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Weakly nonlinear analysis of Rayleigh-Bénard convection in a non-Newtonian fluid between plates
of finite conductivity: Influence of shear-thinning effects
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Finite-amplitude thermal convection in a shear-thinning fluid layer between two horizontal plates of finite
thermal conductivity is considered. Weakly nonlinear analysis is adopted as a first approach to investigate
nonlinear effects. The rheological behavior of the fluid is described by the Carreau model. As a first step, the
critical conditions for the onset of convection are computed as a function of the ratio ξ of the thermal conductivity
of the plates to the thermal conductivity of the fluid. In agreement with the literature, the critical Rayleigh number
Rac and the critical wave number kc decrease from 1708 to 720 and from 3.11 to 0, when ξ decreases from
infinity to zero. In the second step, the critical value αc of the shear-thinning degree above which the bifurcation
becomes subcritical is determined. It is shown that αc increases with decreasing ξ . The stability of rolls and
squares is then investigated as a function of ξ and the rheological parameters. The limit value ξc, below which
squares are stable, decreases with increasing shear-thinning effects. This is related to the fact that shear-thinning
effects increase the nonlinear interactions between sets of rolls that constitute the square patterns [M. Bouteraa
et al., J. Fluid Mech. 767, 696 (2015)]. For a significant deviation from the critical conditions, nonlinear convection
terms and nonlinear viscous terms become stronger, leading to a further diminution of ξc. The dependency of
the heat transfer on ξ and the rheological parameters is reported. It is consistent with the maximum heat transfer
principle. Finally, the flow structure and the viscosity field are represented for weakly and highly conducting
plates.
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I. INTRODUCTION

Recently, a weakly nonlinear stability analysis of thermal
convection in a layer of a non-Newtonian fluid between two
horizontal plates, of infinite thermal conductivity, heated from
below was considered by Bouteraa et al. [1]. Assuming the
fluid purely viscous and shear thinning, they studied the
influence of shear-thinning effects on the nature of the primary
bifurcation and the pattern selection. The possibility of wall
slip was taken into account by using Navier’s slip law at top and
bottom walls. It was shown that the bifurcation is supercritical
for moderately shear-thinning effects and becomes subcritical
for strongly shear-thinning effects. The critical value of the
degree of shear-thinning αc defined by Eq. (14), above which
the bifurcation becomes subcritical is determined as a function
of a dimensionless slip length parameter. It is demonstrated
that near the threshold of the convection, only rolls are stable
and this stability is reinforced by the shear-thinning behavior.

In experimental situations, however, the thermal conduc-
tivity of the plates is finite. Furthermore, in some situations,
the plates are much poorer conductors than the fluid. For
instance, in LeGal and Croquette [2], the plates are made
of Plexiglas and the fluid is water. The ratio ξ of the thermal
conductivity of the plates k̂p to the thermal conductivity of the
fluid k̂ is ξ = 0.4. In Gorius et al. [3], a layer of mercury is
bounded by two plates made of a resin, with a ratio ξ = 0.23.
In Kebiche [4] and Kebiche et al. [5], the horizontal plates are
made of polycarbonate and the fluid is an aqueous solution of
carboxymethyl cellulose or carbopol; the ratio ξ is estimated
to ξ = 0.25. In these situations, as well as those encountered
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in some engineering convection problems and in geophysics,
the assumption that the plates are held at fixed and uniform
temperatures loses its validity. The boundary conditions that
have to be satisfied are continuity of temperature and heat flux
at the interface between the fluid and the plate.

For a Newtonian fluid, the effect of imperfect conducting
plates on the Rayleigh-Bénard convection was investigated by
several authors. First, in the linear theory frame, Sparrow et al.
[6] and Hurle et al. [7] (see also Riahi [8], Clever and Busse
[9], and Holmedal et al. [10] for plates of arbitrary thicknesses
and conductivities) showed that the critical Rayleigh number
Rac and the critical wave number kc, vary continuously from
1708 to 720 and from 3.11 to 0, when the ratio of thermal
conductivities decreases from infinity to zero. According to
Cerisier et al. [11] a temperature fluctuation occurring in the
liquid close to a nearly insulating plate persists and distorts
the temperature distribution. This temperature distortion can
lead to an instability of the fluid layer. As a consequence,
the temperature gradient is small and the fluid organizes in a
pattern with a small wave number.

Exploiting the fact that for nearly insulating walls (ξ � 1)
the horizontal scale of convection is much larger than the depth
of the fluid, Busse and Riahi [12] considered weakly nonlinear
three-dimensional solutions in the case of infinitely thick
plates. They showed that near the onset, square convection cells
are the stable planform, in contrast with two-dimensional rolls
which are the only stable convection pattern in a symmetrical
situation with isothermal boundary conditions. This result was
confirmed and extended to fully nonlinear convection, with
plates of finite thickness, by Proctor [13] using a “shallow
water theory” adapted for the Rayleigh-Bénard convection by
Chapman and Proctor [14]. Afterwards, Jenkins and Proctor
[15] considered three-dimensional finite-amplitude thermal
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convection with finite thickness and finite thermal conductivity
of the bounding plates. They determined the critical value
ξc of the thermal conductivities ratio at which the preferred
planform changes from square cell (ξ < ξc) to roll (ξ > ξc)
as function of the Prandlt number. When the thickness of
the plates is of the same order as that of the fluid layer
and for Pr � 10, rolls should be observed when ξ > 1 and
squares when ξ < 1. This is in agreement with LeGal and
Croquette’s experiments [2]. For low Prandtl number, say,
Pr � 0.1, Jenkins and Proctor [15] found that ξc ∝ Pr4.

The objective of the present paper is twofold: first, to
study the influence of shear-thinning effects on ξc and,
second, to determine the nature of the primary bifurcation
depending on the shear-thinning degree and the ratio of thermal
conductivities. We hope that our findings will shed new light
on the interpretation of the results obtained by Kebiche [4] and
Kebiche et al. [5], although the fluid used in Ref. [5] is not
only shear thinning but has also a yield stress.

The paper is organized as follows. In Sec. II, the mathe-
matical formulation of the problem is presented. In Sec. III,
the linear stability analysis for the onset of convective flow is
reinvestigated. The critical Rayleigh number (Rac) and wave
number (kc) are determined as a function of ξ . Section IV
presents briefly the procedure used in the weakly nonlinear
stability analysis. The results are discussed in Sec. V. The
critical value of the shear-thinning degree above which the
bifurcation becomes subcritical is determined as a function of
ξ . The pattern selection near the threshold of convection is in-
vestigated in terms of α and ξ . For a significant deviation from
the critical conditions, higher-order solutions are computed in
Sec. VI. Section VII provides information on the flow structure
and the heat transfer. A concluding discussion is given in the
last section of the paper.

II. PROBLEM FORMULATION

A. General equations and parameters

We consider a layer of shear-thinning fluid of depth d̂

confined between two horizontal plates that are infinite in
extent and which have a thickness �d̂ , where � is of order
unity. The outer surface of the bottom and top plates are
kept at constant temperatures, respectively T̂0 + � T̂ /2 and
T̂0 − � T̂ /2, with �T̂ > 0. The fluid has density ρ̂, thermal
conductivity k̂, thermal coefficient expansion (at constant
pressure) β̂, and viscosity μ̂0 at zero shear rate. The thermal
conductivity of the slabs is k̂p. Because of the thermal
expansion, the temperature difference between the two plates
induces a vertical density stratification. Heavy cold fluid is
above a light warm fluid. For small �T̂ , the fluid remains
at rest and the heat is transferred by conduction. In the fluid,
0 < ẑ < d̂, the hydrostatic solution and the temperature profile
are

dP̂

dẑ
= −ρ̂0ĝ[1 − β̂(T̂ − T̂0)] and

T̂cond = T̂0 + �T̂

1 + 2�/ξ

[
1

2
− ẑ

d̂

]
, (1)

where ĝ is the acceleration due to gravity. Here the z axis
is directed upwards, with the origin located at the bottom

plate. The reference temperature T̂0 is the temperature in the
middle of the fluid layer and ρ̂0 is the fluid density at T̂0. The
temperature difference between the top and the bottom of the
fluid layer is � T̂f = � T̂ /(1 + 2�/ξ ).

The temperature profile in the top and bottom plates are

T̂cond = T̂0 + �T̂

ξ + 2�

[
1 − 1

2
ξ − ẑ

d̂

]
,

(2)
d̂ � ẑ � (1 + �)d̂,

and

T̂cond = T̂0 + �T̂

ξ + 2�

[
1

2
ξ − ẑ

d̂

]
, − �d̂ � ẑ � 0. (3)

When ξ is low, a large part of �T̂ occurs across the
plates and remains only a small part �T̂f of �T̂ , acting as
the driving force for the convection. When �Tf exceeds a
critical value, the buoyancy force overcomes the dissipative
effects, i.e., viscous and heat diffusion, the convection sets in,
and so-called convective patterns emerge. The stability of the
hydrostatic solution is considered by introducing temperature
and pressure perturbation as well as a fluid motion. The
Boussinesq approximation is adopted, i.e., the temperature
dependence of the fluid properties can be neglected except
for the temperature-induced density difference in the buoyant
force that drives the flow. The heat production due to viscosity
is neglected. Here and in what follows, the quantities with
hat (.̂) are dimensional. Distances are scaled with d̂; velocity
with κ̂/d̂ , where κ̂ is the thermal diffusivity of the fluid; time
with d̂2/κ̂ (characteristic time scale of thermal diffusion);
temperature with �T̂f ; and pressure and stresses with κ̂μ̂0/d̂

2.
Using these scales, the dimensionless perturbation equations
read:

∇ · u = 0, (4)

1

Pr

[
∂u
∂t

+ u · ∇u
]

= −∇p + Ra θ ez + ∇ · τ , (5)

∂θ

∂t
+ u · ∇θ = u · ez + ∇2θ, (6)

in the fluid and

∂θ̃

∂t
= κ̂p

κ̂
∇2θ̃ (7)

in the bounding slabs. Here ez denotes the unit vector in
the vertical direction, u(x,t) = uex + vey + wez is the fluid
velocity and p(x,t) and θ (x,t) represent the pressure and
temperature deviations from their values in the conduction
state. The temperature perturbation in the slabs is denoted
θ̃ (x,t). The position vector x has components x,y,z. The
Rayleigh number Ra and the Prandtl number Pr are defined
by

Ra = ρ̂0ĝβ̂�T̂f d̂3

κ̂ μ̂0
; Pr = μ̂0

ρ̂0 κ̂
. (8)
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B. Rheological model and parameters

The fluid is assumed to be purely viscous and shear
thinning. The viscous stress-tensor

τ = μ(�)γ̇ with γ̇ = ∇u + (∇u)T (9)

and the rate-of-strain tensor of the second invariant

� = 1
2 γ̇ij γ̇ij . (10)

The Carreau model is given by

μ̂ − μ̂∞
μ̂0 − μ̂∞

= (1 + λ̂2 �̂)
nc−1

2 , (11)

with μ̂0 and μ̂∞ the viscosities at low and high shear rate,
nc < 1 the shear-thinning index, and λ̂ the characteristic time
of the fluid. The location of the transition from the Newtonian
plateau to the shear-thinning regime is determined by λ̂, since
1/λ̂ defines the characteristic shear rate for the onset of shear
thinning. Increasing λ̂ reduces the Newtonian plateau to lower
shear rates. The infinite shear viscosity, μ̂∞, is generally
associated with a breakdown of the fluid and is frequently
significantly smaller (10−3 to 10−4 times smaller) than μ̂0,
see Bird et al. [16] and Tanner [17]. The ratio μ̂∞/μ̂0 will be
thus neglected in the following. The dimensionless effective
viscosity is then

μ = μ̂

μ̂0
= (1 + λ2 �)

nc−1
2 with λ = λ̂

d̂2/κ̂
. (12)

The Newtonian behavior, μ̂ = μ̂0, is obtained by setting nc = 1
or λ̂ = 0.

For a small amplitude disturbance, the viscosity can be
expanded about the hydrostatic solution,

μ = 1 +
(

nc − 1

2

)
λ2 � + 1

2

(
nc−1

2

)(
nc−3

2

)
λ4�2 + . . .

(13)

At lowest nonlinear order, a relevant rheological parameter
is the “degree of shear thinning,”

α =
∣∣∣∣dμ

d�

∣∣∣∣
�=0

= 1 − nc

2
λ2. (14)

C. Boundary conditions

For the perturbation velocity u, the conditions imposed on
the top and bottom plates are either no-slip (no-slip boundary
conditions NSBC), which implies

u = 0 at z = 0,1, (15)

or stress-free (stress-free boundary conditions SFBC), which
implies

∂u

∂z
= ∂v

∂z
= w = 0 at z = 0,1. (16)

For thermal boundary conditions, a constant and uniform
temperature is assumed on the outer surface of each plate

θ̃ = 0 at z = −�,1 + �. (17)

The continuity condition for temperature and heat flux are

θ = θ̃ at z = 0,1, (18)

Dθ = ξDθ̃ at z = 0,1, (19)

where D ≡ ∂
∂z

and ξ = k̂p

k̂
.

D. Reduction: Elimination of the pressure

In the momentum equations, the pressure field can be
eliminated using the curl of Eq. (5). We then take the curl
of Eq. (5) one more time. Using the continuity equation, and
projecting onto ez, we get the following evolution equations
for the vertical vorticity ζ and the vertical velocity w:

∂ζ

∂t
+ ez · ∇ × [(u · ∇)u]

= Pr �ζ + Pr ez · ∇ × [∇ · (μ − 1)γ̇ ], (20)

1

Pr

[
∂∇2w

∂t
− ez · [∇ × ∇ × [(u.∇)u]]

]

= �2w + Ra ∇2
Hθ − [∇ × ∇ × [∇ · (μ − 1)γ̇ ]] · ez,

(21)

∂θ

∂t
+ (u · ∇)θ = w + ∇2θ, (22)

∂θ̃

∂t
= κ̂p

κ̂
∇2θ̃ , (23)

where

ζ = ∂v

∂x
− ∂u

∂y
and ∇2

H = ∂2

∂x2
+ ∂2

∂y2
.

From the continuity equation and the vertical vorticity def-
inition, one can deduce the horizontal velocity components
(u, v):

∇2
Hu = − ∂2w

∂x∂z
− ∂ζ

∂y
; ∇2

Hv = − ∂2w

∂y∂z
+ ∂ζ

∂x
. (24)

The boundary conditions for w are

w = Dw = 0 at z = 0,1 for NSBC, (25)

and

w = D2w = 0 at z = 0,1 for SFBC. (26)

For the temperature, the boundary conditions are

θ̃ = 0 at z = −�,1 + �, (27)

θ = θ̃ at z = 0,1, (28)

Dθ = ξDθ̃ at z = 0,1. (29)

In the following, as in Chapman and Proctor [14], Proctor [13],
and Carriere et al. [18], we will assume that κ̂p/κ̂ = ξ .

063017-3
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III. LINER STABILITY ANALYSIS

A. Critical conditions and critical modes

In the linear theory, u and θ are assumed infinitesimal. The
nonlinear terms in (20)–(22) can be neglected. We obtain:

1

Pr

∂ζ

∂t
= �ζ, (30)

1

Pr

∂�w

∂t
= �2w + Ra�H θ, (31)

∂θ

∂t
= w + �θ, (32)

∂θ̃

∂t
= κ̂p

κ̂
�θ̃ . (33)

At this stage, no non-Newtonian effects enter the problem.
The vertical vorticity decouples and obeys a diffusion equation
and thus can be ignored in the linear theory. For Eqs. (31)–(33),
we seek a normal mode solution⎡

⎣w(x,y,z,t)
θ (x,y,z,t)
θ̃ (x,y,z,t)

⎤
⎦ =

⎡
⎣F11(z)

G11(z)
G̃11(z)

⎤
⎦f (x,y) exp (s t), (34)

where s = sr + isi is a complex number and f (x,y) satisfies
the two-dimensional Helmoltz equation �Hf = −k2f . Here
k is the norm of the horizontal wave number k. Substituting
(34) into (31)–(33) leads to the differential equations

s Pr−1(D2 − k2)F11 = −k2RaG11 + (D2 − k2)2F11, (35)

s G11 = F11 + (D2 − k2)G11, (36)

s G̃11 = κ̂p

κ̂
(D2 − k2)G̃11. (37)

It may be shown easily that s is real. The principle of
exchange of stabilities holds and hence the instability sets
in a stationary convection. The boundary conditions are as
follows:

F11 = DF11 = 0 at z = 0,1 for NSBC, (38)

F11 = D2F11 = 0 at z = 0,1 for SFBC, (39)

G̃11 = 0 at z = −�,1 + �, (40)

G11 = G̃11 at z = 0,1, (41)

DG11 = ξDG̃11 at z = 0,1. (42)

The set of differential equations (35)–(37) is an eigenvalue
problem where s is the eigenvalue and X11 = (F11,G11,G̃11)
the eigenvector. It can be written

s M · X11 = L · X11. (43)

Actually, Eq. (37) can be solved analytically:

G̃11(z) = G11(z = 1)
sinh[k̃(1 + � − z)]

sinh(k̃�)
; 1 � z � 1 + �,

(44)

G̃11(z) = G11(z = 0)
sinh[k̃(� + z)]

sinh(k̃�)
; −� � z � 0, (45)

with k̃ = √
k2 + sκ̂/κ̂p. Hence the eigenvalue problem (35)–

(37) can be restrained to the fluid domain, i.e., Eqs. (35) and
(36), with the boundary conditions

DG11 = ±ξ k̃G11 coth k̃�; z = 0, 1. (46)

The eigenvalue problem (35) and (36) with the boundary
conditions (46) is solved using a Chebyshev collocation
method. The functions, F11 and G11 are expanded in series
of Chebyshev polynomial series of order N . The 2(N + 1)
unknowns are determined at the Gauss-Lobatto nodes,

zj = 1

2

[
cos

(
π j

N

)
+ 1

]
j = 0,1, . . . ,N. (47)

Since k̃ depends on s, an iterative process is implemented.
The eigenvector X11 is normalized such that

G11(z = 1/2) = 1. (48)

The marginal stability curve Ra(k) is determined by the con-
dition s = 0. The minimum of the marginality stability curve
gives the critical Rayleigh number Rac and kc, respectively.
Figure 1 displays the variation of Rac and kc as a function of
the ratio ξ of the thermal conductivity of the plates to that of
the fluid in the case of NSBC and SFBC. The dimensionless
thickness of the plates is fixed at � = 1. These results are
in very good quantitative agreement with those obtained by
Sparrow et al. [6], Proctor [13], Jenkins and Proctor [15],
Carriere et al. [18], and Cerisier et al. [11]. The wavelength
of the convection becomes larger with decreasing ξ and the
critical Rayleigh number Rac is also reduced.

10−3 10−2 10−1 100 101 102 103

500

1000

1500

2000

ξ

(1)

(2)

Rac

(a)

10−3 10−2 10−1 100 101 102 103
0

1

2

3

4

ξ

kc

(2)

(1)(b)

FIG. 1. (Color online) Critical Rayleigh number (a) and critical
wave number (b) as a function of ξ in the cases of NSBC (1) and
SFBC (2).
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Indeed, when a temperature fluctuation occurs in the liquid
close to highly conducting wall, it easily relaxes, whereas
it can persist and distorts the temperature distribution when
the thermal conductivity of the boundary is very low. This
temperature distortion can lead to an instability of the fluid.
As a consequence, the critical Rayleigh number is smaller
[11]. From mathematical point of view, the decrease of Rac is
caused by the weakening of the thermal boundary conditions
(28) and (29) for θ as ξ decreases from 103 to 10−3.

Note that for a given thermal conductivities ratio, the critical
Rayleigh number for NSBC is greater than that for SFBC. The
physical reason is quite intuitive. In the case of NSBC, the
friction of the fluid against the wall dissipates more energy,
therefore a higher thermal gradient has to be imposed so the
convection can start.

When the convection flow starts, it distorts the originally
horizontal isotherms. Since this deviation from the basic state
occurs in the fluid layer as well as in the wall boundary, where
the diffusion rate is smaller than in the fluid when ξ < 1,
the wavelength of the convection pattern becomes larger with
decreasing the thermal conductivity of the plate [19] [see
Figs. 3(a) and 3(c)]. Additional properties of the critical mode
are given by F11 and G11 at the critical conditions. They
are displayed in Fig. 2 for NSBC and SFBC and different
values of ξ . When ξ decreases, the temperature perturbation
does not relax at the interface, i.e., at z = 0, 1 [Figs. 2(c)
and 2(d), curves 3, 2, and 1], thereby reducing Rac. The
fluctuation of the temperature gradient, ∂θ/∂z, in the liquid
decreases with decreasing ξ [Figs. 2(c) and 2(d)]. When ξ � 1,
∂θ/∂z → 0, we recover the extreme situation of fixed heat flux
at the boundary. Actually, for a very poor heat conductor, the

horizontal scale of motion is much greater than the depth of
the fluid. Therefore, vertical diffusion rates are greater than
horizontal ones and the temperature perturbation becomes
approximately vertically homogeneous [curve 1 in Figs. 2(c)
and 2(d)]. These results are clearly illustrated by Fig. 3, where
contours of the temperature perturbation are represented for
three situations: (i) ξ = 0.1, a poor heat conductor; (ii) ξ = 1,
k̂ = k̂p; and (iii) ξ = 103, a “perfect heat conductor.” The
contours shape and the convection scale at ξ = 0.1 [Fig. 3(a)]
fundamentally differ from those at ξ = 103, a “perfect heat
conductor” [Fig. 3(c)].

Figures 2(a) and 2(b) show that the vertical velocity is
strongly damped with decreasing the thermal conductivity
of the wall. This is a consequence of the reduction of the
temperature gradient for the onset of convection as ξ decreases.
For the same reason, the vertical velocity is lower for SFBC
than for NSBC.

B. Characteristic time of the instability

Near the onset of convection, the growth rate Re(s) of the
perturbation may be approximated using Taylor expansion of
s around the critical conditions:

s = ε

τ0
+ O(ε2) with ε = Ra − Rac

Rac

, (49)

where τ0 is the characteristic time for the instability to grow.
The determination of τ0 can be obtained either by evaluating
( ds
dε

)
ε=0

(s is calculated for different values of ε, around ε = 0)
or by following the methodology described by Cross [20] and
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5

10

15

20

25

z

F11

(1)
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(1)

0 0.2 0.4 0.6 0.8 10
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0.6

0.8
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z
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(2)
(1)

)d()c(

FIG. 2. (Color online) Eigenfunctions at critical conditions and different values of ξ : (1) ξ = 10−3, (2) ξ = 10−1, (3) ξ = 100, and (4)
ξ = 103 in the cases of NSBC [(a)–(c)] and SFBC [(b)–(d)].
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FIG. 3. (Color online) Temperature perturbation contours for
three values of the thermal conductivity ratio ξ : (a) ξ = 0.1, poor
heat conductor; (b) ξ = 1, k̂p = k̂; and (c) ξ = 1000, “perfect heat
conductor.” In this latter case, the temperature perturbation in the
liquid relaxes at the boundaries.

Plaut [21]. Explicitly, τ0 is given by

τ−1
0 = −k2

c Rac〈G11,Fad〉
〈G11,Gad〉 + 〈G̃11,G̃ad〉 + 1/Pr〈(D2 − k2)F11,Gad〉

.

(50)

In the previous equation, (Fad,Gad) is the adjoint mode
solution of the adjoint eigenvalue problem (Appendix A). The
inner product between two functions f and g is defined by
〈f,g〉 = ∫ 1+�

−�
fg dz. The integrals are evaluated numerically

by means of the Clenshaw-Curtis method in terms of the
critical conditions. Note that we consider F11 = G11 = 0
inside the slabs and G̃11 = 0 in the fluid domain. Figure 4
shows the variation of τ0 as a function of ξ . As can be observed,
the characteristic time of instability, τ0, varies weakly with
the thermal conductivities ratio, ξ , when roughly ξ > 1.
However, when ξ < 1, i.e., k̂p < k̂, τ0 increases significantly

10−3 10−2 10−1 100 101 102 103
10−2

10−1

100

101

τ0

(1)

(2)

ξ

FIG. 4. (Color online) Characteristic time of instability vs ther-
mal conductivities ratio ξ at Pr = 10. (1) SFBC and (2) NSBC.

with decreasing ξ because the temperature field in the solid
evolves on a more longer time with decreasing the thermal
conductivity of the plates. Hence, at given ε, the growth of the
instability is slower and of longer duration as ξ decreases.

IV. WEAKLY NONLINEAR STABILITY ANALYSIS

A. Principles and procedure

A standard weakly nonlinear convection analysis using the
amplitude expansion method is adopted as a first approach
to investigate nonlinear effects (see Stuart [22], Watson
[23], Reynolds and Potter [24], Sen and Venkateswarlu [25],
Fujimura and Yamada [26], Generalis and Fujimura [27]). At
leading order, one writes

w(x,y,z,t) = f (x,y,t) F11(z) + c.c., (51)

θ (x,y,z,t) = f (x,y,t) G11(z) + c.c., (52)

θ̃(x,y,z,t) = f (x,y,t) G̃11(z) + c.c. (53)

The planform function which describes the convection pattern
is

f (x,y,t) =
N∑

p=1

Ap(t) exp (i kp · r), (54)

where |kp| = kc and Ap(t) is the amplitude of the perturbation.
According to the normalization of the eigenfunctions used
in the linear theory, Ap(t) represents the amplitude of the
thermal perturbation measured at the midplane. Configuration
with N = 1 corresponds to rolls and N = 2 to squares. The
weakly nonlinear analysis is applied to each of these patterns.
The configuration with N = 3 corresponding to hexagons is
not considered here. Further calculations show that this three-
dimensional pattern is unstable.

In the neighborhood of the critical conditions, the dynamics
are assumed to be determined by the fundamental disturbance
with wave number k = kc, its higher harmonics generated by
the nonlinear self-interactions and the modification of the base
state due to the interaction with the complex conjugate. As
in Stuart [22], Watson [23], and Herbert [28], the disturbance
is expanded in harmonic series and the coefficient of each
harmonic is further expanded in an asymptotic series with
disturbance amplitude as a small parameter.
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In the case of rolls, the velocity and the temperature
disturbances are expanded as follows:

(w(x,z; t),θ (x,z; t),θ̃(x,z; t))

=
∑
m=1

(F0,2m(z),G0,2m(z),G̃0,2m(z))|A|2m

+
∑
n=1

∑
m=0

[(Fn,n + 2m)(z),Gn,n+2m)(z),

G̃n,n+2m)(z))|A|2mAnEn + c.c.], (55)

where c.c. means the complex conjugate of its preceding
expression, En = einkcx , n denotes the harmonic index, and
m indicates the asymptotic order. The time evolution of the
amplitude A(t) is given by the Stuart-Landau equation,

dA

dt
= g0A + g1|A|2A + g2|A|4A + . . . . (56)

In Eq. (56), g0 = s is the linear growth rate and g1 is the first
Landau constant also a first correction to the linear growth
rate. The sign of g1 determines whether the nature of the
bifurcation is supercritical (g1 < 0) or subcritical (g1 > 0). If
g1 < 0, then the nonlinearities tend to saturate the instability,
whereas if g1 > 0, then a nontrivial equilibrium solution exists
only if ε < 0, but it is unstable.

Substituting expansions (55) and (56) into (21)–(23) yields
after some algebra the differential equation for any Fn,2m+n,
Gn,2m+n, and G̃n,2m+n, which are solved sequentially begin-
ning from n = 1 and m = 0.

The problem with harmonic index n = 1 and amplitude
order m = 0 is the linear stability problem (35)–(37). The
problem n = 0,m = 1 is the O(A2) correction of the con-
ductive temperature profile due to nonlinear interactions
(Appendix B). The problem n = 2,m = 0 is the first harmonic
of the fundamental mode which manifests at order O(A2).
The problem n = 1,m = 1 is the O(A3) correction to the
fundamental mode. It contains nonhomogeneous terms due
to nonlinear interactions. The application of the Fredholm
alternative allows us to determine the first Landau constant
which appears in the time derivative of w, θ , and θ̃ . It can
be shown that g1 is the sum of contributions of two terms
gI

1 arising from the nonlinear inertial terms and gV
1 arising

from the nonlinear viscous terms. Since at the lowest order
μ = 1 − α�, Eqs. (13) and (14), with α = 1−nc

2 λ2, then

g1 = gI
1 + gV

1 with gV
1 = −αgNN

1 . (57)

B. Numerical method

In the above section, the nonlinear stability problem is
reduced to a sequence of differential equations. As in the linear
problem, they are solved using a spectral collocation method
based on Chebyshev polynomials. The differential equations
are collocated at Gauss-Lobatto points. The integrals involved
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−12
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ξ
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1
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FIG. 5. (Color online) Contribution of the nonlinear inertial
terms (a) and nonlinear viscous terms (b) to the first cubic Landau
constant as a function of the ratio ξ at Pr = 10. Curves (1) and (2)
correspond to NSBC and SFBC, respectively.

in the determination of the first Landau constant are calculated
using Clenshaw and Curtis method.

V. RESULTS AND DISCUSSION

A. Bifurcation to rolls

The first Landau constant g1 as well as the different
contributions gI

1 and gNN
1 are determined for different critical

sets (Rac,kc,ξ,Pr).
In Fig. 5(a), we plot gI

1 as a function of ξ . As expected, gI
1 is

negative, i.e., the bifurcation is supercritical for a Newtonian
fluid. The absolute value of gI

1 decreases with decreasing ξ

and |gI
1 | → 0 when ξ → 0. Note that gI

1 is sensitive to change
in ξ mainly when 0.1 � ξ � 5. For Pr � 1, the analysis of
the contribution to gI

1 arising from the different nonlinear
interactions shows that gI

1 is dominated by the nonlinear
thermal convection terms involving the modification of the
conductive temperature profile for all of the range of ξ

considered. The contribution of the nonlinear inertial term
is practically negligible.

As can be observed, gNN
1 is negative and gV

1 =− αgNN
1 > 0.

Therefore, shear-thinning effects promote a subcritical bifurca-
tion, which is understandable since the viscosity, which damps
convection, is reduced. In Fig. 6 we plot g1 as a function of ξ

for different values of α between 0 and 5 × 10−4. At ξ = 103,
a “perfect heat conductor,” the bifurcation is supercritical,
g1 < 0, for low shear-thinning effects and subcritical, g1 > 0,
for sufficiently high shear-thinning effects. At ξ < 0.8, the
bifurcation is supercritical for the range of α considered.
Using Eqs. (57), the critical degree of shear-thinning αc above
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FIG. 6. (Color online) Cubic Landau constant as a function of ξ

in the case of NSBC with Pr = 10 and different values of α: (1)
α = 0, i.e., Newtonian case; (2) α = 1 × 10−5; (3) α = 5 × 10−5;
(4) α = 10−4; (5) α = 2.5 × 10−4; (6) α = 3.5 × 10−4; and (7) α =
5 × 10−4.

which the bifurcation changes from supercritical to subcritical
is given by

αc = gI
1

gNN
1

. (58)

Figure 7 shows the variation of αc as a function of ξ at
Pr = 10 for NSBC and SFBC. The more ξ is low, the more the
degree of shear thinning α of the fluid must be high to obtain
a subcritical bifurcation. It must be even higher in the case of
SFBC than in NSBC. These results are related to the reduction
of the convection intensity when ξ decreases as shown by
Figs. 2(a) and 2(b) and therefore to a lower modification of the
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FIG. 7. (Color online) For rolls, critical value of the degree of
shear-thinning αc vs the thermal-conductivities ratio ξ at Pr = 10 for
(a) NSBC and (b) SFBC.

viscosity. Note that the largest variation of αc with ξ occurs
mainly for 10−2 � ξ � 10.

B. Bifurcation to squares

For square patterns, considered as the superposition of two
perpendicular sets of rolls, the amplitude equations are [29]

dA1

dt
= s A1 + [

g1A
2
1 + λ1A

2
2

]
A1, (59)

dA2

dt
= s A2 + [

g1A
2
2 + λ1A

2
1

]
A2. (60)

As for g1, the coefficient of cross saturation λ1 is obtained by
invoking the solvability condition and can be written as:

λ1 = λI
1 − αλNN

1 . (61)

The numerical results indicate that λI
1 and λNN

1 are negative
and their variation with ξ is similar to that of gI

1 and
gNN

1 , respectively. The critical value of α above which, the
bifurcation becomes subcritical is given by

αc = gI
1 + λI

1(
gNN

1 + λNN
1

) . (62)

The variation of αc as a function of ξ , at Pr = 10, is depicted
in Fig. 8 for NSBC and SFBC. As in the case of rolls, αc

increases with decreasing ξ .
The influence of Prandtl number on αc is shown in Fig. 9

for two limit values of ξ : 10−3 and 103. At ξ = 103 (“perfect
heat conductor”), the occurrence of subcritical convection is
practically independent of Pr when Pr � 10. The nonlinear in-
ertial terms ([(u · ∇)u term] in Eq. (5) which in dimensionless
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FIG. 8. (Color online) For squares, critical value of the degree of
shear-thinning αc vs the thermal-conductivities ratio ξ at Pr = 10 for
(a) NSBC and (b) SFBC.
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10−2

Pr

αc

subcritical

supercritical (1)
(2)

(4)

(3)

FIG. 9. (Color online) Critical value of the degree of shear-
thinning αc = (| dμ

d�
|
�=0

)
c

as a function of Prandtl number. Case of
square patterns. (1) NSBC with ξ = 103; (2) SFBC with ξ = 103;
(3) NSBC with ξ = 10−3; (4) SFBC with ξ = 10−3.

units are multiplied by Pr−1 have no influence from Pr = 10,
whereas at ξ = 10−3 (very poor heat conductor), the nonlinear
inertial terms play practically no role from Pr ≈ 0.1, this is not
surprising since the intensity of convection is strongly damped
when ξ � 1.

At low Prandtl number, say, Pr < 0.05, αc increases
strongly with decreasing Pr.

C. Pattern selection

In this section, we investigate the pattern selection on a
square lattice. The calculation proceeds in two stages. First,
the possible steady-state solutions of the amplitude equations
are determined. Then their linearized stability is determined
by computing the eigenvalues of the linearized system around
each solution. A solution is stable if all its eigenvalues are
negative.

The system of amplitude equations for a square lattice are
given by Eqs. (59) and (60). The coefficients s, g1, and λ1

in these equations depend on the rheological parameters and
on the reduced Rayleigh number ε = (Ra − Rac)/Rac. The
stationary solutions are obtained by setting fi(A1,A2) = 0,
where fi is the right-hand side of the amplitude equations.
Their stability is determined by the sign of the eigenvalues
χi of the Jacobian matrix J ij = ∂fi

∂Aj
evaluated at the steady

states. In the following, the stability of the stationary solutions
is examined in details.

(i) Conduction state, A1 = A2 = 0. The eigenvalues asso-
ciated to this state are χ1 = χ2 = s. The conduction state is
stable if ε < 0 and undergoes a stationary bifurcation at ε = 0.

(ii) Steady convection with rolls parallel to ex or ey , A1 =√−s/g1, A2 = 0, or A1 = 0, A2 = √−s/g1. The eigenvalues
associated to this state are χ1 = −2s and χ2 = s

g1−λ1

g1
.

(iii) Steady convection with square patterns, A1 = A2 =√−s/(g1 + λ1). The eigenvalues associated to this steady state
are χ1 = −2s and χ2 = 2 s(λ1−g1)

λ1+g1
.

In the supercritical regime, i.e., s > 0 and χ1 < 0. The sign
of χ2 depends on the ratio λ1/g1. It is represented in Fig. 10 as
a function of ξ for different values of α. When |λ1| > |g1|, χ2

is positive and the squares are unstable. According to Ref. [30],
the interaction between the two sets of rolls is too strong
and one of the two sets of rolls nonlinearly damps out the

10−1 100
0.8

1

1.2 (5)

(4)

(1)

ξ

λ1/g1

FIG. 10. (Color online) Ratio of the cross saturation coefficient
λ1 to the saturation coefficient g1 versus the ratio of the thermal
conductivities ξ for different values of the shear-thinning degree α in
the case of NSBC. (1) α = 0; (2) α = 2.5 × 10−5; (3) α = 5.625 ×
10−5; (4) α = 10−4; (5) α = 1.5625 × 10−4.

other. When |λ1| < |g1|, χ2 < 0 and the squares are stable.
The critical value of ξ at which the planform of convection
changes from square-cell solution (ξ < ξc) to two-dimensional
roll solution (ξ > ξc) is given as a function of α in Fig. 11.
In the Newtonian case, i.e., α = 0, ξc = 1. This result is in
agreement with that given by Jenkins and Proctor [15]. With
increasing shear thinning effects, the interaction between the
two sets of rolls of a square-cell increases, reducing by this
way, ξc.

VI. SOLUTIONS AT HIGHER ORDER

Figure 11 is obtained by truncating the series (56) to the
first Landau constant, i.e., at cubic order in A. For a significant
deviation from the critical conditions, terms of higher order
become large and should be taken into account. A weakly
nonlinear expansion was then carried out up to fifth-order
in amplitude. Figure 12 shows the evolution of ξc versus
the reduced Rayleigh number, ε, for different values of the
constant time of the fluid λ. The shear-thinning index is fixed to
n = 0.5. The intensity of convection increases with increasing
ε. The interaction between the two sets of rolls via nonlinear
inertial and nonlinear viscous terms become stronger leading
to a diminution of ξc.

0 0.4 0.8 1.2 1.6 2
0.2

0.4

0.6

0.8

1

104α

ξc

Squares

Rolls

FIG. 11. (Color online) ξc as a function of α for NSBC with Pr =
10 and � = 1. The planform of convection is a square cell when
ξ < ξc and a two-dimensional roll when ξ > ξc.
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FIG. 12. (Color online) ξc as a function of ε for NSBC with
nc = 0.5, Pr = 10, and � = 1. Squares are stable for ξ < ξc, and
rolls are stable for ξ > ξc. (1) λ = 0, (2) λ = 0.01, (3) λ = 0.015,
(4) λ = 0.02.

VII. HEAT TRANSFER, FLOW STRUCTURE,
AND VISCOSITY FIELD

In the present section, information on the heat transfer, the
flow structure, and the viscosity field in rolls and squares are
provided. The influence of shear thinning will be emphasized.

A. Heat transfer

The heat transfer through the horizontal fluid layer is
described by the Nusselt number, Nu, the ratio of the total
heat flux to the purely conductive heat flux in the absence of
fluid flow. It can be calculated either at the lower or upper
plate. At the lower plate, we have

Nu = 1 −
(

∂θ̄

∂z

)
z=0

= 1 −
N∑

p=1

M∑
m=1

[
A2m

p (DG02m)z=0
]

− S A2
1A

2
2(DG04)z=0, (63)

where the overbar denotes the horizontal average over one
wavelength, N = 1 corresponds to rolls and N = 2 to squares,
M = 1 when the series (56) is truncated at the third order and
M = 2 when (56) is truncated at the fifth order, S = 1 for
squares, and S = 0 for rolls. The term DG04 arises from the
interaction between modes with different eigenvectors. The
unperturbed solution, Nu = 1, corresponds to the hydrostatic
solution. The second term of Nu refers to the convective
transfer.

Figure 13 shows for a two-dimensional roll solution
computed at the fifth order the evolution of Nu − 1 as a
function of ε for different values of ξ . The Nusselt number
decreases with decreasing ξ because of the decrease of the
perturbation heat flux at the boundaries. This is illustrated,
for instance, by Fig. 16 in Appendix B, where (dG0,2/dz)
at z = 0,1 decreases with decreasing ξ . When ξ → 0, i.e.,
for poorly conducting plates, we recover the situation of
fixed heat flux, the temperature gradient does not fluctuate,
∂θ/∂z = 0, and Nu → 1. The convection in the fluid layer
will not contribute to the overall heat transfer. For ξ = 1000,
to represent the case of perfectly conducting walls, our results
are in good agreement with the numerical solution of (21) and
(22) obtained using the spectral code of Ref. [31], at least up to
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ξ = 0.1

ξ = 1

ξ = 1000

FIG. 13. (Color online) Nusselt number as a function of the
reduced Rayleigh number ε in the case of NSBC at Pr = 10 and for
three values of ξ . The continuous lines correspond to a Newtonian
fluid and the dashed lines to a shear-thinning fluid with n = 0.5, λ =
0.02; (�) numerical solution of (21) and (22) obtained using the
spectral code of Plaut and Busse [31] in the case of a Newtonian fluid
with perfectly conducting walls.

ε = 0.25. The influence of shear-thinning effects is illustrated
by the dotted curves. The Nusselt number increases with
increasing shear-thinning effects (Pierre and Tien [32], Liang
and Acrivos [33], Ozoe and Churchill [34], Lamsaadi et al.
[35], Aloui et al. [36], Bouteraa et al. [1]). For low values of
ξ , the influence of shear-thinning effects is reduced. Figure 14
shows Nu − 1 as a function of ε for rolls and squares at two
values of ξ : 0.1 and 1. At ξ = 0.1, the Nusselt number is larger
for squares than for rolls, while at ξ = 1, Nu is greater for rolls
than for squares. The differences are small but notable and in
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FIG. 14. (Color online) Nusselt number as a function of the
reduced Rayleigh number ε in the case of NSBC with Pr = 10 and
for two values of ξ . (a) Newtonian fluid and (b) shear-thinning fluid
with n = 0.5 and λ = 0.02. The continuous lines correspond to rolls
and the dashed lines to squares.
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FIG. 15. (Color online) Flow structure and viscosity distribution
over a roll [(a) ξ = 1000] and a square [(b) ξ = 0.1] at ε = 0.2,
with NSBC, α = 0.2αc and Pr = 10. For the square, the horizontal
velocity field is shown at z = 0.8. (c) Vertical velocity profile in the
square cell center for NSBC and SFBC.

agreement with the maximum heat transfer principle: The only
stable solution is the one of maximum heat transport (Malkus
and Veronis [37]).

B. Viscosity field

The viscosity distribution for rolls and square cells, com-
puted at the fifth order in amplitude, is shown in Fig. 15
for ε = 0.2. Two values of ξ are considered. The first one is
ξ = 1000, where rolls are stable, and the second one is ξ = 0.1,
where squares are stable. For the rheological parameters, we
set n and λ such that α = 0.2αc.

1. Rolls: ξ = 1000 with NSBC

The viscosity field and the flow structure are illustrated by
Fig. 15(a). The interior of the roll is practically isoviscous with
μ ≈ 1. The viscosity is minimal at the wall where the shear
rate is maximal. It is weakly reduced at the four corners of the
roll because of the elongational rate γ̇zz = −γ̇xx .

2. Squares: ξ = 0.1 with NSBC

Because of the symmetry of the solution, considered as a
superposition of two equal-strength perpendicular roll sets in
the x and y directions, no fluid passes through the vertical
diagonal planes and the vertical cell boundaries. Since the
amplitude equations on a square lattice involve A in the form
of A2, there are two equiprobable opposite motions (as for
rolls). In the first one, the fluid is downwardly directed in the
cell center and upwardly through the vertical cell boundaries.
In the second one, the fluid is upwardly directed in the cell
center and downwardly through the vertical cell boundaries.
We have chosen to represent the second case. The vertical
velocity profile is shown in Fig. 15(c) for NSBC ans SFBC.
The viscosity field and the flow structure are displayed in
Fig. 15(b). At the wall and around the stagnation points (light
region in the figure), the viscosity is weakly reduced. The
viscosity is minimal at locations (dark region in the figure)
where the shear rates γ̇xz and γ̇yz are maximal.

VIII. CONCLUSION

We have investigated the influence of shear-thinning effects
on the convection in a horizontal layer of a shear-thinning
fluid between two horizontal symmetric plates of finite thermal
conductivity. The rheological behavior of the fluid is described
by the Carreau model. The critical Rayleigh number Rac and
wave number kc for the onset of convection are determined
as a function of the ratio ξ of the thermal conductivity of the
plates to that of the fluid. As the fluid viscosity at zero shear
rate is constant, the values of Rac and kc in NSBC and SFBC
are in very good quantitative agreement with those given in the
literature for a Newtonian fluid. Additional results dealing with
the characteristic time of instability τ0 are provided. It is found
that τ0 increases significantly when ξ < 1, and the growth
of the instability is slower and of longer duration. The nature of
the bifurcation to rolls and squares has been determined using
a three-dimensional weakly nonlinear approach of amplitude
equations. The critical value of the shear-thinning degree αc

above which the bifurcation becomes subcritical is determined
as a function of ξ . It is shown that αc increases with decreasing
ξ due to the reduction of the convection intensity. For the
same reason, the limit value of Prandtl number from which the
nonlinear inertial [(u · u)u] terms of inertia can be neglected
varies from 10 for a “perfect heat conductor” to 0.1 for a very
poor heat conductor. The stability of rolls and squares is then
investigated as a function of ξ and the rheological parameters.
In the Newtonian case, squares are stable when ξ < 1, in
agreement with Ref. [15]. In the case of shear-thinning fluids,
an additional nonlinear coupling between modes is introduced
by the rheological law. This leads to a decrease of the critical
value of ξ below which squares are stable.
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MONDHER BOUTERAA AND CHÉRIF NOUAR PHYSICAL REVIEW E 92, 063017 (2015)

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

G02

z

(4) (3)

(2)

(1)

(a)

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

G02

z

(4)
(3)

(2)

(1)

(b)

FIG. 16. (Color online) Modification of the conductive temperature profile at the critical conditions for Pr = 10 and different values of ξ :
(1) ξ = 10−3; (2) ξ = 10−1; (3) ξ = 100; and (4) ξ = 103 in the case of NSBC (a) and SFBC (b).

By considering the amplitude expansion at the fifth order,
the range of validity of the weakly nonlinear analysis is
extended and the domain of stability of the square pattern
in the (ξ,ε) plane is determined. These results are consistent
with the maximum heat-transfer principle.

In the weakly nonlinear approach, it is assumed implicitly
that the dynamics is dominated by the fundamental mode.
We intend to analyze the stability of the convective patterns,
in the space Rayleigh wave number, as a function of ξ and
shear-thinning effects.
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APPENDIX A: ADJOINT MODE

First, we need to define an inner product between two
vectors f and g by

〈 f ,g〉 =
∫ 1+�

−�

f · gdz. (A1)

The adjoint mode Xad associated to the critical mode X11

verifies the adjoint eigenvalue problem,

L+ · Xad = 0. (A2)

The adjoint operator L+ of operator L is defined by

〈Xad,L · X〉 = 〈L+ · Xad,X〉. (A3)

APPENDIX B: MODIFICATION OF THE CONDUCTIVE
TEMPERATURE PROFILE AT ORDER A2

The correction of the conductive temperature profile in the
fluid at order A2 satisfies the following equation:

(D2 − 2s)G02 = 2[G11(DF11) + F11(DG11)] (B1)

with

DG02 = ±ξG02; at z = 0, 1. (B2)

Figure 16 shows the modification of the conductive tempera-
ture profile at order A2 in NSBC and SFBC. It is noteworthy
that dG02/dz, at z = 0,1, decreases with decreasing ξ and
dG02/dz → 0 for a very poor heat conductor.
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