r3
− 2

r2

∂

∂r
+ 1

r

∂2

∂r2

)
(51)

are linear operators that transform the stream function in the
j th layer into components of the stress tensor, and

Lj
r = −a2

j

r2
, (52)

L
j

θ =
(

a2
j

2r

)
∂

∂r
(53)

are linear operators that transform the stream function in
the j th layer into velocity components. Using these linear
operators, the continuity boundary conditions can be expressed
in a matrix form

Aj = Mj+1Aj+1, (54)

where

Mj+1 = (Sj (aj+1))−1(Sj+1(aj+1)), (55)

Sj (a) =

⎡
⎢⎢⎣

L
j
r ψ

j

1 |a L
j
r ψ

j

2 |a L
j
r ψ

j

3 |a L
j
r ψ

j

4 |a
L

j

θψ
j

1 |a L
j

θψ
j

2 |a L
j

θψ
j

3 |a L
j

θψ
j

4 |a
L

j
rrψ

j

1 |a L
j
rrψ

j

2 |a L
j
rrψ

j

3 |a L
j
rrψ

j

4 |a
L

j

rθψ
j

1 |a L
j

rθψ
j

2 |a L
j

rθψ
j

3 |a L
j

rθψ
j

4 |a

⎤
⎥⎥⎦,

(56)

and Aj = [Aj

1A
j

2A
j

3A
j

4]t is a vector containing the coefficients
for the j th layer. The coefficients in the outermost layer can be
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consequently expressed as a linear function of the coefficients
of the the innermost layer.

The boundary condition on the innermost layer is that the
velocity goes to zero. This can be expressed as the matrix
equation

bin =
[

0
0

]
(57)

=
[
L1

rψ
1
1 |a1 L1

rψ
1
2 |a1 L1

rψ
1
3 |a1 L1

rψ
1
4 |a1

L1
θψ

1
1 |a1 L1

θψ
1
2 |a1 L1

θψ
1
3 |a1 L1

θψ
1
4 |a1

]⎡
⎢⎢⎢⎣

A1
1

A1
2

A1
3

A1
4

⎤
⎥⎥⎥⎦

(58)

or

bin = BinA1. (59)

The boundary condition on the outermost layer requires
that

lim
r→∞ ur = −U∞ cos(θ ), (60)

lim
r→∞ uθ = U∞ sin(θ ). (61)

Combined with Eqs. (16) and (17), this boundary condition at
infinity implies that AN

3 = −1 and AN
4 = 0. This can also be

expressed in a matrix equation

bout = BoutAN, (62)

where

Bout =
[

0 0 1 0
0 0 0 1

]
(63)

and

bout =
[−1

0

]
(64)

and AN are the coefficients in the free flow domain. These
boundary conditions can be combined by first recognizing that
A1 = (

∏N
j=2 Mj )AN ≡ MT AN . Then the entire system can be

expressed in the block matrix form[
bin
bout

]
=

[
BinMT

Bout

]
AN . (65)

This is a linear problem of size and rank 4, regardless of the
number of layers, which could be solved to yield the four
coefficients in the exterior domain. However, since the final
two components of AN , namely (AN

3 ,AN
4 ), are known to be

(−1,0), we can simplify this equation to a system of rank 2.
The top two rows of the matrix equation may be expanded
according to

bin = BinMT R

[
AN

1
AN

2

]
− BinVT , (66)

where

MT R =
[
MT 11 MT 21 MT 31 MT 41

MT 12 MT 22 MT 32 MT 42

]t

(67)

and

VT = [MT 13 MT 23 MT 33 MT 43]t . (68)

Then the equation becomes a 2 × 2 matrix equation that can
be easily inverted to solve for the coefficients AN

1 ,AN
2 in the

exterior domain:

BinMT R

[
AN

1
AN

2

]
= BinVT . (69)

VI. RESULTS

The primary quantities of interest in this paper are the
wake and drag of the spherical structure. The drag force FD

is proportional to the A2 coefficient in the exterior domain,
which is more commonly referred to in the literature [13] as
the B coefficient. The drag force is given by

FD = 4μU∞bB, (70)

where b is the outermost radius of the structure.
There are many possible ways in which the wake may be

defined, but in this work we define it as the surface integral over
a sphere centered at the multilayer structure of the deviation
of the velocity from the incident plug flow at some radius re:

W = 1

U 2∞

∮
r=re

|u − U∞ẑ|2d�. (71)

Using the basis of free flow in the exterior domain in Eqs. (10a)
to (10d), the wake can be expressed solely in terms of the
coefficients in the exterior domain,

W = 2π
((

b6/r6
e

)
A2 + (

b2/r2
e

)
B2 + (2/3)

(
b4/r4

e

)
AB

)
,

(72)
where we have defined A = A1 and B = A2 to be consistent
with previously established notation in the literature [13]. We
choose the evaluation radius to be the outer radius of the
multilayer sphere so that re = b, and the wake becomes a
simple quadratic form in A and B,

W = 2π (A2 + B2 + (2/3)AB). (73)

The wake and drag may be converted into units that are
comparable to one another by defining the effective radius
with respect to the drag force RD , and the effective radius with
respect to the wake RW . We define the effective radius with
respect to drag or wake of a multilayer permeable structure
as the radius that a solid sphere would have to take in
order to reproduce the same drag or wake as the multilayer
structure, respectively. To define these quantities, we evaluate
Eqs. (70) and (72) using the coefficients (A1,A2,A3,A4) for
a solid sphere. These equations therefore establish a fixed
relationship between drag force (or wake) with the radius b

required by the solid sphere to produce that drag force (or
wake). This outer radius b is therefore the equivalent radius
with respect to drag RD if it is computing using the drag
force in Eq. (70), or it is the equivalent radius with respect
to wake RW if it is computed using Eq. (72). For a solid
sphere, the coefficients in the exterior domain are given by
(A1,A2,A3,A4) = (A,B,C,D) = (−1/2,3/2, − 1,0). If these
are inserted into Eq. (70), then Eq. (70) may be inverted
to solve for b ≡ RD in terms of the drag force (and hence
the B coefficient) of the multilayer structure. Similarly, the
coefficients for a solid sphere may be inserted into Eq. (72),
and Eq. (72) may be inverted to solve for b ≡ RW in terms of
the wake of the multilayer structure. The effective radius with
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respect to drag is then

RD = 2bB/3 (74)

and the effective radius with respect to wake is

RW = b

(
2/3 + 23π1/3

3ξ 1/3
−

(
ξ

9π

)1/3)1/2

, (75)

where

ξ = 73π − 27W + 3
√

3
√

648π2 − 146πW + 27W 2. (76)

A. Wake control with passive structures

In order to explore the degree to which the wake and drag
of a sphere of radius a might be controlled using a multilayer
structure with outer radius b, we select a fixed number of
layers N of permeable material of equal thickness that lie
between the radii a and b. Then we employ a Monte -Carlo
technique to explore the solution space by randomly selecting
a large number (≈ 5 × 104) of N -dimensional vectors k =
(k1,k2, . . . ,kN ) that represent the permeability values for
each of the layers in the multilayer sphere. The values of
permeability components ki were uniformly distributed on a
logarithmic scale within the interval from ki/a

2 = 10−1 to
ki/a

2 = 103, since this range appears to provide both a good
sampling of the manifold and good numerical stability. The
resulting equivalent radii with respect to wake and drag of
each solution is then plotted, depicting a cloud of points that
demonstrate the range of wake and drag values that can be
achieved if the sphere is coated with N layers of permeable
material.

In Fig. 2(a), an aspect ratio b/a of 5 was chosen between the
outermost radius and innermost radius (b = 5), and the number
of layers was steadily increased while the flow resistivity was
required to be isotropic. As expected, the range of possible
wake and drag values converges to a smooth manifold as the
number of layers increases, which demonstrates the range of
physically possible wake and drag values if the flow resistivity
was allowed to vary continuously with radius. Based on
Fig. 2(c), the aspect ratio itself is observed to simply scale
this manifold linearly.

For an anisotropic structure, a single layer of permeable
material has two degrees of freedom, and therefore it results
in a two-dimensional manifold as shown in Fig. 3(a). The
lower boundary of this manifold appears to coincide perfectly
with the lower boundary of the two-layer isotropic structure,
but the upper portion of the double layer isotropic structure
is unreachable by the single layer anisotropic structure. It
appears that the single layer anisotropic structure behaves
in some way like a double layer isotropic structure, but is
not able to completely reproduce its range of wake and drag
control. However, Fig. 3(b) shows that the manifold wake and
drag values for a single layer anisotropic structure are greatly
enlarged by the addition of more layers.

Although these results do appear to show that the drag
force and wake are tightly correlated, the permeable layers are
able to reduce the wake and drag. This finding is in agreement
with [14], which showed that the drag force on a permeable
sphere is equivalent to the drag on an impermeable sphere of
reduced radius.
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1

1

FIG. 2. (Color) (a) Convergence of the range of possible wake
and drag values as the number of layers of permeable material N

increases for a multilayer structure of isotropic permeable layers,
for a multilayer structure with b/a = 5. (b) A sketch of the outline
of the manifolds shown in (a) as N varies. The solution space
converges as N increases. (c) Variation of the solution space as the
aspect ratio b/a of the multilayer structure increases, when N = 6.
Note that, for an impermeable sphere of radius a � R � b, we have
RW = RD = R, which corresponds to a horizontal straight line where
RW/RD = 1.
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FIG. 3. (Color) (a) Comparison of the solution space of RW /RD

and RD values for a single layer of anisotropic material with the
solution space for two layers of isotropic material, in the case
where b/a = 5. (b) Variation of the solution space of as number
of anisotropic layers increases.

The effective radius with respect to drag only depends on
the B coefficient, and therefore it is well quantified by RD .
A way to quantify the effect of the multilayer structure on
the A coefficient independently of the B coefficient is to use
the equivalent radius with respect to the A coefficient, RA,
where A = A1 in the exterior domain. The effective radius
with respect to the A coefficient is defined as the radius that an
impermeable sphere would have to take in order to reproduce
the same A coefficient that is created by the multilayer sphere
structure. This definition implies that

RA = −sgn(A)b(2|A|)1/3. (77)

The range of possible RA values versus RD is then a measure
of the degree of control that is available for the A coefficient for
a given B coefficient, or drag force. This range is shown based
on a Monte Carlo study in Fig. 4(a), where a considerable
degree of control of RA is shown for as few as two or three
layers.
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(b)

FIG. 4. (Color) (a) Convergence of the range of possible RA

and RD values as the number of layers N of isotropic permeable
material increases, when b/a = 5. (b) Comparison of the range of
possible RA and RD values for a single layer of anisotropic material
with the solution space for two layers of isotropic material. For an
impermeable sphere of radius a � R � b, the solution space is RA =
RD = R, which corresponds to a diagonal line from RA = RD = 1
to RA = RD = 5.

B. Wake and drag cancellation with active metamaterials

A multilayer structure with active flow resistivity is one
that allows the flow resistivity to be less than zero. Since a
positive, isotropic flow resistivity is defined as the application
of a volumetric force in the direction opposite the flow velocity,
a negative, isotropic flow resistivity is the application of a
volumetric force parallel to the flow velocity. This necessarily
entails pumping energy into the system, and allowing the flow
resistivity to be negative therefore gives a much larger range
of wake and drag control, in addition to providing interesting
propulsive solutions where the drag is negative and cloaking
solutions where both the wake and drag are zero.

If we begin with a six-layer isotropic multilayer structure
with an aspect ratio of b/a = 5, and slowly increase the
allowed volumetric force, then the wake to drag ratio sig-
nificantly increases as the drag force decreases, as shown in
Fig. 5(a). The ratio then decreases again as the drag force
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FIG. 5. (Color) (a) Convergence of the range of possible wake and
drag values as the minimum allowed flow resistivity is varied, given
a six-layer multilayer structure with an aspect ratio of b/a = 5. (b)
Convergence of the effective radius with respect to the A coefficient
as the number of layers is increased.

becomes negative and the structure is propelled through the
liquid.

Figure 5(b) shows the degree to which RA and RD may
be controlled independently using active permeable materials.
Interestingly, the sign of the A coefficient may be inverted
using active permeable materials, although it appears that there
are no solutions that allow it to be zero.

Rather than plotting RW/RD versus RD , a plot of RW versus
RD demonstrates the cloaking solutions for an active isotropic
multilayer structure as in Fig. 6(a), or an active anisotropic
multilayer structure as in Fig. 6(b). A single layer of active
isotropic material is only able to reduce the effective radius of
the wake by about 72%, while four layers are able to reduce
the effective radius by 90%. The anisotropic cloaked solutions
are likewise depicted in Fig. 6(b). Even though the single layer
anisotropic structure has two degrees of freedom, the addition
of a second layer of material increases the cloaking efficiency
from 81% to 91%, which is approximately what is achievable

−5 0 5
0

1

2

3

4

5

R
D

R
W

−1 0 1
0

0.5

1

N=4
N=3
N=2
N=1

(a)

−5 0 5
0

1

2

3

4

5

R
D

R
W

N=2
N=1

−1 0 1
0

0.5

1(b)

FIG. 6. (Color) Range of possible wake and drag values for active
isotropic (a) and anisotropic (b) layers.

by a four layer isotropic structure. The cloaking solutions can
also be seen in Fig. 5(b), since the point where RA = RD = 0
also implies that RW = 0, based on Eq. (72).

The velocity operator is able to convert these numerical
results into streamlines that are much more illustrative of the
mechanism of cloaking at work. In Figs. 7(a) and 7(b), we
illustrate a five-layer cloak that was optimized using this Monte
Carlo approach with an aspect ratio of two and a minimum
normalized flow resistivity of ρ ′ ≡ a2ρ̃ > −25. The action
of the layers serves to tighten the flow through the layers and
correct the flow just outside the cloak so that it remains uniform
everywhere except inside the cloak. In this particular case, the
normalized flow resistivity of each of the five layers is given
by ρ ′ = (1.2821, − 22.3214, − 4.0552,8.7032,0.0010).

VII. ANALYSIS AND CONCLUSIONS

Wake and drag are closely related, but certainly distinct
phenomena, and the purpose of this study is to show the
extent to which they can be manipulated independently from
each other in the linear (Stokes) limit. While the Stokes
limit is the least complicated (and therefore less interesting)
flow regime, it allows for the least computationally intensive
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FIG. 7. Streamlines of an uncloaked (a) and an actively cloaked
(b) sphere for a cloak with an aspect ratio of 2 and minimum
ρ ′ = −25.

solution algorithms. Such algorithms can be adapted from
electrodynamics, where linear problems have been in the focus
for over a century, and readily exchanged with other disciplines
where linear dynamics is important, such as acoustics and
elastodynamics.

We emphasize that the conclusions derived from this study
are limited to the case of uniform (plug) flow past and
through a spherically symmetric object, and limited to small
Reynolds numbers; these results cannot be applied outside of
this domain without additional considerations. In this domain
of applicability, the flow in the exterior region (r > b) is
completely described by two real numbers: the coefficients
A1 = A and A2 = B, as defined in Sec. VI. This remains
true regardless of the radial complexity of the system, as

long as the system remains spherically symmetric. The latter
requirement imposes a constraint on the orientation of the
eigenvectors of the permeability tensor, which must be locally
aligned with the spherical coordinate basis. The second of these
coefficients (B) is entirely responsible for the drag force, which
is linearly proportional to it. The extent to which this drag force
coefficient can be controlled by a radial distribution of a passive
permeable medium in a shell of given dimensions (a < r < b)
is elucidated by Figs. 2(a), 2(c), 3(a), 3(b), 4(a), and 4(b). In
short, this coefficient cannot be smaller than its value for an
impermeable sphere of radius a; nor can it be larger than its
value for a sphere of radius b. This remains valid even in the
case of spherically anisotropic passive porous medium, as seen
from Figs. 3(a), 3(b), 4(a), and 4(b). Both of these conclusions
are in accord with our common sense. The first one is strictly
mandated by the minimum dissipation theorem [30], which
states that, with the given boundary conditions, the free-space
Stokes flow dissipates less than any other flow, including the
Brinkman-Stokes flow with any permeability distribution, or
any other incompressible flow modified by external forces.
This theorem follows directly from the form of the viscous
dissipation functional [31], whose no-slip boundary-condition
constrained minimum is achieved on a free Stokes flow.

We base our conclusions on numerical Monte Carlo (MC)
samplings of the infinite space of all possible continuous
radial permeability functions. These samplings are performed
by first discretizing these one-dimensional functions on a
finite grid, i.e., by replacing each continuous permeability
function with a finite-dimensional parameter vector, and then
selecting a large and therefore sufficiently representative set
of parameter vectors. As can be seen from Fig. 2(a), there
is rapid convergence towards a certain manifold in the space
of two figures of merit (such as the norm of wake and the
drag coefficient), as the number of discrete layers increases.
This rapid and essentially monotonic convergence implies that
the exterior flow parameters (A,B) are smooth functions of
permeability, devoid of any oscillatory or resonant behavior.

As for the other coefficient (A1 = A), which plays into the
wake but has no effect on the drag, our intuition or energy
arguments do not provide an intuitive answer; for example, it
would be conceivable that this coefficient can be controlled to
a greater extent than the B coefficient. The most extreme way
of controlling this coefficient would be to cancel it entirely,
which does not have to require making the B coefficient
zero, or even reducing it by any amount. Our MC-based
results reveal, however, that the A coefficient is substantially
correlated with the B coefficient [Figs. 4(a) and 4(b)]. This
correlation becomes much weaker as the number of layers (N )
increases, or as the geometric aspect ratio of the shell (R2/R1)
becomes large: the accessible combinations of (A,B) form a
1D curve at N = 1, but already at N � 2 they form a manifold
of an ever-increasing area. This means that the A coefficient
can be increased or decreased somewhat independently from
the drag coefficient, to the maximum extent that depends on the
shell aspect ratio. This translates into the ability to manipulate
the norm of wake, which is defined in Sec. VI.

As seen in Figs. 3(a) and 3(b), at the aspect ratio of 5,
we observe maximum variation of the norm of wake at a
fixed drag coefficient, reaching about 3%. This maximum
variation increases with the growing aspect ratio [Fig. 2(c)].
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In Figs. 2(a), 2(c), 3(a), and 3(b), the norm of wake and the
drag coefficient are represented by the equivalent wake radius
(RW ) and equivalent drag radius (RD), respectively, which
correspond to the radii of an impervious simple sphere having
the same norm of wake or the same drag force. Consequently, a
passive porous sphere can be designed to have a smaller norm
of wake than an impervious solid sphere having the same
drag coefficient. Note that in the (RW,RD) coordinates, the
impervious sphere is represented by a straight line RW = RB ,
or a horizontal line with RW/RD = 1 in the (RW/RD,RD)
plots (Figs. 2 and 3). Since the two spheres with the same
drag coefficient require an equal amount of power to be moved
through a stationary fluid, this finding opens up an opportunity
to reduce wake without any energy penalty.

Nevertheless, the A coefficient and the related kind of
wake can only be changed in a certain range by a passive
permeable medium, as our results reveal. In particular, its
minimum and maximum values are still limited to the values
of A coefficient for the impermeable spheres of radii a and
b, respectively, much like the accessible range for the B

coefficient. This conclusions remains true when spherical
anisotropy of permeability is included.

These ranges change dramatically when an active medium,
described by negative or indefinite permeability, is allowed.
The first dramatic, although entirely expected [17] change is
that the B coefficient can now be less than its value for the
core sphere (an impervious sphere of radius (R1); moreover,
it can be negative, as seen from Fig. 5 (a). In this figure,
the magenta dots correspond to the already discussed passive
case; as the minimum permissible value of flow resistivity
goes negative, the accessible domain in the wake-drag diagram
becomes progressively wider, taller, and larger in area. The
apparent singularity in the RW/RD at RD = 0 is due to the
denominator crossing zero.

Another interesting effect is observed in the A coefficient
[Fig. 5(b)]. It is now possible to make it precisely zero, or
positive, even when the drag coefficient is not small. However,
cancellation of the A coefficient is only observed in the regime
where RD is approximately equal to a; therefore, it still
essentially requires an active medium, which can bring RD

of a permeable sphere down to a.
A counterintuitive observation can be made from Fig. 5(b):

the A coefficient remains somewhat correlated with the B

coefficient, and the correlation becomes tighter as one moves

away from the zero crossing for A. This correlation cannot
be removed even with arbitrarily large amounts of external
volumetric force that can be applied by the active medium. A
similar correlation is seen for the norm of wake [Figs. 6(a) and
6(b)], which is dependent upon but not entirely determined by
the A coefficient. For the norm of wake, complete decorrelation
from the drag coefficient (and thus independent control) is
only possible in the regime where the drag is nearly perfectly
compensated by the active medium; see the insets in Figs. 6(a)
and 6(b). In the latter regime, our MC samplings readily
reveal a number of solutions with simultaneously small (A,B),
similar to those found in [17]; one such solution is depicted
in Figs. 7(a) and 7(b), where it is compared against a bare
impervious sphere of radius a. These trial solutions can be
further perfected using optimization techniques along the lines
of Ref. [17,32].

Although the degree of independent control over both
the wake and drag is somewhat limited when using passive
permeable materials, the results presented in this work show
the absolute limit of what might be done with the range
of flows around an object that can be readily and exactly
solved analytically, i.e., the Stokes flow regime with spherical
symmetry. However, once the constraint of spherical symmetry
is dropped, it has been shown that there is significantly more
control over the wake and drag, and increasing the Reynolds
number also increases the range of possible wake and drag
values [33].

Even in the Stokes flow limit, solving the problem of the
multilayer permeable sphere furthermore shows that there is
a much greater degree of control over the wake and drag of
a sphere if active permeable materials can be used, and this
information will encourage the development of hydrodynamic
metamaterials that may be able to achieve this range of material
properties.
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