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Metal pad instabilities in liquid metal batteries
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A mechanical analogy is used to analyze the interaction between the magnetic field, electric current, and
deformation of interfaces in liquid metal batteries. In the framework of a low-mode, nondissipative, linear
stability model, it is found that, during charging or discharging, a sufficiently large battery is prone to instabilities
of two types. One is similar to the metal pad instability known to exist in the aluminum reduction cells. Another
type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field
induced by the base current, and the current perturbations caused by the local variations of the thickness of the
electrolyte layer.
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I. INTRODUCTION

The work presented in this paper is motivated by the efforts
to develop the liquid metal battery, a device for short-term
stationary energy storage. Small laboratory prototypes have
already been shown to work and demonstrated potential
for higher efficiency and longer operational life than the
traditional solid-electrode batteries (see, e.g., [1,2]). The key
question now appears to be whether larger, more efficient, and
commercially viable devices based on the same principle can
be designed.

A simplified scheme of the battery is shown in Fig. 1. It is
a vessel filled with three liquid layers: liquid anode A made
of a light metal (e.g., Na, Li, or Mg) at the top, layer E of
a molten salt electrolyte in the middle, and liquid cathode B
containing a mixture of a heavy metal (e.g., Bi, Sb, or PbSb)
and the compound between the heavy and light metals at the
bottom. The electrolyte is chosen so that it is immiscible with
the liquids on either side and conductive to the positive ions
of the light metal. The system is stably stratified, with the
density of the light metal being two to three times smaller
than the density of the electrolyte and many times smaller than
the density of the heavy metal. The top and bottom walls of
the vessel serve as current collectors, while the sidewalls are
electrically insulating.

The electric energy stored in the battery is the difference
in the Gibbs free energy between the light metal in its free
state and in compound with the heavy metal. The processes of
charging or discharging correspond to, respectively, the elec-
trochemical reduction of the light metal from the compound
and forming the compound. The reactions occur in liquid state,
at the interfaces between the electrolyte and the metal, and in
the presence of strong (up to 1 A/cm2) electrical currents
flowing in the vertical direction.

An inspection of the scheme in Fig. 1 suggests that the
operation of a large-scale battery will differ significantly from
that of a small laboratory prototype. The reason is the hydro-
dynamic instabilities which will appear and become stronger
at larger size. The result of the instabilities will be fluid flows
in all the three layers with the potential implications for the
battery operation that can be both positive (enhanced mixing
of reactants) and negative (spatial and temporal nonuniformity
of reaction rates and, in the worst case, deformation of the
interfaces so strong that it leads to rupture of the electrolyte

layer and disruption of the operation). This issue has been a
subject of close attention recently. Several mechanisms of the
instability have been identified, such as the Tayler instability
(see, e.g., [3–5]), electrovortex instability [4], and thermal
convection caused by bottom heating [6] or internal joule
heating of the electrolyte [7]. It has been confirmed that the
instabilities are active in batteries of even modest size (of
radius about 20 cm in the case of the Tayler instability [3–5]
and as small as a few cm in the case of the internal heating
convection [7]). The results are far from fully conclusive,
because they are based on strongly simplified numerical
[3–5,7] or experimental [6] models. Further investigations are
needed to fully understand the instabilities and reveal their
effect on the battery’s operation.

Yet another likely instability mechanism, which has not
been considered before, is addressed in this paper. It has
magnetoelectrohydrodynamic nature and is related to the fact
that, during the charging or discharging processes, strong
current passes through liquid layers of vastly different electric
conductivities. The conductivity σE of the electrolyte is
about four orders of magnitude lower than the conductivities
σA and σB of both metals. This means that even a small
deformation of the electrolyte-metal interface, i.e., a small
variation of the local thickness of the electrolyte causes a
strong variation of the local resistance and, thus, significant
changes in the distribution of the electric currents within the
battery. In this paper, we explore the possibility that the Lorentz
forces resulting from the interaction of the electric current
perturbations and the magnetic field act on the liquids in such
a way that the deformation of the interface is enhanced.

On the level of basic physics, the concept of such an
instability is not new. A similar mechanism has been found in
the Hall-Héroult aluminum reduction cells, where it is called
the “metal pad instability.” A reduction cell is a horizontally
large (about 3 × 10 m) and shallow (about 20–40 cm)
rectangular bath filled with molten aluminum at the bottom and
molten salt electrolyte with aluminum oxide dissolved in it at
the top. The ratio of electric conductivities between the metal
and the electrolyte is about the same as in liquid metal batteries.
Electric current of density up to 1 A/cm2 flows predominantly
vertically through the two layers causing the desired effect of
electrochemical reduction of aluminum from its oxide.

For many decades, the aluminum industry faced the major
problem of the metal pad instability that developed in the
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FIG. 1. Scheme of a liquid metal battery. Three liquid layers B,
E, and A fill a cavity, which may be of cylindrical, 3D rectangular,
or other shape. During the charging and discharging processes the
uniform vertical electrical current of density J0 = J0ez driven by
electrons and positive ions of metal A is imposed. It generates a
purely or approximately azimuthal magnetic field (not shown). Other
components of the magnetic field can be generated by electrical
currents in neighboring batteries and supply lines.

form of growing sloshing waves at the aluminum-electrolyte
interface when the thickness of the electrolyte layer between
the top electrode and the interface was too small or the current
density was too high. If allowed to evolve, the instability led
to short circuit between the aluminum and the top electrode,
in which case the operation of the cell had to be stopped.
Keeping the thickness of the electrolyte layer above the
threshold resolved the problem, but at the cost of substantial
energy losses to the waste Joule heating of the electrolyte.
Remarkably, proneness to the instability varied among the
cells of the same design depending on their location in an
aluminum smelting plant.

The situation improved drastically when it was understood
that the instability was caused by the interaction between the
horizontal currents appearing in the aluminum layer in the
result of the interface deformation and the vertical component
of the magnetic field created by the external current supply
lines [8–11]. Upon development of effective modeling tools
(see, e.g., [12,13]) and applying them to designing new and
retrofitting existing supply lines, the problem was largely
solved.

We should stress that the analogy between an aluminum
reduction cell and a liquid metal battery is far from perfect. Not
only a battery has three layers instead of two, its aspect ratio,
for the laboratory prototypes developed so far, is not small (in
fact, the optimal geometry of a liquid metal battery is yet to be
determined). The analogy is, therefore, just a starting point of
our analysis. Nevertheless, for the absence of a better name,
we will use the term metal pad instability for the instability
mechanisms considered in this paper.

The analysis follows the approach, in which one instability
mechanism is analyzed separately from the others (similar
approaches were recently used for the Tayler [3–5] and convec-
tion [6,7] instabilities). We also apply a drastic simplification
replacing the liquid metal layers A and B by slabs of solid
metals suspended above and below a liquid layer of a poorly
conducting electrolyte. The large-scale sloshing motions of
the metal layers (for example, the gravitational waves) are
represented by the motions of the slabs, which we model as

two-dimensional oscillations of mechanical pendula modified
and coupled to each other by the electromagnetic forces. The
model and its validity are further discussed in Secs. II and
IV. At this moment, we mention that the approach is similar
to that successfully applied to the metal pad instability in the
aluminum reduction cells in [14]. We go further than simply
modifying the results of [14] to the case of a three-layer system.
A broader range of possible interactions between the currents
caused by the interface deformation and the imposed magnetic
fields is considered.

II. MODEL

A. Simplifying assumptions

The system analyzed in this work is shown schematically
in Fig. 2. The metal layers of a battery are represented by solid
metal slabs A and B rigidly attached to weightless rigid struts
pivoted at the top. The free oscillations of the slabs around
the two horizontal axes passing through the pivot imitate the
sloshing motion of the liquid layers. The slabs are separated
from each other by a layer of a poorly conducting electrolyte.
Strong axial electric current of density J flows through the
system. There is also the magnetic field of induction B, which
combines the field induced by J and the field induced by
currents in external supply lines and neighboring batteries.
The specific configurations of B explored in our work are
stated in Sec. III.

In the rest of the paper, symbols without superscripts are
understood as related to both pendula. To indicate, where
necessary, the properties and variables related to a specific
pendulum, superscripts A or B are used.

In the unperturbed state, the slabs’ surfaces are horizontal,
the thickness of the electrolyte layer is constant h0, and the
electric current is uniform and purely vertical:

J = J0 = −J0ez, J0 = const > 0 (1)

(for consistency, we will always consider a battery in the
process of being charged, but the derivations and results are
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FIG. 2. Model mechanical system: two independently suspended
metal slabs are separated by a layer of liquid poorly conducting
electrolyte. In the unperturbed state, the electrolyte layer has thickness
h0, and the constant vertical current J0 flows through the system.
Motion of the slabs perturbs the thickness by η(x,y,t) and causes
perturbations of electric current j . Pictures illustrate, schematically
and in an exaggerating way, the results of the tilting of the slabs
around the y axis (a) and x axis (b).
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equally valid for a discharging battery with J0 < 0). When
any of the slabs is tilted, the local thickness and, thus,
local resistance of the electrolyte changes, and the current
perturbations j (x,t) appear in the slabs and the electrolyte.
Their interaction with the magnetic field creates Lorentz forces
that modify the oscillations of the slabs, making them coupled
with each other’s and different from the purely gravitational
oscillations. The hypothesis we explore here is that this effect
may be a source of an instability.

The replacement of liquid metal layers by solid slabs is
the replacement of a system with infinitely many degrees of
freedom by a system with just four such degrees. This can be
considered as a low-mode approach, in which the key physical
mechanism, namely the coupling between the deformation of
interfaces and the electromagnetic forces, is retained, and the
large-scale dynamics of the system is analyzed.

As in a real battery, the electric conductivities of the
electrolyte and metal slabs satisfy

σE � σA ∼ σB. (2)

The electrolyte layer is assumed shallow, with its thickness
much smaller than the typical horizontal size of the slabs

h0 � L. (3)

The perturbation of the local thickness of the electrolyte layer
η(x,y,t) satisfies

η � h0. (4)

The first-order linearized approximation in terms of the
perturbation amplitude and of the ratio h0/L is used.

Perturbations of the magnetic field induced by the current
perturbations j are assumed much weaker than the base
magnetic field B and neglected in the analysis. We also take
the asymptotic nondissipative limit, in which the effects of
viscous friction and joule dissipation are neglected. This, in
particular, implies that we neglect the stabilizing effect of
viscosity. Finally, we disregard the pressure forces arising in
the electrolyte and assume that for each pendulum the distance
between the pivot and the center of mass is equal to h0.

B. Governing equations

For each slab, we will use the local Cartesian coordinate
system rigidly attached to it and having the origin at the center
of mass. The z axis is directed upwards along the strut, while
the horizontal axes are along the main axes of inertia. The
motion is described by the angular momentum equations for
rotations around the horizontal axes passing through the pivot
and parallel to x and y at the moment when the slab is in the
bottommost position:

Ixx

d2θx

dt2
= τg,x + τL,x, (5)

Iyy

d2θy

dt2
= τg,y + τL,y. (6)

Here, θx and θy are the angles of rotation (see Fig. 2), Ixx and
Iyy are the moments of inertia, and the right-hand sides are
the sums of the net torques of the gravity (τg,x and τg,y) and
Lorentz (τL,x and τL,y) forces with respect to the pivot.

The moments of inertia are

Ixx = M

[
h2

0 + L2
y + H 2

12

]
≈ M

L2
y + H 2

12
, (7)

Iyy = M

[
h2

0 + L2
x + H 2

12

]
≈ M

L2
x + H 2

12
, (8)

for a rectangular slab and

Ixx = Iyy = Irr = M

(
h2

0 + 3R2 + H 2

12

)
≈ M

3R2 + H 2

12
(9)

for a cylindrical one. In these expressions, M is the total mass,
Lx , Ly , and R are the horizontal dimensions or radius, and H

is the height of the slab.
The components of the torque of the gravity force are

τg,x = −gMh0θx, (10)

τg,y = −gMh0θy. (11)

The pure gravitational oscillations have the squared frequen-
cies

(ωx)2 = gMh0

Ixx

≈ 12gh0

L2
y + H 2

, (12)

(ωy)2 = gMh0

Iyy

≈ 12gh0

L2
x + H 2

(13)

for a rectangular slab and

(ωx)2 = (ωy)2 = gMh0

Irr

≈ 12gh0

3R2 + H 2
(14)

for a cylindrical one.
We will use ωA

y to make the equations nondimensional.
Denoting the nondimensional time as t ′ = tωA

y , we obtain

d2θA
x

dt ′2
+

(
ωA

x

ωA
y

)2

θA
x = τA

x,L(
ωA

y

)2
IA
xx

, (15)

d2θA
y

dt ′2
+ θA

y = τA
y,L(

ωA
y

)2
IA
yy

, (16)

d2θB
x

dt ′2
+

(
ωB

x

ωA
y

)2

θB
x = τB

x,L(
ωA

y

)2
IB
xx

, (17)

d2θB
y

dt ′2
+

(
ωB

y

ωA
y

)2

θB
y = τB

y,L(
ωA

y

)2
IB
yy

. (18)

In order to compute the torque of the Lorentz force, we need
to find the perturbations j of the electric current caused by the
tilting of the slabs, specify the magnetic field B, compute the
force density f = j × B, and integrate the components of its
torque

τL,x = yfz + h0fy, (19)

τL,y = −xfz − h0fx. (20)

The first step of this procedure is discussed here. The rest
is completed for the specific cases of our analysis in Sec. III.
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The local thickness of the electrolyte is, in the linearized
approximation of low-amplitude perturbations (see Fig. 2),

h = h0 + η(x,y,t) = h0 + (
θB
y − θA

y

)
x − (

θB
x − θA

x

)
y.

(21)
We can always choose the axes so that, at a given moment of
time, the thickness is given by

h = h0 + η(x,t) = h0 + (
θB
y − θA

y

)
x. (22)

If the Lorentz force has zero torque component τL,x in such
coordinates, the subsequent oscillations of the slabs occur
around the y axis, i.e., so that (22) remains valid.

The variation of the electrolyte thickness causes variation of
its local electrical resistivity and, thus, perturbations of electric
currents. Since the electrical conductivities of metals are much
higher than the conductivity of electrolyte (2), it is an accurate
approximation to require that the surfaces of the slabs facing
the electrolyte remain equipotential:

� = 0 at B, � = �A = const at A. (23)

Furthermore, the first-order approximation based on the
assumptions (3) and (4) allows us to assume that the value
of �A does not change when the interface is tilted:

�A ≈ �A
0 , (24)

and that the perturbed currents in the electrolyte layers remain
vertical:

JE = −J0ez + jE
z (x,t)ez. (25)

Considering that

J0 = �A
0 σE

h0
, J0 − jE

z = �AσE

h0 + η
,

and using (24), we find the distribution of current perturbations
in the electrolyte:

jE
z = �A

0 σE

h0
− �A

0 σE

h0 + η
≈ �A

0 σE

h2
0

η = J0
η

h0
. (26)

We now derive the expressions for the current perturbations
within the solid slabs. The derivation is first conducted for the
bottom slab B. We employ the fact that, since the electric
conductivity is high, the current perturbations can be assumed
to form completely closed loops within the slabs. This implies
the boundary conditions:

jB
z

∣∣
z=HB/2 = jE

z , (27)

jB
z

∣∣
z=−HB/2 = 0, (28)

jB
⊥ · n

∣∣
∂	

= 0, (29)

where −HB/2 � z � HB/2 is the vertical coordinate within
the slab, jB

⊥ = (jB
x ,jB

y ), and n is the normal to the slab’s
boundary ∂	 in the x-y plane.

The vertical component is approximated as

jB
z ≈ 1

2
jE
z = J0

η

2h0
. (30)

The derivation of the horizontal currents jB
⊥ uses the condition

of zero free charges

∇ · jB = 0 (31)

and the vertical integration

j̃
B

⊥ =
∫ HB/2

−HB/2
jB
⊥dz. (32)

Integrating (31) and applying (27),(28), we find

∂j̃B
x

∂x
+ ∂j̃B

y

∂y
= −jE

z . (33)

In the simpler case when the oscillations occur in one
plane (22), the horizontal perturbation currents have only the
x component, and (33) integrates to

j̃ B
x = − J0

2h0

(
θB
y − θA

y

)
x2 + const. (34)

In the interesting for us case of cylindrical slabs (see Sec. III B),
the boundary condition (29) leads to

j̃ B
x = J0

2h0

(
θB
y − θA

y

)
(R2 − r2), (35)

where r = (x2 + y2)
1/2

.
In the general case of two-dimensional oscillations (21), the

derivation is slightly more complex. We will need the currents
in rectangular slabs in Sec. III A. Integrating (33) in the y

direction and using (29), we find

∂IB
x

∂x
= −

∫ Ly/2

−Ly/2
jzdy = −θB

y − θA
y

h0
LyJ0x, (36)

where

IB
x (x) =

∫ Ly/2

−Ly/2
j̃ B
x dy

is the y-z-integrated x component of the current. Integrating
(36) along x and applying (29) again we find

IB
x = LyJ0

2h0

(
θB
y − θA

y

)[(
Lx

2

)2

− x2

]
. (37)

In the same manner, we obtain the distribution of the x-z-
integrated y component

IB
y = −LxJ0

2h0

(
θB
x − θA

x

)[(
Ly

2

)2

− y2

]
. (38)

Following a similar procedure or simply applying the
charge conservation condition, we find the currents in the upper
slab A:

j̃
A

⊥ = − j̃
B

⊥, IA
x = −IB

x , IA
y = −IB

y , jA
z = jB

z . (39)

This completes the preparatory derivations.

III. SOLUTION

To complete the governing equations and start solving the
problem we need to specify the magnetic field B(x). In a
real battery, B is a complex three-dimensional field, which
includes the component induced by the base current J0 and

063021-4



METAL PAD INSTABILITIES IN LIQUID METAL BATTERIES PHYSICAL REVIEW E 92, 063021 (2015)

the components induced by the currents in the electric supply
lines and, if present, neighboring batteries. Since we solve a
linear problem, the analysis can be simplified and given clearer
physical meaning by conducting it separately for selected com-
ponents of B. We start, in Sec. III A, with the interaction of a
purely vertical magnetic field and horizontal currents, i.e., with
an analog of the solution [14] for the mechanical model of an
aluminum reduction cell. Section III B presents the more inter-
esting results dealing with the interaction between the current
perturbations and the azimuthal magnetic field induced by J0.

A. Case 1: Vertical magnetic field

The driving mechanism of the metal pad instability in
the aluminum reduction cells is the interaction between the
horizontal current perturbations and the vertical component
of the externally (by the neighboring cells and supply lines)
generated magnetic field [8–14]. The interaction creates
electromagnetic coupling between the gravitational waves at
the aluminum-electrolyte interface and causes the instability.

In order to explore the possibility of an analogous instability
in a liquid metal battery, we consider a system with rectangular
metal slabs and assume the imposed magnetic field of the form

B = B0ez, B0 = const. (40)

Taking the cross-product with the integrated currents (37),
(38), we find, for the slab B, distributions of the correspond-
ingly integrated Lorentz force components along the x and y

axes:

FB
x (y) = IB

y (y)B0, FB
y (x) = −IB

x (x)B0 (41)

and of the torque

τL,x(x) = h0F
B
y = −B0J0Ly

2

(
θB
y − θA

y

)[(
Lx

2

)2

− x2

]
,

(42)

τL,y(y) = −h0F
B
x = B0J0Lx

2

(
θB
x − θA

x

)[(
Ly

2

)2

− y2

]
.

(43)

Integration along the respective coordinates gives the final
expressions for the net torque:

τB
L,x =

∫ Lx/2

−Lx/2
τL,x(x)dx = −B0J0LyL

3
x

12

(
θB
y − θA

y

)
, (44)

τB
L,y =

∫ Ly/2

−Ly/2
τL,y(y)dy = B0J0LxL

3
y

12

(
θB
x − θA

x

)
. (45)

For the slab A, we have [see (39)]

τA
L,x = −τB

L,x, τA
L,y = −τB

L,y. (46)

Substituting (44)–(46) into the nondimensional governing
equations (15)–(18), we obtain

d2θA
x

dt ′2
+

(
ωA

x

ωA
y

)2

θA
x = εAGA

x

(
θB
y − θA

y

)
, (47)

d2θA
y

dt ′2
+ θA

y = −εAGA
y

(
θB
x − θA

x

)
, (48)

d2θB
x

dt ′2
+

(
ωB

x

ωA
y

)2

θB
x = −εBGB

x

(
θB
y − θA

y

)
, (49)

d2θB
y

dt ′2
+

(
ωB

y

ωA
y

)2

θB
y = εBGB

y

(
θB
x − θA

x

)
, (50)

where

GA
x = L2

x + (HA)2

L2
y + (HA)2

, (51)

GA
y = L2

y

L2
x

, (52)

GB
x = L2

x + (HA)2

L2
y + (HB)2

, (53)

GB
y = L2

y

L2
x

L2
x + (HA)2

L2
x + (HB)2

(54)

are the nondimensional geometry factors, and

εA = B0J0L
2
x

12ρAgh0HA
, εB = B0J0L

2
x

12ρBgh0HB
(55)

are the nondimensional control parameters that determine the
strength of the electromagnetic effect.

The solution of (47)–(50) is a linear combination of the
eigenmodes

θ ∼ exp(ıγ t ′), (56)

with eigenvalues γ = ω ± ıσ , σ > 0. The real part ω is an
electromagnetically modified gravitational frequency. If the
imaginary part σ is nonzero, one of the two eigenmodes
corresponding to γ grows exponentially with σ as a growth
rate. In other words, presence of at least one pair of complex-
conjugate eigenvalues in the spectrum implies instability.

It is convenient to further simplify the geometry of the
system, so that we can obtain an analytical solution of the
problem. One possibility is to consider a battery, in which
HA = HB and, thus, ωA

x = ωB
x = ωx , ωA

y = ωB
y = ωy , GA

x =
GA

x = Gx , and GA
y = GB

y = Gy . Introducing the new variables

βx = θB
x − θA

x , βy = θB
y − θA

y (57)

and subtracting (47) from (49) and (48) from (50) we obtain
the reduced system

d2βx

dt ′2
+

(
ωx

ωy

)2

βx = −Gx(εA + εB)βy, (58)

d2βy

dt ′2
+ βy = Gy(εA + εB)βx. (59)

Substituting (56) and solving the quadratic equation
for γ 2 we find positive determinant and roots γ 2 > 0 if
2(εA + εB)(GxGy)1/2 < |1 − (ωx)2/(ωy)2|. The system is sta-
ble in this case. On the contrary, if

2(εA + εB)(GxGy)1/2 >

∣∣∣∣1 − ω2
x

ω2
y

∣∣∣∣ (60)

the solution necessarily has a pair of complex-conjugate
eigenvalues and, therefore, the system is unstable.
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In order to relate our results to those found for the aluminum
reduction cell, we take the same asymptotic limit as in [14].
We assume that not only h0, but also the thicknesses of the
metal slabs HA, HB are much smaller than the horizontal
dimensions Lx and Ly . This leads to

(ωx)2 = 12h0g

L2
y

, (ωy)2 = 12h0g

L2
x

, Gx = L2
x

L2
y

, Gy = L2
y

L2
x

(61)
and allows us to rearrange (60) as

2

(
B0J0

ρAH
+ B0J0

ρBH

)
>

∣∣ω2
y − ω2

x

∣∣, (62)

which only differs from the instability criterion in [14] in
that in the left-hand side, instead of one fraction B0J0/ρH

corresponding to the single (bottom) metal layer, we now have
two such fractions corresponding to the top and bottom layers.

In the general case, the system (47)–(50) is not reducible to
two equations and does not have a simple analytical solution.
Considering, however, that the ratios of the gravitational
frequencies and the geometric factors are all of the order one,
we can write the instability criterion, approximately, as

CAεA + CBεB >

∣∣∣∣1 − ω2
x

ω2
y

∣∣∣∣, (63)

where CA ∼ 1 and CB ∼ 1 are the constants accounting for
the effect of geometry.

The physical interpretation of the criterion is similar to
the interpretation of the metal pad instability in aluminum
reduction cells [14]. The instability occurs in a battery when the
product J0B0 exceeds a limit determined by the geometry of the
battery. The limit decreases linearly with decreasing thickness
of each layer: h0, HA, or HB . It also depends on the horizontal
shape of the battery. A battery of square cross section Lx = Ly

and with HA = HB has ωx = ωy and, so, is always unstable
in our nondissipative limit (the same conclusion can be easily
shown as valid for a cylindrical battery). For real batteries,
with liquid metal layers, dissipation, and other physical effects
disregarded in our model, we expect that, among the batteries
with given HA and HB , the square and cylindrical ones would
be most prone to the instability. The critical values of εA

and εB would increase with increasing difference between Lx

and Ly .
An essential difference between the instabilities in the

aluminum reduction cell and the battery is manifested by the
combination of εA and εB appearing in (63) in place of just
one such parameter. The presence of the second metal layer
makes the system more unstable.

B. Case 2: Azimuthal magnetic field

Liquid metal batteries are different from aluminum reduc-
tion cells in many respects other than the presence of the
top metal layer. In particular, the density of the base electric
current J0 is about an order of magnitude higher, and the ratio
between the vertical and horizontal dimensions of the metal
layers is not necessarily small. This alters the electromagnetic
interactions and may activate new mechanisms of instability.
In this section, we demonstrate such a mechanism.

The instability is caused by the interaction between the
current perturbations and the azimuthal magnetic field induced
by J0. For simplicity, we consider a cylindrical battery, in
which the magnetic field is

B0 = B0eφ = −μ0J0r

2
eφ = − sin φB0ex + cos φB0ey,

(64)
where μ0 is the magnetic permeability of free space and φ

is the polar angle in the x-y plane. As will be seen from the
following discussion, a similar instability should appear in a
battery of an arbitrary cross section.

The coordinate system is oriented so that the deformation
of the electrolyte thickness at some moment of time is along
the x axis, i.e., described by (22). The current perturbations in
each slab have only two components j̃x and jz [see (30) and
(35)]. The instantaneous distributions of the Lorentz forces
integrated over the thickness of each slab are

f̃ A = j̃
A × B0 = μ0J

2
0

4h0
[HAx2ex + HAxyey

+ x(R2 − r2)ez]
(
θB
y − θA

y

)
, (65)

f̃ B = j̃
B × B0 = μ0J

2
0

4h0
[HBx2ex + HBxyey

− x(R2 − r2)ez]
(
θB
y − θA

y

)
. (66)

The components of the torque are

τ̃ A
L,x = μ0J

2
0

4h0
[xy(R2 − r2) + HAh0xy]

(
θB
y − θA

y

)
, (67)

τ̃ A
L,y = μ0J

2
0

4h0
[−x2(R2 − r2) − HAh0x

2]
(
θB
y − θA

y

)
, (68)

τ̃ B
L,x = μ0J

2
0

4h0
[−xy(R2 − r2) + HBh0xy]

(
θB
y − θA

y

)
, (69)

τ̃ B
L,y = μ0J

2
0

4h0
[x2(R2 − r2) − HBh0x

2]
(
θB
y − θA

y

)
. (70)

Integrating them over the slab, we find

τA
L,x = 0, (71)

τA
L,y = μ0J

2
0 π

(
− R6

48h0
− HAR4

16

)(
θB
y − θA

y

)
, (72)

τB
L,x = 0, (73)

τB
L,y = μ0J

2
0 π

(
R6

48h0
− HBR4

16

)(
θB
y − θA

y

)
. (74)

The torque of the gravity force has the components [see
(10) and (11)]

τA
g,x = τA

g,y = 0, τA
g,y = −gMh0θ

A
y , τB

g,y = −gMh0θ
B
y .

(75)

We see that neither slab experiences torque around the x

axis. The oscillations will remain in the x-z plane and the gov-
erning equations are reduced to those for just two degrees of
freedom: θA

y and θB
y . The nondimensional equations (15)–(18)
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can be rewritten as

d2θA
y

dt ′2
+ θA

y = (−εA − κA)
(
θB
y − θA

y

)
, (76)

d2θB
y

dt ′2
+ GθB

y = (εB − κB)G
(
θB
y − θA

y

)
, (77)

where we have introduced the nondimensional geometry
parameter

G =
(

ωB
y

ωA
y

)2

(78)

and the nondimensional control parameters

εA ≡ μ0J
2
0 R4

48ρAgh2
0H

A
, εB ≡ μ0J

2
0 R4

48ρBgh2
0H

B
, (79)

κA ≡ μ0J
2
0 R2

16ρAgh0
, κB ≡ μ0J

2
0 R2

16ρBgh0
(80)

that evaluate the strength of the electromagnetic torque caused
by the horizontal (79) and vertical (80) perturbations of
currents. Since h0 is much smaller than R and H , it is safe
to assume that εA > κA and εB > κB .

The rest of the analysis is straightforward. We use the ansatz
θA
y ,θB

y ∼ exp (ıγ t ′), where γ = ω ± ıσ is an eigenvalue, and
solve the quadratic equation for γ 2. The determinant of the
equation is always positive:

D = (sA + sB)2 − 4sAsB + 4GαAαB > 0, (81)

where αA = εA + κA, αB = εB − κB , sA = 1 − αA, and sB =
G(1 − αB). Of the two real roots

γ 2
1,2 = 1

2 (sA + sB ± D1/2), (82)

the larger is always positive and corresponds to the oscillations
of the slabs with the frequency ω modified by the Lorentz
forces. The smaller root becomes negative if GαAαB > sAsB ,
which can be rewritten as

εA + κA + εB − κB > 1. (83)

Since such a root corresponds to the presence of an eigenmode
θA
y ,θB

y ∼ eσ t ′ with σ = (−γ 2)
1/2

> 0, the condition (83) is a
criterion for instability to monotonously growing perturba-
tions. According to (83), the effect of the horizontal current
perturbations is always destabilizing. The effect of the vertical
current perturbations is weaker and mixed: destabilizing for
the slab A and stabilizing for the slab B.

IV. DISCUSSION

The predictions made in this paper are, strictly speaking,
valid only in the framework of our mechanical model. At
the same time, we consider them as qualitatively valid for
a real battery with liquid metal layers. This includes the
physics of the instabilities, the form of the control parameters
(55), (79), and (80), and, possibly, the order of magnitude of
the critical values of these parameters. The main argument
supporting the validity of the model is that the principal
physical mechanism of the phenomena discussed in this paper,

namely the deformation of electrolyte-metal interfaces leading
to redistribution of electric current, in turn leading to Lorentz
forces acting on the metals so that the deformation is enhanced,
acts in a qualitatively the same way in a system with solid and
liquid metals. Furthermore, the sloshing motions generated
in the liquid layers are inherently large scale, and, so, their
qualitative behavior can be approximately described using the
low-mode approach. We can also rely on the demonstrated
validity of a similar approach in the case of aluminum
reduction cells [14].

Of course, the dynamics of a real battery is more complex
than the dynamics of our model system and different from it
in many aspects because of the liquid nature of the layers,
stabilizing effect of viscosity, and presence of the other
instability mechanisms mentioned in Sec. I of this paper.
Furthermore, as it has been demonstrated for some systems,
for example, for the MHD Taylor-Couette flow [15,16], the
secondary flows developing as a result of a linear instability
may saturate at a low-amplitude level and, so impose only
weak effect in comparison with the other instabilities present
in the system. Such behavior is possible in the liquid metal
batteries, where, as we have discussed in Sec. I of this paper,
several instability mechanisms are likely to be simultaneously
active.

The final conclusion about the physics of the metal pad
instabilities and their role in operation of liquid metal batteries
can only be made in the future, on the basis of experimental
and computational studies of more realistic battery models.
The main value of our results is that they serve as a starting
point for this future work.

In the rest of the discussion, we assume that the predictions
made in Sec. III are valid. By analogy with the aluminum
reduction cells, we predict that the instability of the type
described in Sec. III A will occur in real batteries if sufficiently
strong vertical magnetic fields are allowed. The batteries of
square or round horizontal cross section will be particularly
unstable.

Considering the form of the control parameters (55),
we immediately see two factors that make the instability
in the batteries more likely than in the reduction cells.
One is the presence of the top metal layer, which plays a
destabilizing role. The parameter εA corresponding to this
layer is particularly large because of the low density ρA (about
five times lower than the density of molten aluminum). Also,
thin (a few mm) electrolyte layers are used in the current
battery prototypes. This can be compared with the thickness
about 4 cm in modern reduction cells.

An accurate prediction of whether or not a specific battery
would experience the instability of the type observed in the
aluminum reductions cells requires analysis of a more realistic
model than considered in this paper. A crude estimate can
be made on the basis of the expression (55) for the control
parameters of the instability, which can be compared with
the analogous parameter for the aluminum reduction cells.
As an example, we take a reduction cell with the horizontal
dimensions Lx × Ly = 11 × 2.7 m, thickness of aluminum
layer H = 20 cm, base electric current of density 1 A/m2, and
vertical magnetic field B0 = 3 × 10−3 T. As shown in [12,13],
such a cell is unstable at the thickness of the electrolyte layer
h0 about 4.5 cm. For a battery, we consider only the larger of
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the two control parameters εA (see (55)) and assume the same
B0, J0, HA, Lx/Ly , while taking five times smaller metal
density and ten times smaller h0. This leads to the prediction
that such a battery would experience instability at Lx × Ly =
1.6 × 0.4 m. Cylindrical batteries and rectangular batteries
with the ratio Lx/Ly closer to one would, according to our
analysis, become unstable at smaller size.

We have to be more careful while making predictions for
the instability described in Sec. III B. On one hand, it appears
to be more dangerous than the instability of the first type, since
the azimuthal magnetic field (64), unlike the vertical magnetic
field, cannot be reduced via optimization of current supply
lines. On the other hand, existence of such an instability in a
real battery yet needs to be confirmed.

At this point, we assume that the instability of this type
appears in real batteries and make preliminary estimates of
the size, at which this would happen. Since h0 � R,HA,HB ,
and ρA is about an order of magnitude smaller than ρB , εA is
much larger than the other parameters in (83). For simplicity,
we approximate the instability criterion as εA > 1. Using J0 =
104 A m−2 and ρA = 500 kg m−3 (approximate value for
liquid lithium at 720 K), we find the critical values of radius,

TABLE I. Critical radius, above which the battery is unstable to
the instability caused by the azimuthal magnetic field. See text for
explanation.

h0 (mm) 1 1 5 5

HA/R 1 1/4 1 1/4
Rcr (m) 0.12 0.078 0.36 0.227

above which the battery is unstable, shown in Table I. They
are comparable with the typical critical radii predicted for the
Tayler [3–5] or convection [7] instabilities.

Our final remark is that the metal pad instabilities may play
a substantial role in the operation of scaled-up liquid metal
batteries and have to be included in the future analysis.
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