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Fractal flame structure due to the hydrodynamic Darrieus-Landau instability
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By using large scale numerical simulations, we obtain fractal structure, which develops at originally planar
flame fronts due to the hydrodynamic Darrieus-Landau (DL) instability bending the fronts. We clarify some
important issues regarding the DL fractal flames, which have been debated for a long time. We demonstrate an
increase of the flame propagation speed with the hypothetic channel width, which controls the length scale of
the instability development. We show that this increase may be fitted by a power law indicating the mean fractal
properties of the flame front structure. The power exponent in this law is found to be not a universal constant,
rather it depends on the flame properties—on the density drop at the front. Using box counting on the simulated
flame front shapes we show the fractal flame dimension at the intermediate scale is smaller than the one given by
the power law, but it has a similar dependency on the density drop. We also obtain a formation of pockets at the
DL fractal flame fronts, which previously has been associated only with turbulent burning.
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I. INTRODUCTION

The Darrieus-Landau (DL) instability of deflagration
(flame) fronts is one of the most fascinating and important
hydrodynamic phenomena emerging in combustion [1,2],
inertial confinement fusion [3–5], and thermonuclear super-
novae [5–7]. The DL instability develops because of the
density drop (expansion of the burning gas) at a flame
front described by the ratio of the unburned fuel/oxidizer
mixture to the burnt gas density, � = ρf /ρb. Due to the
gas expansion, a propagating flame modifies the gas flow,
which leads to unstable spontaneous wrinkling of an originally
smooth front. Recently, instabilities with similar properties
have also been obtained for transformation fronts in advanced
materials—organic polymer semiconductors (doping fronts)
[8,9] and crystals of nanomagnets (spin-avalanches) [10,11].
For the advanced materials, the electric and magnetic fields
play conceptually the same role as the gas flow field in
combustion, which demonstrates the fundamental importance
and universality of the DL instability in Nature.

The nonlinear outcome of the DL instability has been
actively debated for more than 70 years [1,2]. First, it was
supposed that the DL instability makes burning intrinsically
turbulent. Later, an opposite scenario has been favored that
strong linear (thermal) and nonlinear (Huygens) stabilization
of the DL instability leads to smooth cellular flame structure as
illustrated in Fig. 1(a) with some—relatively minor—increase
of the flame propagation speed [12–16]. As a new turn in the
debate, analysis of the experimental data [17] demonstrated
self-accelerative growth of the expanding flame ball radius
at sufficiently large length scales, R ∝ tα , Ṙ ∝ Rd , with
α = 1/(1 − d). The acceleration had been interpreted as the
emergence of the fractal flame structure with a cascade
of front cells of different sizes imposed one on another.
Reference [17] found d ≈ 1/3, treated it as excess of the
fractal flame dimension over the embedding dimension (the
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total front dimension is then 2 + d), and assumed that d

was a universal constant. Since the velocity of Kolmogorov
turbulence depends on the length scale in a similar way, uturb ∝
l1/3, then the development of the DL fractal flames was also
treated as spontaneous flame turbulization [17]. However, later
refined experiments [18–20] reported a considerable spreading
of the value d for flames with different properties in different
fuel mixtures, see also [21,22] for similar experiments in tubes.
We point out that accurate experimental measurements of d are
complicated by the influence of gravity, confinement, flame-
acoustic interaction, etc. Thus, the question about the DL
fractal flame parameter d persisted; it was not even clear if this
value is a universal constant or it depends on flame properties.

On the theoretical side, in spite of active research, an un-
derstanding of the DL fractal flames is still in its infancy. Most
of the theoretical works on the subject have been performed in
the scope of the simplified models of the Sivashinsky equation
and its coordinate-free counterpart, e.g., see [23–26] and the
review [13] for early references. Unfortunately, these two
models are limited to the domain of small gas expansion,
� − 1 � 1, quite unrealistic for combustion experiments,
and yield contradictory results. After proper re-scaling, the
Sivashinsky equation does not contain the density drop �

and, hence, any theoretical study of fractal flames by this
method assumes a priori that the fractal parameter d (if any) is
a universal constant. On the contrary, Ref. [26] argued that
the Sivashinsky equation is too oversimplified to describe
fractal flames and, by employing the coordinate-free model,
demonstrated that d depends strongly on the density drop � as
d ∝ (� − 1)2 for � − 1 � 1. Attempts to reproduce fractal
flame properties in direct numerical simulations were not
successful either so far because of too large flow scales and too
large numerical resources required for that purpose [27–29].
These works either came marginally close to the expected
domain of the DL fractal flames or did not resolve the flame
structure properly, which made the results unreliable. Thus,
the theoretical works on the subject performed up to now
did not answer the main questions posed by the experi-
ments; the purpose of the present work is to overcome this
shortcoming.

1539-3755/2015/92(6)/063028(6) 063028-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.063028


RIXIN YU, XUE-SONG BAI, AND VITALY BYCHKOV PHYSICAL REVIEW E 92, 063028 (2015)

FIG. 1. (Color online) Characteristic snapshots of temperature
distribution for a flame front with � = 8 in a “channel” of width
λ = 3.5λc taken at t = 5λ/SL (a); λ = 15.1λc at t = 4.8λ/SL (b);
λ = 90.4λc at t = 1.9λ/SL, the white arrows indicate characteristic
steps in the fractal cascade (c); vorticity distribution for λ = 90.4λc

at t = 1.9λ/SL (d).

Here we perform numerical simulations to obtain the DL
fractal flame structure; the simulation results answer the most
important fundamental questions raised by the experiments.
To be specific, we consider an initially planar flame front
propagating in a hypothetic “channel” of width λ with periodic
boundary conditions at the “walls”, which determine the
spectrum of allowed perturbation wavelengths at the linear DL
instability stage. A great advantage of the channel geometry
for the problem of the DL fractal flames as compared to the
geometry of expanding flames is in the possibility of obtaining
stationary and statistically stationary flame propagation, as
well as in better control of the flame dynamics.

II. GOVERNING EQUATIONS AND
NUMERICAL METHODS

The DL stability is studied by solving the Navier-Stokes
equations of low Mach number approximation with a one-step
Arrhenius reaction in an ideal gas mixture. The governing

equations are as follows:
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where Y is the fuel mass fraction, T is temperature. Cp and Cv

are the specific heat capacity at constant pressure and volume,
respectively. The viscous stress tensor is given by
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− 2

3
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∂uk
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)
. (5)

Under low Mach number assumption the physical pressure is
decomposed as a hydrodynamic component p and a thermo-
dynamic component P . P (=1 bar) is used in the equation of
state for perfect gas mixture, P = ρRT/m, with the molecular
weight m = 0.029 kg/mole and the universal gas constant
R = Cp − Cv . The reaction is given by an Arrhenius equation
with the activation energy E (in units of temperature) and a
constant chemical time dimension τR = 10−9 s. The upstream
fuel has a temperature of Tf = 300 K. The energy release
is given as Q = (� − 1)Tf Cp, with Cp = 7R/(2m). The
viscosity is η = 1.82 × 10−5 Ns/m2 and Prandtl number is
Pr = 0.3. The Lewis number is set to unity Le = 1. The
scaled activation energy is kept constant as E/(�Tf ) = 7.
For the case of � = 8 the laminar flame speed SL and the
laminar flame thickness Lf = η/(Prρf SL) calculated by the
Zeldovich-Frank-Kamenetski formulation are 0.563 m/s and
92.7 μm, respectively. The above parameter settings are based
on the previous study [27].

The numerical solver is modified based on a low Mach
number reacting flow solver [30] employing detailed transport
coefficients calculations and with a stiff ordinary differen-
tial equation (ODE) solver for general chemical reaction
mechanism, which was used in various combustion studies
[31–33]. The spatial discretization is based on a sixth-order
center difference scheme, except that a fifth-order weighted
essentially non-oscillatory (WENO) scheme [34] is used for
the convective terms in the energy equation (3) and the fuel
mass fraction equation (4) to avoid unphysical numerical
oscillations. The temporal advancement of the convection,
diffusion, and reaction (CDR) problem in the original solver
is implemented using an operator-splitting algorithm in which
the chemistry calculation is performed using a stiff solver while
freezing the contributions from the convection and diffusion
terms. In this work the one step reaction is non-stiff, therefore
the temporal integration of the whole CDR problem is per-
formed by an explicit second-order Adams-Bashforth method.
The time step satisfies both the Courant-Friedrichs-Lewy
(CFL) condition and the diffusion stability constraint. The
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pressure/velocity decoupling results in a variable-coefficient
Poisson equation for the hydrodynamic pressure which is
solved using a multigrid method [36]. The numerical solver
was implemented on staggered Cartesian grid of general space
dimensions. The overall accuracy in space (fifth order) and
time (second order) was verified by grid dependency tests.

The computing domain is a 2D rectangle of x ∈ [0,Lx],
y ∈ [0,Ly] with Lx/3 = Ly = λ. The upstream fuel has a
uniform inflow speed equal to the laminar flame velocity
SL. The convective outflow condition [35] is used at outlet,
i.e., ∂φ/∂t + Uconv∂φ/∂n = 0 for any variable φ. Here n

is outlet normal direction, the convective velocity Uconv is
independent of location and is determined by global mass
conservation, i.e., to make the outflow mass fluxes minus the
incoming mass flux equal to the changing rate of total mass
over entire domain. During evolution of DL instability the
flame fronts propagate upstream with an unsteady pace. To
study long time flame evolution it is important to ensure that
the computational domain always covers the entire flame front
surface. This is achieved by placing the computing domain on
a moving observation coordinate which follows the movement
of the mean flame front. For a 2D channel case, the moving
coordinate (t ′,x ′,y ′) relates to the fixed coordinate (t,x,y) by
t ′ = t , y ′ = y, and x ′ = x + ∫ t

0 Sm(t∗)dt∗. The velocity of the
moving coordinate Sm is adjusted to make the mean flame
x-position (ξ ) stay close to the domain center (at 0.4Lx), with

ξ (t) = 1

Ly

∫ Ly

0

∫ Lx

0
Y (t,x,y)dxdy. (6)

Written on two successive time steps tn and tn+1,
Sm(tn+1) = Sm(tn) + (ξ (tn+1) − 0.4Lx)/(tn+1 − tn), starting
with Sm(0) = 0.

It is straightforward to show [36] that the governing
equations on a moving coordinate differ from the ones on
a fixed coordinate only with the unsteady terms changed as
∂
∂t

(ρφ) = ∂
∂t ′ (ρφ) + Sm

∂
∂x ′ (ρφ) for any variable φ. For the

convenience of later discussions the moving coordinate will
still be referred to as (t,x,y).

Initially we imposed a steady 1D laminar flame at the
x-domain center; the perturbation is added through shifting
the 1D profile by a superposition of sinusoidal functions of
small amplitudes representing numerically white-noise. A fine
resolution with cell size x = y = Lf /4 is used for all cases
of λ < 1024Lf , which compares well with the resolution
(x = Lf /5, y � λ/40 ≈ 2Lf ) used in a previous study
[27] with maximum channel width λ = 4.6λc. For very large
cases (λ � 1024Lf ) a slightly coarser resolution (3x =
2y = Lf ) is used to ease the computation demand. Two
simulations performed for (� = 8,λ = 1280Lf ) using both
resolutions did not show noticeable changes in results. With
the above resolution the numerically computed 1D stationary
flame speed is within 5% error of the analytic one obtained
from the Zeldovich-Frank-Kamenetski formula.

III. RESULT DISCUSSION

We perform simulations for the wide range of channel
widths λ = (10–1600)Lf and for the density ratios � =
5; 8; 10. To avoid any influence of the thermal diffusion effects
we take the Lewis number equal to unity. For sufficiently
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FIG. 2. (Color online) Scaled flame propagation speed Uw/SL

versus scaled time SLt/λ for a flame front with � = 8 in a “channel”
of width λ = 3.5λc (a); λ = 15.1λc (b); λ = 90.4λc (c). The scaled
length of the flame front Aw/λ is also shown in (c).

narrow channels of width below a certain cut-off value λc the
DL instability is suppressed by thermal conduction, and an
initially planar flame front remains planar. Using the same
methods as [13,15], here we obtain the cut-off wavelengths
λc/Lf = 19; 17; 16 for � = 5; 8; 10, respectively, in a good
agreement with the previous results [13,15,16]. For channel
width somewhat larger than the cut-off wavelength, λ > λc,
but still comparable to it, λ ∼ λc, we find the growth of pertur-
bations, which bend the front into a stationary curved cell as
shown in Fig. 1(a). Due to a larger surface area, a curved flame
consumes more fuel mixture per unit time and propagates
with speed Uw exceeding the planar flame speed SL. Figure
2(a) presents the velocity increase and saturation with time to a
terminal stationary value for λ = 3.5λc and � = 8. Numerical
Uw is calculated as the instantaneous mean flame speed
relative to quiescent upstream flow, i.e., Um = d

dt
ξ − Sm. The

analytical theory predicts the terminal stationary flame speed
depending on the channel width λ as [37,38]

Uw = SL + 4Um

Nλc

λ

(
1 − Nλc

λ

)
, (7)

where N = Int[λ/2λc + 1/2] and Um(�) is the maximal
velocity increase for which the analytical formula has been
found in [38] as Um/SL = 1

2�(� − 1)2/(�3 + �2 + 3� −
1). Equation (7) predicts that at large length scales λ 	 λc

the flame propagation speed tends to its limiting value Uw =
SL + Um as shown by the dotted lines in Fig. 3. This prediction
is in stark contrast with the power law Uw/SL ∝ (λ/λc)d

expected for the fractal flames. Still, on moderate length
scales of about 1 < λ/λc < 7–8, our numerical simulations
reproduce the theoretical prediction (7) quite well, which is
also in a good agreement with the previous results [15,27].
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FIG. 3. (Color online) Terminal stationary or statistically station-
ary flame propagation speed Uw/SL versus the scaled channel width
λ/λc for � = 5; 8; 10, with a zoomed insert. The dashed lines
correspond to Eq. (7); the solid lines show the power law fit of the
numerical data.

We obtain qualitatively new effects for channel widths
exceeding the cut-off wavelength by order of magnitude,
λ/λc > 7−8. In particular, Fig. 2(b) shows the time depen-
dence of the scaled flame propagation speed Uw/SL for � = 8
and λ = 15.1λc. The evolution of the flame front shape is
shown in Fig. 4(a) for eight selected time instants. In that case
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FIG. 4. (Color online) Time sequence of front evolution for two
cases of � = 8 with “channel” width λ = 15.1λc (a) and λ = 90.4λc

(b and c). The time instants correspond to those marked in Fig. 2(b)
and (c) (see Supplemental Material videos [41] for complete evolution
at all three � with large channel width).

initial white-noise perturbations develop fast into a number
of cells of a size about λc, which then coalesce forming a
front structure with two long-living cusps (it corresponds to
the first peak in the time dependence of Uw/SL). Then, the
two cusps merge into one, with the front structure resembling
qualitatively Fig. 1(a). However, for a channel as wide as
λ = 15.1λc, flame evolution does not stop at that point: after a
while, smaller cusps arise spontaneously on the smooth parts
of the front, move towards the larger cusp, and merge with the
latter, in a statistically stationary manner, as shown by the front
evolution from t3a to t3b, t4a to t4b, and t5a to t5b in Fig. 4(a).
A characteristic flame shape in that process exhibits small
cells imposed on larger ones as expected for fractal flames, as
shown in Fig. 1(b). The same tendency becomes much more
pronounced as we increase the channel width, see Fig. 1(c)
for λ = 90.4λc; Fig. 1(d) depicts vorticity generation behind
the corrugated flame front. In Fig. 1(c) we clearly recognize
three successive steps in the fractal cascade as indicated by
white arrows: one large cell of the size of the whole channel,
4–6 intermediate size cells imposed on the large one, and
about 4–7 minor cells arising on the intermediate cells. The
respective flame front evolution is shown in Fig. 4(b), (c).
For a channel as wide as λ = 90.4λc the process of arising and
merging of intermediate and minor cusps becomes statistically
stationary, see Figs. 2(c), 4(b), (c). In Fig. 2(c) we can also
observe larger and smaller peaks in the flame propagation
speed, with smaller peaks imposed on larger ones: these peaks
correspond to merging of minor and intermediate flame cells,
respectively.

In a sense, qualitatively similar (although much more
simplified) evolution of the flame shape on large scales has
been encountered previously in the Sivashinsky equation
modeling [13,23–25]. Still, it is extremely important that minor
cusps emerging at a curved flame in the Sivashinsky equation
modeling did not produce additional increase of the flame
propagation speed beyond the limiting value Uw = SL + Um

(unless external “turbulent” forcing was added to the equation).
On the contrary, the present simulations indicate clearly that
the fractal structure leads to considerable increase of the flame
speed with the channel width, see Fig. 3. For example, for
� = 8 one has the limiting flame propagation speed Uw ≈
1.3SL as predicted by Eq. (7), but, at length scales as large as
λ = 90.4λc, we find markedly higher statistically stationary
flame propagation speed, Uw ≈ 2.5SL. Remarkably, similar
to the case λ = 15.1λc, for λ = 90.4λc we also observed first
a long-living statistically quasi-stationary structure with two
major cusps as an intermediate asymptotic before the two
major cusps merged into one, see Fig. 4(b). The transition
from a two-cusp to one-cusp structure was accompanied by
a noticeable increase in the average flame propagation speed.
Figure 2(c) shows also very good correlation between the
flame propagation speed and the increase of the total length
Aw of the wrinkled front, Uw/SL ≈ Aw/λ, which supports the
classical model of an infinitely thin front propagating with the
local speed SL employed to understand the DL fractal flames
[13,17]. In addition, Fig. 1(c) demonstrates that the fractal
flame front cannot be described by a one-folded function
z = f (x,t) used as a basis for the Sivashinsky equation: the
flame front in Fig. 1(c) is obviously multi-folded. Even more,
we find that the fractal flame structure at sufficiently large
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scales is accompanied by the formation of pockets of unburned
fuel mixture in the burnt gas [see Figs. 1(c) and 4(c) at t6 and t8];
previously, such an effect has been associated with turbulent
burning only. In the Barrere-Borghi diagram [2] the formation
of pockets is typically employed as a sign for the transition
from the regime of wrinkled to corrugated turbulent flames.

At sufficiently large channel widths λ 	 λc, the numerical
data for the statistically stationary flame propagation speed
may be fitted by a power law Uw/SL = C(λ/λc)d , where C

is some constant and the power exponent d can be regarded
as the fractal flame dimension similarly as [17,18] (the
power-law curves are presented in Fig. 3 by the solid lines).
We find the parameter d as d ≈ 0.213; 0.310; 0.318 with
C ≈ 0.67–0.75 for the density drops � = 5; 8; 10. Thus, the
fractal parameter d is not a universal constant, but it depends
on the density drop at the flame front, d(�), demonstrating a
noticeable increase with �. At the same time, for the realistic
values of the density drop, � = 5; 8; 10, the parameter d

remains rather close to 1/3 in agreement with the experimental
observations [17].

The above computed d relies on comparing the statistical
stationary Uw from different channel widths, we may estimate
another box-counting fractal parameter d ′ using the flame
fronts from a single large channel width. In the box counting
method [39] one covers a fractal curve image with square boxes
and counts the number of boxes needed to cover the curve
completely. Such a process is repeated with different box size.
The slope of the log-log plot of the number of covering boxes
verses the box size indicates the fractal parameter. The box
counting method has been applied to study turbulent premixed
flames [40]. Figure 5 shows the box-counting fractal dimension
1 + d ′ as a function of box size r for three density ratios
at large channel width. Note λc limits the scale cascading
from below. For intermediate box size r ∈ [5λc,24λc], d ′ ≈
0.069; 0.104; 0.124 at three density ratios � = 5; 8; 10. The
box-counting fractal parameter (d ′) is smaller than the power
exponent (d); such difference can be explained by the large-
scale single cusp shape of the flame front as shown in Fig. 4(c):
the ratio of the cusp’s depth to the width of the major cusp
seems to be significantly larger than those for the intermediate
and minor cusps. This suggests that the flame front area Aw

(therefore Uw) receives more contributions from large scales
than it would provide by a power-law scale dependence of
constant exponent, which is also shown in Fig. 5 by the high
d ′ at large scales. The power exponent d should therefore be
regarded as a “mean” fractal parameter.

Albeit small, d ′ shows a similar trend of increasing with
density ratio.

IV. SUMMARY

As a summary, here we provide a reliable theoretical
demonstration of the fractal flame structure developing owning
to the DL instability. Our large scale numerical simulations
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FIG. 5. (Color online) 2D box-counting the flame front images
for three large channel cases at different density ratio (�,λ) =
(5,80.8); (8,90.4); (10,96). With box size r , the box-counting fractal
dimension (solid lines) is 1 + d ′ = ∂ ln 〈N (r)〉/∂ ln r , the dashed
lines denotes 〈N (r)〉. N (r) is a mean number of boxes covering one
frame of flame front image, the bracket 〈·〉 represents time average
after statistical stationary structure of a single cusp shape forms, see
Supplemental Material videos [41]. The frame sampling duration
is about λ/SL which covers many events of cusp formations. The
counting is performed with a series of boxes of size rk = r02k . Each
frame image is binarized as a periodic square array of size 10242. To
achieve better counting with a large box, one image frame has the
array shifted circularly with a 32 interval to produce a 322 periodic
variants of the same image.

clarify the important fundamental properties of the DL
fractal flames. For sufficiently wide channels we demonstrate
a power-law increase of the statistically stationary flame
propagation speed with the channel width controlling the DL
instability dynamics. We show that the power exponent d

for characterizing a “mean” fractal flame dimension is not
a universal constant, but it increases with the density drop � at
the flame front. Box counting of the flame front shapes gives
a lower fractal dimension at intermediate scale, which also
increases with density drop.
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