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Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers
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Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding
the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow
around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that
various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and
the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow
propagation over a long range. These results emphasize the importance of particle shape in collective motion.
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I. INTRODUCTION

Microswimmers exhibit a wide variety of collective behav-
iors. For instance, swimming bacteria generate mesoscale co-
herent structures in dense suspensions [1–3] and orientational
order in confined suspensions [4,5]. Swimming magnetotactic
bacteria form bands in a magnetic field [6]. Spermatozoa form
trains [7] and vortex arrays in the vicinity of a wall [8]. Due to
its biological importance, the mechanism of collective motions
has been investigated extensively in fluid mechanics [9–13].

Several studies have investigated the coherent structures
in bacterial suspensions using continuum models, in which
cells were assumed to be sufficiently small compared with the
flow field of interest [3,11–20]. By considering the alignment
of cells in the stretching direction of background flow, the
continuum models successfully reproduced the turbulent-like
spatiotemporal motions of bacteria. These results illustrate that
the coherent structures can be reproduced by considering only
far-field fluid mechanics effects and that near-field cell-cell
interactions may not be as important.

By contrast, discrete models have been used to calculate
the collective motions of individual cells [20–26]. When two
cells come into close proximity, some of the earlier discrete
models introduced an ad hoc force to direct two nearby cells
in parallel, although the physical meaning of the interaction
force was vague. Some studies dealt precisely with near-field
fluid mechanics, but the number of cells was limited to two
[27–30]. Several other studies were able to provide a precise
solution of the hydrodynamic interactions among multiple
cells; however, the cell shape was restricted to a spherical form
[31–36]. Despite these extensive research efforts, the effect of
cell shape and near-field fluid mechanics on the collective
motion of microswimmers remains unclear.

Recently Kantsler et al. [37] reported the importance
of near-contact interactions on the surface scattering of
swimming microorganisms, even in the Stokes flow regime.
We consider that the near-contact interactions between cells
should also play an important role in the scattering angle
between cells and ultimately the collective motions. Sokolov
and Aronson [38] experimentally demonstrated the importance
of collisional interactions in the collective motions of Bacillus
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subtilis. Because the collisional interactions are strongly
dependent on the detailed configuration of the cells, the cell
shape should play an important role in the collective motions.

In this paper we investigate the effect of near-field fluid
mechanics on the collective motions of microswimmers. We
precisely solve the Stokes flow of interacting swimmers,
including the lubrication flow between two nearby surfaces,
in a monolayer suspension. The results showed that various
collective motions, such as ordering, aggregation, and whirls,
are dominated by the swimming mode and aspect ratio. The
collective motions are mainly induced by the near-field fluid
mechanics, despite Stokes flow propagation over a long range.
These results emphasize the importance of particle shape in
collective motion.

II. BASIC EQUATIONS AND NUMERICAL METHODS

The microswimmer considered has a spherical or ellipsoidal
form and propels itself by generating surface tangential
velocities, i.e., a squirmer [39,40]. The squirmer model has
been used to analyze collective motions in previous studies
[31–36]. The surface tangential velocity us of an ellipsoidal
squirmer is given by [41]

us = α

√
2

[1 + (b/a)2] − [1 − (b/a)2] cos(2θ )

× (sin θ + β sin θ cos θ ), (1)

where a and b are the major and minor axes of the ellipsoidal
squirmer, respectively. The aspect ratio c is given by c = a/b;
α defines the swimming velocity of a solitary squirmer V0 in
an unbounded fluid; θ is the angle from the orientation vector
of the squirmer; β controls the second mode of the squirming
velocity. A squirmer with positive β is a puller, analogous to
having thrust-generating apparatus at the front of the body. A
squirmer with a negative β is a pusher.

The governing equation of the Stokes flow field external to
the squirmers is given by [42]

u(x0) =
∑

i

∫
Si

q(x) · T (x,x0) · n(x)dSi(x) + v(x0), (2)

where q is the double-layer potential, n is the normal vector,
v is the velocity due to short-range repulsive forces between
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squirmers, and Si is the surface of the squirmer i. T is Green’s
function given by

T (x,x0) = εijk

rk

r3
, (3)

where ε is the unit alternating isotropic tensor, r = x − x0

and r = |r|. The velocity boundary condition on the surface
of squirmer i is given by

u(x0) = V i + �i ∧ (x0 − xc,i) + us(x0), x0 ∈ Si, (4)

where xc,i is the center of squirmer i. The distribution of q
was calculated by inserting Eq. (4) into Eq. (2). V i and �i are
the translational and rotational velocities of squirmer i, given
by [43]

V i = −4π

Si

∫
Si

q(x) dSi(x), (5)

�i = −3

2

(
4π

Si

)2 ∫
Si

(x0 − xc,i) ∧ q(x) dSi(x). (6)

We assumed a monolayer suspension, such that the centers
and orientation vectors of all squirmers remained in the same
plane, although the flow field was fully three-dimensional
(3D). This treatment allowed us to observe collective motion
at a larger scale than in a 3D suspension. The computational
cost of a standard boundary element method is enormous and
increases the cube of the particle number when we use a single
layer potential. The computational cost can be reduced to the
square of the particle number when a double layer potential
is used, as in Eq. (2). To further reduce the computation time,
Eq. (2) was expanded into multipoles, and the numerical code
was implemented for general purpose computation on graphics
processing units (GPGPUs), as explained in Ref. [44]. Our
code could achieve a computational speed of 590 GFLOPS
(Giga Floating point number Operations Per Second) for
double precision calculations, which is approximately one
order of magnitude faster than the theoretical performance of
the latest CPU. Moreover, by exploiting the planar symmetry
of the monolayer suspension, we could reduce the number
of computational meshes to around half. Even with these
technical efforts, the maximum number of particles we could
compute to observe long-time collective motions with a
high precision in the near-field fluid mechanics was limited
to approximately 100. Thus, we decided to investigate a
monolayer suspension in this study; a 3D suspension will be
investigated in future work.

One hundred squirmers were initially placed in random
positions and orientations in a unit square domain; their
subsequent motion was then calculated. The infinite extent
of the monolayer was given by the periodic boundary condi-
tions. Hydrodynamic interactions between mirror squirmers in
periodic domains were calculated up to three layers; the rate
of strain induced by additional layers was negligibly small.
The surface of each squirmer was then discretized into 1280
triangular elements. The time integral was performed by the
second-order Runge-Kutta scheme. A short-range repulsive
force was added to the system to avoid the problem of
overlapping particles under finite time step conditions, as in
our previous study [32]. The effect of the repulsive force on
the trajectories of the cells was small. It acts only in the

very near-field and changes the distance between particles by
only 10−3. The reason why the repulsive force plays such a
minor role in the suspension of squirmers may be explained as
follows. The translational and rotational velocities generated
by two nearby squirmers were analyzed by Ishikawa et al. [27].
The leading order term of the relative velocities between two
squirmers in the lubrication theory is the surface squirming
velocity, us , of O(1). This term does not appear in a system
with inert particles, which is the essential difference between
a suspension of inert particles and squirmers. The next leading
order term of the relative velocities is F/[log(λ−1) + O(1)],
where F is the force and λ is the minimum separation between
two squirmers. The second leading order term log(λ−1) is a
very weak singularity and thus dominates the solution only
in a mathematical sense. Thus, the relative velocities between
squirmers are dominated in the main by us , and the repulsive
force does not significantly affect the trajectories of the cells.
The areal fraction of squirmers at the center plane φa was set at
0.3, except in Fig. 3. The swimming mode β and aspect ratio
c were varied over the ranges −3 � β � 3 and 1 � c � 3,
respectively.

III. RESULTS AND DISCUSSION

The collective motion of pullers (β = 1), neutral swimmers
(β = 0), and pushers (β = −1), with spherical c = 1 and
ellipsoidal (c = 3) cell shapes, are shown in Fig. 1. The yellow
arrows in the figure indicate velocity vectors, and the gray lines
show the orientations. Supplemental movies of these six cases
are also provided online [42]. The puller swimmers tended to
aggregate [Fig. 1(a) and 1(d)]. Supplemental Movie 1 shows
that the aggregation appeared to be stronger in the ellipsoidal
case than in the spherical case. In the case of neutral swimmers
with a spherical shape [Fig. 1(b)], the motion tended to be in
the same direction, i.e., ordered motion, with a certain distance
between particles. Neutral swimmers with an ellipsoidal shape
[Fig. 1(e)] also showed ordering, but the distance between
swimmers was narrower than in the spherical case. Figure 1(c)
shows spherical pushers; in this case, no obvious pattern was
recognized. By contrast, for the case of ellipsoidal pushers
[Fig. 1(f)], a few neighboring squirmers tended to swim in
similar directions. These results indicate qualitatively that the
collective motions are strongly affected by the swimming
mode and aspect ratio.

In Fig. 1 we show the results with β = 1, 0, and −1 to
emphasize the difference in the collective behaviors. Although
the collective motions of pushers with β = −1 was weak,
strong collective motions was observed for pushers with
β = −0.3. The results are provided as Supplemental Movie
4 [42]. To discuss the correlations between the present study
and former experimental studies using bacteria, here we derive
the effective beta value of bacteria such as Escherichia coli .
According to Ishikawa et al. [27], β is the ratio of second
mode squirming to the first mode, i.e., B2/B1. Because the
stresslet St is correlated to B2 by St = 4πμa2B2, and the
swimming velocity U is correlated to B1 by U = 2B1/3,
β can be expressed as β = St/(6πμa2U ). The stresslet St

has the dimension of force multiplied by length. Therefore,
we can estimate St by multiplying the strength of the drag
and thrust forces and the length between the two forces. By
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FIG. 1. (Color online) Sample snapshots of squirmers in a monolayer suspension. The yellow arrows indicate velocity vectors, and the
gray lines indicate the orientation (φa = 0.3): (a), (d) pullers (β = 1), (b), (e) neutral swimmers (β = 0), and (c), (f) pushers (β = −1). The
aspect ratio c has a value of 1 for (a)–(c) and 3 for (d)–(f). Supplemental movies of these six cases are provided online [42].

assuming that a sphere of radius a expresses a whole cell
consisting of a cell body with diameter 0.5a and flagella
with length 1.5a, the magnitude of the drag and thrust forces
can be estimated as 1.5πμaU and the distance between
the two forces as a. By inserting St = −1.5πμa2U , we
finally obtain β = −1.5πμa2U/(6πμa2U ) = −0.25. This
discussion illustrates that the β of actual bacteria, such as
E. coli, can be estimated to be smaller than unity. Because
we observed strong collective motions with β = −0.3, as
shown in Supplemental Movie 4 [42], the present results do
not conflict with former experimental observations.

We first analyze the ordering of neutral swimmers. The
strength of ordering can be described by the polar order
parameter E, defined as E = |〈e〉|, where e is the orientation
vector of a squirmer, and 〈〉 represents the suspension average.
The change in E over time for spherical (c = 1) and ellipsoidal
(c = 3) squirmers, under various initial conditions, is shown
in Fig. 2(a). For spherical squirmers, E is close to one, without
strong fluctuations, when tV0/a � 100. This indicates that all
squirmers eventually orient to the same direction, and that
the direction does not fluctuate considerably. By contrast, for
ellipsoidal squirmers, the E curve fluctuates considerably, and
the mean value is about 0.8. Therefore, ellipsoidal squirmers
do not order as strongly as their spherical counterparts, and
the orientations fluctuate in space and time. This result may
seem counterintuitive, because the orientation change can be
restricted more strongly by the surrounding squirmers as the

aspect ratio is increased, i.e., the excluded volume effect.
The alignment of elongated particles can already be attributed
to volume exclusion together with the persistence of motion
because it exerts a torque. When a high-aspect-ratio squirmer
that leads a flock is struck from the side by another squirmer,
however, it changes its orientation more easily than a spherical
squirmer, due to its slenderness. As such, the squirmers that
follow also change their orientation according to the leading
squirmer, due to the small amount of space between the
surrounding squirmers. This may be why ellipsoidal squirmers

(a) (b)
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FIG. 2. (Color online) Effect of aspect ratio c on the ordering of
squirmers (φa = 0.3): (a) time change of the polar order parameter E

(β = 0) and (b) long-time polar order parameter E∞ under various β

conditions.
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FIG. 3. Effect of areal fraction φa on the long-time polar order
parameter E∞ under various β conditions: (a) aspect ratio c = 1 and
(b) c = 3.

experience larger spatiotemporal fluctuations, compared with
spherical squirmers. We note that we also performed some trial
simulations including the rotational diffusivity of squirmers.
The results showed that the polar order did not disappear when
the rotational diffusivity was sufficiently small.

Figure 2(b) shows the long-time polar order parameter,
E∞, with various c and β conditions. E∞ is averaged for
tV0/a � 100 with different initial conditions; the error bars
indicate the standard deviation. We see that E∞ reached its
maximum value when β = 0, i.e., for neutral swimmers, and
decreased as |β| increased. The fluctuations in E∞, indicated
by the standard deviation, are large in the case of ellipsoidal
swimmers. These results illustrate that the ordering structure
is affected considerably by the swimming mode β and the cell
shape c.

We then investigated the effect of the areal fraction φa on
the long-time polar order parameter, as shown in Fig. 3. In the
case of c = 1, the ordering of cells appears in a similar manner
even with φa = 0.1. In the case of c = 3, on the other hand, the
ordering of cells was reduced as φa decreased; however, the
ordering phenomenon did not disappear even with φa = 0.1.
These results illustrate that the collective motions observed in
the present study were not qualitatively affected by φa , when
φa was in the range φa = 0.1–0.3.

Next, we analyze the aggregation of pullers and the
whirl structures of pushers. Figure 4(a) shows the average
swimming velocity of squirmers 〈V 〉, normalized by V0,
under various c and β conditions. We see that 〈V 〉/V0

(b)(a) (c)
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FIG. 4. (Color online) Effect of c and β on the flow structures
(φa = 0.3): (a) average swimming speed of squirmers; (b) radial
distribution function, where r is the surface-to-center distance; and
(c) velocity correlation, where ε is the surface-to-surface distance.

becomes greater than 1 when c = 3 and β = −3. Such an
increase in the swimming velocity was also reported in former
experimental studies using bacteria [1,2], although the increase
in the former experiments was larger than in the present
study. The quantitative difference may arise from the differ-
ence in the aspect ratio between the present study and bacteria
used in the former studies. The aspect ratio of E. coli, including
the flagella bundle, is approximately 8–10, and that of Bacillus
subtilis is approximately 10, which is considerably larger than
the present study of c = 3. In the case of pullers with c = 3,
on the other hand, a significant decrease was observed in
〈V 〉. This is because elongated pullers tend to aggregate into
clusters (cf. Supplemental Movie 1 [42]). Squirmers become
effectively stuck in the cluster formation, and their swimming
velocities decrease considerably. The large decrease in 〈V 〉 was
observed only for ellipsoidal squirmers, which again illustrates
the importance of particle shape on collective motion.

Figure 4(b) shows the radial distribution function Ir defined
by Ir (r) = 〈λ(r)〉/λ0, where λ0 is the average number density
of particles in the monolayer and λ(r) is the number density
of particles at a distance of r away from the surface of a given
reference particle. We use the distance r between the surface
and center, instead of two centers, because it provides larger
peaks in the Ir curves of ellipsoidal squirmers. We see that
Ir of β = 1, c = 1 has clear peaks at r = 1 and 3, which
indicates a crystal structure. The case of Ir of β = 1, c = 3
also indicates particle aggregation, although that of β = −1
does not. The peaks of β = 1, c = 3 are not as clear as those of
c = 1, because the distance varies with the relative orientation
of two nearby ellipsoids.

Figure 4(c) shows the velocity correlation, IV , among
pushers (β = −1). Here side indicates that the correlation
is calculated only when a squirmer is present lateral to the
reference squirmer, i.e., ±π/4 from the orthogonal direction,
whereas all indicates that the correlation is calculated for all
particles. Here we use the surface-to-surface distance ε along
the horizontal axis to emphasize the positive correlation among
nearby squirmers. For the case c = 3, IV is positive in the small
ε region, but negative in the large ε region, which defines the
whirl structure. The negative correlation is stronger for side
than all. For spherical squirmers, however, the whirl structure
can be clearly discerned in the figure.

These results clearly indicate that the aspect ratio of
squirmers significantly affects the collective motion. However,
it is still unclear whether the difference in collective motion
was caused by near-contact interactions or interactions via
the long-propagating Stokes flow. Therefore, trial simulations
were performed that neglected the far-field fluid mechanics.
Here the velocity field equation presented in Eq. (2) is modified
as follows:

u(x0) =
∑
inear

∫
Sinear

q(x) · T (x,x0) · n(x) dSinear(x) + v(x0).

(7)

Here inear is the number of squirmers in the near field. The
threshold distance for the near-field is set as ε < 3

√
ab. The

cutoff length should be sufficiently short to delete far-field
interactions. However, too short a cutoff length may neglect
even the near-field fluid mechanics. To minimize far-field fluid
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FIG. 5. (Color online) Comparisons between the results of a full
simulation and those with only near-field interactions (c = 3 and
φa = 0.3): (a) long-time polar order parameter E∞ and (b) average
swimming speed of squirmers.

mechanics while maintaining the near-field fluid mechanics,
we set the cutoff length as 3

√
ab. We note that the results were

not sensitive to ε when 2
√

ab � ε � 4
√

ab. Equation (7) com-
pletely neglects the traction forces generated on the surface of
the squirmers at ε � 3

√
ab, and far-field squirmers cannot

generate background stretching flow. Figure 5 compares the
long-time polar order parameter E∞ and average swimming
speed 〈V 〉 for full and near-field simulations using Eq. (6).
The near-field simulations captured basic tendencies, such as
ordering and aggregation, well. Consequently, the collective
motions examined in this study were generated mainly by
near-field fluid mechanics.

By considering the importance of the near-field fluid
mechanics, we may be able to understand the mechanism
of collective motions from nearest-neighbor two-body in-
teractions. The angle between two orientation vectors of
nearest-neighbor squirmers θnear is defined such that θnear > 0
when two squirmers are approaching, but θnear < 0 when they
swim away from each other, as shown in the inset of Fig. 6(a).
We calculated the time derivative dθnear/dt , i.e., the relative
rotational velocity; the results of 〈dθnear/dt〉 are shown in
Fig. 6(a) (c = 3). We see that the relative rotational velocity
of nearest-neighbor squirmers changes dramatically with β.

We further analyzed the nearest-neighbor two-body interac-
tions in the simulations with many squirmers. The bar graphs
in Figs. 6(b)–6(d) show the probability density of nearest-
neighbors P as a function of θnear, whereas the line graphs show
dθnear/dt (c = 3). When β = 1 [Fig. 6(b)], two squirmers
collide near 0 < θnear < 90◦ and do not rotate afterwards.
These squirmers tend to stay close for a long time, as shown
schematically in the inset, which causes the aggregation shown
in Fig. 1(d). We note that the schematic shows only two nearby
squirmers; other surrounding cells are omitted for simplicity.
When β = 0 (Fig. 6(c)), the colliding squirmers tend to orient
parallel to each other and retain this orientation for some time,
as shown schematically in the inset. This tendency is consistent
with the ordering structure shown in Fig. 1(e). When β = −1

-3 -2 -1 0 1 2 3

-10

-5

0

5

β

d θ
ne

ar
/ d

t
θnear [deg]

θnear [deg]

θnear [deg]

(a) (b)

)d()c(

β = 1

β =-1β = 0

θnear > 0 θnear< 0

FIG. 6. Interactions between two nearby squirmers. Angle of
the orientation vector relative to that of the nearest neighbor, θnear,
is expressed in degrees (c = 3 and φa = 0.3): (a) effect of β on
dθnear/dt ; and (b)–(d) bar graphs show the probability density P and
line graphs dθnear/dt . The insets show the orientation change of two
nearby squirmers schematically.

[Fig. 6(d)], the squirmers, having collided, first orient parallel
to each other. They cannot retain parallel orientation for a
long time and swim away from each other, as shown in the
inset. This tendency is again consistent with the collective
motion observed in Fig. 1(f). These results illustrate that the
mechanism of collective motion can be understood in terms of
nearest-neighbor two-body interactions.

IV. CONCLUSION

In summary, we showed that various collective motions,
such as ordering, aggregation, and whirls, can be reproduced
by considering hydrodynamic interactions between squirmers.
The collective motions are induced mainly by near-field fluid
mechanics and are strongly affected by the aspect ratio and
swimming mode of squirmers. Nearest-neighbor two-body
interactions explain the mechanism of collective motions
well. These results reveal the importance of particle shape
in collective motion, even in the Stokes flow regime.
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