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Dynamical features of the wake behind a pitching foil
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As an extension of the previous study on the three-dimensional transition of the wake behind a pitching foil
[Deng and Caulfield, Phys. Rev. E 91, 043017 (2015)], this investigation draws a comprehensive map on the
pitching frequency-amplitude phase space. First, by fixing the Reynolds number at Re = 1700 and varying the
pitching frequency and amplitude, we identify three key dynamical features of the wake: first, the transition from
Bénard–von Kármán (BvK) vortex streets to reverse BvK vortex streets, and second, the symmetry breaking of
this reverse BvK wake leading to a deflected wake, and a further transition from two-dimensional (2D) wakes
to three-dimensional (3D) wakes. The transition boundary between the 2D and 3D wakes lies top right of the
wake deflection boundary, implying a correlation between the wake deflection and the 2D to 3D wake transition,
confirming that this transition occurs after the wake deflection. This paper supports the previous extensive
numerical studies under two-dimensional assumption at low Reynolds number, since it is indeed two dimensional
except for the cases at very high pitching frequencies or large amplitudes. Furthermore, by three-dimensional
direct numerical simulations (DNSs), we confirm the previous statement about the physical realizability of the
short wavelength mode at β = 30 (or λz = 0.21) for Re = 1500. By comparing the three-dimensional vortical
structures by DNSs with that from the reconstruction of Floquet modes, we find a good consistency between
them, both exhibiting clear streamwise structures in the wake.
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I. INTRODUCTION

There is growing interest in biologically inspired flows due
to their relevance in the design of micro-air vehicles (MAVs)
and small unmanned underwater vehicles [1–3]. The flapping
wing motion, which is a reasonable simplification of the kine-
matics of natural flyers and swimmers, is attractive due to its
high efficiency and excellent maneuverability. In the last few
years, significant work has gone into our understanding of the
dynamics in the wake of a flapping wing [4–8]. An important
parameter used in the study of flapping wings is the Strouhal
number, defined as the product of the flapping frequency f

and amplitude A divided by the forward moving speed U , i.e.,
SrA = f A/U . It is well established that a thrust is generated
at a sufficient Strouhal number, characterized by a reverse
Bénard–von Kármán (BvK) vortex street in the wake [4,9]. In
that case, if the flow is from left to right, the counterclockwise
vortices move above the horizontal line, while the clockwise
vortices move below. It has been revealed experimentally
that the propulsive efficiency of a flapping foil peaks within
a narrow interval 0.2 < SrA < 0.4 [4,5]. Observed cruise
Strouhal numbers for a wide range of flying and swimming
animals also lie on this interval [3], suggesting that natural
selection has tuned animals for high propulsive efficiency.

By further increasing the Strouhal number, the deflection
of the wake was observed, exhibiting that the clockwise and
counterclockwise trailing edge vortices shed in pairs and
propagate at an angle to the streamwise axis [10]. Interestingly,
the asymmetric wake was also observed downstream of a
purely heaving airfoil [11], as well as a purely pitching airfoil
[12,13]. Since the deflected wake is usually accompanied
with larger thrust and lift generation, it appears that to fully

*Corresponding author: zjudengjian@zju.edu.cn

understand the underlying physics might be vital for the design
and control of MAVs. It has been largely recognized that the
initial choice of deflective direction, up or down, so-called
dual modes, is determined by the initial conditions, i.e., the
starting position and acceleration time [10]. However, it was
also reported that small disturbances could trigger the switch
between the modes in a random fashion [14,15].

Although the flow behind a flapping wing is naturally
three dimensional [16–19], the quasi-two-dimensional (Q2D)
hypothesis has been made by most previous studies [12,13].
It was assumed that for the flapping wing with a larger aspect
ratio, a Q2D view can capture the main elements needed
for an adequate description of the real three-dimensional
flow. By setting up a foil of aspect ratio 4 pitching in a
hydrodynamic tunnel [12], different regimes, characterizing
the dynamics of the flow wake, were identified in the (Sr,AD)
phase space, where the dimensionless flapping amplitude AD

and the Strouhal number Sr are defined as AD = A/D and
Sr = f D/U respectively, where a fixed length scale (D),
the thickness of the foil, was chosen instead of the usual
peak-to-peak amplitude (A) in the definition of Sr so that each
degree of freedom of the flapping motion was represented in
one nondimensional parameter. Two key dynamical features
relevant to wake vortex systems engendered by flapping
motion were evidenced: first, the transition from the well-
known Bénard–von Kármán (BvK) wake to the reversed
vortex street that signals propulsive wakes, and second, the
symmetry breaking of this reverse BvK pattern giving rise to
an asymmetric wake. It was also noted by a comparison of the
zero-drag curve with the transition from a BvK vortex street
to a reversed BvK pattern in the wake that, for increasing
flapping amplitude or frequency, the reversal of the vortex
street happens before the actual drag-thrust transition in almost
all the parameter range studied in [12]. To correlate the wake
dynamics of a flapping foil to the fishlike swimming and
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flapping flight in nature, they drew in the (Sr,AD) phase space
a region defined by SrA = 0.3 ± 0.1 (most likely selected by
natural animals [3]), and showed that this region overlapped
not only with the reverse BvK regime, but also the asymmetric
region, which leads to the conjecture that animals using
flapping-based propulsion must either exploit the creation of
asymmetric wakes as part of their maneuvering techniques or,
when cruising, avoid flapping regimes where the symmetry
breaking of the reverse BvK street will occur.

To further explore the wake dynamics of a flapping foil,
Ref. [20] conducted a Floquet stability analysis to quantify the
inherent three-dimensional instability arising in the wake of a
purely pitching foil. They reported that the transition from a
two-dimensional wake to a three-dimensional wake occurred
after the wake was deflected. Two distinct unstable spanwise-
periodic modes were found, of which the subdominant long
wavelength mode has certain points of similarity with the
so-called mode A for a circular cylinder [21,22], while the
short wavelength mode appears to have a period of the order
of twice that of the base flow. In [20], a typical value of
Sr, Sr = 0.22, was selected and the Reynolds number was
fixed at Re = 1500; with varying pitching amplitude AD

the flow wakes were presented. It was stated that there
were flows with certain flapping amplitudes, such as AD =
2.13–2.53, where the wakes were deflected, yet |μ| < 1 for
all wave numbers, implying that wake deflection was not a
sufficient condition for inherent three-dimensional instability
of a flapping foil. Since only one Sr was studied in [17], it
is not clear whether the sequencing for wake deflection and
three-dimensional transition also applies to other Sr numbers.
As suggested in [20], a systematic investigation in (Sr,AD)
parameter space is needed to promote our understanding of
the relationship between inherent three-dimensional instability
and wake deflection. It is also of interest to investigate by
experiments or direct numerical simulations (DNSs) whether
the short wavelength mode actually occurs.

The rest of the paper is organized as follows. First, we
describe the simulation methodology for the base flow and
the linear Floquet stability analysis strategy for studying the
stability of a two-dimensional time-periodic base flow to
three-dimensional disturbances. Descriptions of the results of
our simulations are then organized into two parts. First, we
discuss the wake dynamics within the (Sr,AD) parametric
space, aiming to draw a comprehensive map for identifying
three transition boundaries: the transition from a BvK vortex
street to a reverse BvK vortex street, the boundary between a
symmetric wake and a deflected wake, and the transition from
2D to 3D wakes. Then, we present fully three-dimensional
simulations at a specific parametric point, at which the previous
study predicted a dominant short wavelength mode by Floquet
analysis [20].

II. PROBLEM FORMULATION AND NUMERICAL
METHODOLOGY

A. Definition of the problem studied

The basic setup is shown in Fig. 1. We consider a
NACA0015 airfoil experiencing simultaneous pitching
motions with a sinusoidal profile. The amplitude of pitching
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FIG. 1. Schematic view of the foil profile, which is symmetric,
pivoted at the leading edge. D denotes the thickness of the foil, which
is 0.15c for a NACA0015 airfoil.

angle is denoted by θ0, and the peak-to-peak amplitude of the
trailing edge is denoted by A. We define the Reynolds number
Re = Uc/ν, where c is the chord length, U is the streamwise
velocity far upstream, and ν is the kinematic viscosity. We
choose Re = 1700 for our simulations, corresponding to
ReD = 255 used in Ref. [12], defined as ReD = UD/ν, where
D is the thickness of the airfoil. The two parameters which
characterize the wake dynamics are the appropriately scaled
amplitude AD , and frequency, or equivalently the Strouhal
number Sr, defined as

AD = A/D and Sr = f D/U. (1)

B. Solver for Navier-Stokes equations

The Navier-Stokes equations are solved using the finite
volume method, assuming incompressibility [23]. The mass
and momentum equations are solved on a moving grid domain
using the arbitrary Lagrangian Eulerian (ALE) formulation.
The region inside the circle of radius 5.0c and centered at the
leading edge of the airfoil has a moving grid, accounting for
the pitching motion, while the region outside has a fixed grid.
The integral form of the governing (conservation) equations
defined in an arbitrary moving volume V bounded by a closed
surface S is

d

dt

∫
V

ρUdV +
∮

S

ds · ρ(U − Ub)U

=
∮

S

ds · (−pI + ρν∇U), (2)

where ρ is the density, U is the fluid velocity, Ub is the
boundary velocity of a cell, p is the pressure, and ν is
the kinematic viscosity. For details of the discretization and
implementation of boundary conditions, one can refer to
Ferziger and Peric [24].

The space discretizations are second-order upwind for the
convection terms and central differences for the Laplacian
terms, respectively. The temporal discretization is first-order
implicit Euler. The pressure-velocity coupling is obtained
using the PISO scheme [24]. The preconditioned conjugate
gradient (PCG) method is used to treat the pressure equation
and the preconditioned biconjugate gradient (PBiCG) method
is used for the velocity equations. We set the boundary
condition on the foil to be moving wall, with no flux normal to
the wall. A constant velocity is imposed on the inlet boundary,
and the pressure is set to a constant value at the outlet boundary.
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For two-dimensional simulations, a rectangle is used as the
outer boundary of our computational domain with the dimen-
sions 20c × 18c. The domain is decomposed into two parts, of
which the inner part is a circular zone with a diameter of 10c.
The cells in the inner part of the domain rotate rigidly with the
pitching of the foil, interfacing with the outer part by a sliding
circle. A mesh of 209 492 cells is used for the calculations.
The same solver has been validated in Ref. [19], in which a
flapping foil with prescribed motions was studied. For three-
dimensional simulations, the 2D mesh is extruded to a three-
dimensional domain. Distinguishing from those studies of the
wings with finite-aspect ratio, here we note that the ends of
the foil lie in the boundary planes, and the boundary planes (in
which the ends of foil lie) are set to be translationally periodic.

C. Floquet stability analysis

To identify the transition boundary from 2D to 3D
flows more efficiently, we conduct a linear Floquet stability
analysis to study the stability of a two-dimensional time-
periodic base flow to three-dimensional disturbances. The
same code for solving the two-dimensional base flow field
[ū(x,y,t),p̄(x,y,t)] is modified to conduct the Floquet stability
analysis. The base flow [ū,p̄] is time periodic with period
T such that with a three-dimensional perturbation, the total
velocity and pressure are written as

u(x,y,z,t) = ū(x,y,t) + u′(x,y,z,t),

p(x,y,z,t) = p̄(x,y,t) + p′(x,y,z,t).
(3)

After substituting the above form of the velocity and pressure
fields into the Navier-Stokes equations and the continuity
equation, we apply a conventional linearization under the
assumption that the perturbations are sufficiently small and
smooth so that all terms which are second order in perturbation
quantities may be ignored. Therefore, we obtain linearized
evolution equations for the perturbation flow field:

∂u′

∂t
= −L(u′) − ∇p′ + 1

Re
∇2u′, ∇ · u′ = 0, (4)

and the linearized convective operator, L(u′), is given by

L(u′) = (ū − uc) · ∇xyu′ + (u′ · ∇xy)ū, (5)

where uc(x,y,t) is the “cell” velocity of the moving mesh,
and ∇xy = (∂/∂x,∂/∂y,0) is the two-dimensional gradient
operator, since the base flow ū = [ū(x,y,t),v̄(x,y,t),0] and
the cell velocity uc = [uc(x,y,t),vc(x,y,t),0] neither have
components in nor depend on the z direction. Homogeneous
Dirichlet boundary conditions are enforced on the perturbation
velocities at the inflow and side boundaries (i.e., u′ = 0),
while a homogeneous Neumann condition (i.e., ∂u′/∂x = 0)
is imposed at the outflow.

Since we are interested in “inherent” three-dimensional
instability of the base flow, we consider spanwise (z direction)
periodic perturbations with spanwise wave number β =
2π/λz, where λz is the spanwise wavelength of the disturbance,
and so we consider normal mode perturbations of the form[

u′
p′

]
(x,y,z,t) =

[
û
p̂

]
(x,y,β,t)e−iβz, (6)

where we make the dependence of the (in general complex)
eigenfunction [û,p̂] on the wave number β explicit, and
taking the real part is understood. The governing equations for
each normal mode, which are naturally decoupled due to the
linearization, are similar to Eq. (4), except for the replacement
of the derivatives in the z direction with ∂/∂z = −iβ:

∂û

∂t
+ (ū−uc) · ∇xyû + û · ∇xyū=−∂p̂

∂x
+ 1

Re

(∇2
xyû− β2û

)
,

∂v̂

∂t
+(ū − uc) · ∇xy v̂ + û · ∇xy v̄ =−∂p̂

∂y
+ 1

Re

(∇2
xy v̂ − β2v̂

)
,

∂ŵ

∂t
+ (ū−uc) · ∇xyŵ= iβp̂ + 1

Re

(∇2
xyŵ − β2ŵ

)
,

∂û

∂x
+ ∂v̂

∂y
= iβŵ. (7)

Applying the incompressibility constraint essentially to
eliminate pressure, the partial differential equations (7)
governing the evolution of a normal mode can be written
symbolically as

∂û
∂t

= A(x,y,t)û, (8)

where the previously calculated base flow ū and cell velocity uc
are embedded in the linear differential (T -periodic) operator
A. Once the partial differential equations are discretized in
space, the velocity field can be represented as a vector whose
elements consist of the velocity components at each grid point.
Thus Eq. (8) is reduced to a system of ODEs of the form

dû
dt

= A(t)û with û(t0) = specified. (9)

The discrete velocity vector û contains the values of all three
velocity components at the m grid points. Therefore, the length
of the vector, n, equals 3m. The matrix operator A(t) is simply
the discretized version of A, and is an n × n T -periodic matrix.

Equation (9) has n linearly independent solutions given a set
of n linearly independent initial conditions. Floquet analysis
uses an n × n “fundamental solution matrix,” 	(t), where the n

columns of the matrix are the n linearly independent solutions
of the system. From integration of the system (9) over one
period, we obtain

	(t + T ) = 	(t)C, (10)

where C is the constant n × n “monodromy” matrix, which is
independent of the initial conditions [25]. The eigensolutions
of the system (9) can be determined straightforwardly from
the eigenvalues of C.

Floquet’s theorem [26] implies that the T -periodic operator
A(t) can be split into its periodic and exponentially varying
parts. Since the fundamental solution operator A(t) is periodic,
integrating over a single period T , the monodromy matrix C in
Eq. (10) must capture the nonperiodic evolution, which can be
expressed formally as C = exp(BT ). The eigenvalues μn of C
are known as the Floquet multipliers of the problem, governing
the linear instability (if |μn| > 1 for some n) or decay of the
solution over each period. We note that the eigenvalues γn of
B are known as the Floquet exponents, and are related to the
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Floquet multipliers by

μn = exp(γnT ), (11)

and so instability occurs if the Re(γn) > 0 for some n.
Since we are principally interested in instability onset, we

do not solve for the complete set of eigenvalues μn, but rather
utilize a numerical method identical to that of Refs. [27,28].
We numerically solve the initial value problem of Eqs. (7)
over a several mbfp base flow period T , renormalizing the
perturbation fields at the end of each base flow period, until the
magnitude of the Floquet multiplier reaches a constant value,
suggesting that it is real, or fluctuates periodically around
a constant value, suggesting that it also has an imaginary
component. We estimate the magnitude of the largest Floquet
multiplier by measuring the growth or decay of perturbation
energy in the system. Here, we define a perturbation energy
integrated over the entire domain volume V as

E(t) = 1

2

∫
V

√
û2 + v̂2 + ŵ2dV. (12)

Then, the absolute value of the eigenvalue with “maximum”
magnitude can be approximated as

|μmax| ≈ E(t + T )

E(t)
. (13)

This method is equivalent to utilizing a power method [29]
to compute the largest magnitude eigenvalues of C, and
mbfp must be chosen to be sufficiently large to ensure the
quality of the approximation. (More technical details about
Floquet stability analysis and its application to hydrodynamic
instability are presented in, for example, [27,28,30–32].)

III. RESULTS

The transition from well-known BvK wake to reverse
BvK wake and the deflection of the reverse BvK wake of
a pitching foil have been revealed experimentally, with the
transition boundaries identified in a (Sr,AD) phase space
[12,13]. Another translational symmetry was found to break
after the wake is deflected [20]. However, the study in Ref. [20]
was constrained to a fixed Sr number, while it might be
interesting to draw a comprehensive map on the (Sr,AD) phase
space. The primary purpose of the current study is to repeat the
experiments [12] by numerics, though with a different profile
of the foil. The current study mainly contributes to the research
community by adding the third transition boundary of 2D to
3D flow to the (Sr,AD) phase space.

A. Parametric study on the (Sr,AD) space

At a fixed Reynolds number Re = 1700, we perform a
parametric study with varying Strouhal number and nondi-
mensional flapping amplitude to identify different dynamical
features in the (Sr,AD) phase space. The phase map is shown
in Fig. 2, with different symbols representing different types of
wake. It is observed that the BvK-type wake lies primarily in
the lower left region of the space but extends to higher Strouhal
numbers for the lowest amplitude studied. The boundary
between the BvK regime and the reverse BvK regime (blue
line in Fig. 2) is defined in the (Sr,AD) space when the

FIG. 2. (Color online) AD vs Sr map for Re = 1700. Computa-
tional points are labeled as � : BvK wake; � : aligned vortices
(2S wake); +: reverse BvK wake; � : deflected reverse BvK street
resulting in asymmetric wake; ◦ : the points with neutral stability.
Blue (dotted) line: transition between BvK and reverse BvK. Green
(dash-dot) line: transition between reverse BvK and the asymmetric
regime. Red (dash-dot-dot) line: transition between 2D and 3D wakes.
The shaded area corresponds to the SrA = 0.3 ± 0.1 interval.

central point of vortex, identified by the maximum value of
the vorticity, lies on the center line. This boundary tends to an
asymptotic value of AD ≈ 0.5 for Sr > 0.4 so that a threshold
amplitude value exists for the generation of a reverse BvK
vortex street. We note that a different threshold amplitude
value of AD ≈ 0.6 was reported in Ref. [12]. We conjecture
that this disagreement is due to the fact that we consider a
foil with different profile from that employed in Ref. [12],
therefore they exhibit different hydrodynamic performance.

The reverse BvK regime is bounded on the other side
by the transition (dash-dot line in Fig. 2) to asymmetric
regime or the regime with deflected wakes. As mentioned
in Sec. I, observed cruise Strouhal numbers for a wide
range of flying and swimming animals lie within a narrow
interval 0.2 < SrA < 0.4, where SrA = SrAD . We represent
the previous interval with a region bounded by hyperbolas in
the (Sr,AD) phase space, as shown with a shaded area in Fig. 2.
It is interesting to find that the reverse BvK to deflected wake
transition lies in the region of 0.2 < SrA < 0.4, indicating that
this interval overlaps not only with the reverse BvK regime,
but also with the deflected wake regime. As conjectured in
Ref. [12] animals using flapping-based propulsion must either
exploit the creation of asymmetric wakes as part of their
maneuvering techniques or, when cruising, avoid falling into
the regimes where the symmetry breaking of the reverse BvK
street occurs.

For a typical Sr number, Sr = 0.2, we show snapshots of
spanwise vorticity with varying AD in Fig. 3, as well as time
averaged streamwise velocity fields in Fig. 4. In Fig. 3, we
observe three qualitatively different scenarios that the wake of
a pitching foil undergoes: classic BvK vortex streets for AD =
0.25 and AD = 0.50, reverse BvK vortex streets for AD = 1.0
and AD = 1.5, and deflected vortex streets for AD = 2.5. The

063013-4



DYNAMICAL FEATURES OF THE WAKE BEHIND A . . . PHYSICAL REVIEW E 92, 063013 (2015)

FIG. 3. (Color online) Instantaneous vorticity contours for the
two-dimensional flow past a flapping foil at Re = 1700 and Sr = 0.2,
and from top to bottom, AD = 0.25, AD = 0.50, AD = 0.75, AD =
1.0, AD = 1.5, AD = 2.5. Thirteen evenly spaced levels between −3
and 3 are plotted, with blue (dark grey) and red (light grey) denoting
negative values and positive values respectively.

first two rows (AD = 0.25 and AD = 0.50) are typical cases
showing drag wake with features resembling the BvK vortex
street behind a circular cylinder, but with shedding frequency
locked in to the pitching frequency. The vortices are shed
continuously from each side of the foil, forming two rows of
vortices in its wake, staying on the same side of the center line
of the wake. For the wake far downstream, the energy of the
vortices is consumed by viscosity, and the pattern dislikes that
of the near wake, which is clearly shown for AD = 0.25 and
AD = 0.50 in Fig. 3. Accordingly, the time averaged flows for
these cases exhibit apparent velocity deficits behind the foil, as
shown in Fig. 4. Increasing the flapping amplitude gives rise
to a new pattern of the wake. For AD = 0.75, the vortices of
opposite signs align on the center line of the wake, forming a
so-called 2S-type wake. Accordingly, the time averaged flow
field for the 2S type shows that the mean streamwise velocity
behind the foil has been recovered to the value of upstream
velocity. For AD = 1.0 and AD = 1.5, the vortices shed on one
side of the foil propagate in the wake on the other side of the

FIG. 4. (Color online) Mean flow field contoured by the time-
averaged streamwise velocity, normalized by the velocity far up-
stream, U . From top to bottom, AD = 0.25, AD = 0.50, AD = 0.75,
AD = 1.0, AD = 1.5, AD = 2.5. Blue (dark grey) and red (light grey)
denote negative values and positive values respectively.

center line characterizing the reserve BvK vortex street, which
constitutes an accelerating flow, or a jet, behind the foil as
represented by the time averaged flow fields as shown in Fig. 4.

As the amplitude is increased further, the reverse BvK
propulsive vortex street departs slightly from the center line;
as shown in Fig. 3 for AD = 2.5, an apparent wake deflection
occurs with a strong dipolar structure propagating obliquely
to one side of the center line in each flapping cycle, while a
much weaker single vortex is shed on the other side. For the
corresponding time averaged flow field, the flow jet shifts from
the center line, and a velocity deficit appears on the other side
of the center line. Here, we note that the dipoles are deflected
to the lower side the center line. By observing the initial stage
of the vortical evolution, we support the statement about the
mechanism of the side selection of deflection that it depends on
the initial conditions [10]: the first dipoles entraining the flow
behind the foil deflect the mean flow and attract the subsequent
dipoles to follow its path.
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FIG. 5. (Color online) Variation of Floquet multiplier magnitude
|μ| with wave number β. The line |μ| = 1 corresponds to neutral
stability of the Floquet modes.

Figure 2 also shows the transition boundary between 2D
and 3D flow wake, which is the curve of neutral stability
to infinitesimal three-dimensional perturbations. Here, the
neutral stability means that the peak value of the magnitudes
of the Floquet multipliers over the range of β equals to 1.
The curve of neutral stability lies to the top right of the
boundary from the reverse BvK street to the deflected wake,
implying that the 2D-3D transition occurs after the wake
deflection. It also suggests, at least in the parametric range
studied here, that wake deflection is a necessary condition
for inherent three-dimensional instability of a pitching foil.
To show the sensitivity of the three-dimensional instability
to the parameters in (Sr,AD) space, we plot the variation
with spanwise wave number β of the magnitude of the
largest Floquet multiplier |μmax| for varying AD in Fig. 5.
For AD < 2.41, the largest Floquet multiplier over the entire
range of β is less than 1, indicating that the flow is stable to all
infinitesimal three-dimensional perturbations. For AD > 2.41,
there is a range of wave numbers for which |μ| > 1, indicating
that the two-dimensional base flow is unstable to some linear
three-dimensional disturbances. The wave number with the
maximum growth rate is β = 30 and it corresponds to a
nondimensional spanwise wavelength of λz = 0.21, nondi-
mensionalized by the chord length c. A second local maximum
can be observed at β = 6 (λz = 1.05). We find that at the
critical flapping amplitude AD = 2.41, the short wavelength
mode is just becoming marginal, but the long wavelength
mode is below the neutral line. As reported in Ref. [20],
this suggests that the long wavelength mode is subdominant,
and thus we do not expect it to be physically observed. To
understand the flow structures of these two modes, one can
refer to Ref. [20], which presents the perturbation streamwise

FIG. 6. Contours of a mean drag coefficient CD . The back line
corresponds to CD = 0 where the drag-thrust transition occurs. The
gray line is the transition from BvK to reverse BvK (dash-dot line in
Fig. 2). The dashed line corresponds to SrA = 0.225.

vorticity flow fields within a two-dimensional plane, as well
as the reconstruction of three-dimensional topologies.

By integrating the pressure and viscous stress along the
foil, we obtain the drag force FD directly. In Fig. 6, we plot the
contours of drag coefficient CD in the (Sr,AD) space, where
CD is calculated as

CD = FD

1
2ρU 2c

. (14)

The zero-drag curve marks the transition between drag and
propulsive regimes (heavy back line in Fig. 6). We compare
the zero-drag curve with the transition from a BvK vortex
street to a reverse BvK wake (gray line in Fig. 6), showing
that the zero-drag curve is located to the upper right of the
transition boundary of BvK to reverse BvK pattern. This shift
indicates that the reversal of the vortex street occurs actually
before the drag-thrust transition in almost all the parameter
range studies here, except for the high Sr numbers. As we can
see, for Sr = 0.5 the two curves approach each other. It implies
that the thrust produced by the flapping motion is not enough
to overcome all the drag composites, because it is apparent
that the drag induced by viscous stress exits even when the foil
stays still. We also note that the drag-thrust transition shown
in Fig. 6 compares well with the SrA = 0.225 curve (dashed
line) that falls into the parametric scope of animal propulsion
(0.2 < SrA < 0.4, as introduced in Sec. I).

B. Three-dimensional DNS results

Floquet analysis has elucidated two unstable modes in the
wake of a pitching foil [20]. The subdominant long wavelength
mode has certain points of similarity with the so-called mode
A behind a circular cylinder, while the short wavelength mode
appears to have a period of the order of twice that of the base
flow. There is also evidence presented that the long wavelength
mode would not be observed physically because its growth
rate is always less than the short wavelength mode. In order to
verify these findings, and investigate the transition towards the
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saturated state, a three-dimensional direct numerical study is
performed for the parameters where the short wavelength mode
is dominant and the long wavelength mode is also unstable.
The Floquet analysis showed these criteria occur for Re =
1500, Sr = 0.22, and AD = 2.8. It is noted that we choose this
parameter point for direct comparison to Ref. [20], though it
has left the parametric scope studied in Sec. III A.

Fully three-dimensional simulations are undertaken us-
ing the code introduced in Sec. II. To explore the wake
evolution from two-dimensional to periodic flow to a fully
three-dimensional saturated wake flow, the calculation places
transitional periodic conditions on the two tip ending planes.
A spanwise domain size of 0.42c is chosen, allowing two
wavelengths for the short wavelength mode to fit inside the
domain. Sixty spanwise slices are used for the computation.
While this is somewhat minimal, full three-dimensional
simulations are still computationally expensive, while it should
still provide reasonable resolution for the saturated mode.

Figure 7 shows streamwise and spanwise vorticity iso-
surfaces for the DNS study once the flow has reached a
quasiasymptotic state. It is apparent that the streamwise
vortices originate in the region between the forming spanwise
vortices in the near wake. First, the streamwise vortices
arise on the edge of the newly forming spanwise vortex.
As the pitching of the trailing edge, a spanwise vortex with
opposite sign emerges below the preceding one, forming a
dipolar structure, with the strong strain between the dipole
intensifying the streamwise vortices. Then, as the dipoles
propagate obliquely downstream, the streamwise vortices are
stretched out and transferred to the emerging dipole of the next
cycle. We observe that the streamwise vorticity swaps sign
approximately every full shedding period. For comparison,
we also plot a three-dimensional representation of the short
wavelength mode in Fig. 8, in which the streamwise vortex
structures resemble the isosurfaces shown in Fig. 7. There
are two wavelengths shown in Fig. 7, indicating a selected
spanwise wavelength of 0.21c, consistent with the preferred
wavelength of the Floquet mode, as shown in Fig. 8.

IV. CONCLUSIONS

We present a parametric study of the wake dynamics
behind a pitching foil. By calculating on various flapping
frequencies (Sr) and amplitudes (AD), we identify three
key dynamical features relevant to wake vortex systems
engendered by purely pitching motion: first, the transition
from the well-known Bénard–von Kármán (BvK) wake to
the reverse BvK vortex street that signals the generation of
thrust; second, the symmetry breaking of this reverse BvK
wake gives rise to a deflected wake, which is asymmetric about
the center line, and a further transition from two-dimensional
(2D) wakes to three-dimensional (3D) wakes occurring after
the wake deflection. It suggests that the wake deflection is a
necessary condition for inherent three-dimensional instability
of a pitching foil at least within the parameters studied in
this paper. By using Floquet stability analysis to quantify the
inherent three-dimensional instability arising in the wake, we
find two apparently distinct unstable spanwise-periodic modes.
The subdominant long wavelength mode which would not
be observed physically has certain points of similarity with

FIG. 7. (Color online) Three-dimensional DNS results for the
isosurfaces of streamwise vorticity field (ωx = ±6) for the short
wavelength mode at Re = 1500, AD = 2.8, and β = 30.0. Five
instants during a periodic cycle are shown. Blue (dark gray) and
red (light gray) colors denote negative values and positive values
respectively of ±0.3 of the instantaneous maximum magnitude.
Isosurfaces of spanwise vorticity (ωz = ±6) are also shown.

the so-called mode A for a circular cylinder, while the short
wavelength mode appears to have a period of the order of
twice that of the base flow. Besides, from the contours of drag
coefficient, it is clear that the actual drag-thrust transition is
located to the upper right of the transition boundary of BvK
to a reverse BvK pattern, indicating that there exists a region
where a reverse BvK pattern of positive drag value. Therefore,
we state that a reverse BvK is not a sufficient condition for the
thrust generation of a pitching foil. This finding is consistent
with previous experiments.

Furthermore, the mechanisms of the transition from 2D
wakes to 3D wakes are also investigated by three-dimensional
direct numerical simulations (DNSs); we confirm the previous
statement about the physical realizability of the dominant short
wavelength mode. It is apparently shown that the streamwise
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FIG. 8. (Color online) Isosurfaces of the streamwise vorticity
field for the short wavelength mode for a simulation with Re = 1500,
AD = 2.8, and β = 30.0. Blue (dark gray) and red (light gray) colors
denote negative values and positive values respectively of ±0.3 of
the instantaneous maximum magnitude. Isosurfaces of the spanwise
vorticity of the base flow are also shown in translucent light gray for
positive (+6) and negative (−6) values to indicate the positions of
the deflected BvK vortices. (Replotted from [20] with two spanwise
repetitions presented.)

vortices originate in the region between the forming spanwise
vortices in the near wake, and swap signs approximately every
full shedding period. By comparing the three-dimensional
vortical structures by DNSs with that from the reconstruction
of Floquet modes, we find a good agreement between them,
and both exhibit clear streamwise structures evolving in the
wake. Thus we conjecture that the dominance of the linear
instability is responsible for such a three-dimensional flow.
Ideally, it would be advantageous to undertake simulations
with larger spanwise computational domain to investigate
whether the long wavelength mode will remain in the wake,
though it is not surprising given the relative growth rate of the
short wavelength mode and the long wavelength mode. And,
this requires very long integration time and is thus expensive
computationally. We are planning to investigate in detail the
three-dimensional flow experimentally in the near future.

We note that a recent publication [33] provides a new
view about the three-dimensional instabilities in wake flows
in terms of centrifugal instabilities. For a circular cylinder
performing high-amplitude rotatory oscillation, they declared
that the possibility of three-dimensionalization in the wake
could be determined by the Rayleigh discriminant, which
reduces the complex procedure of identifying the transition
boundary. It would be interesting to investigate whether the
centrifugal instability can explain the current problem for a
pitching foil, as we can observe indeed curved streamlines due
to the dipoles within the deflected wake.
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FIG. 9. Comparisons between our results and that by previous
studies of Floquet multipliers |μ| as function of wave number β. The
first case is at A∗ = 0.3 and Re = 350, with the solid line representing
the previous results in Ref. [34], and the present results are denoted
by �. The second case is at A∗ = 0.4 and Re = 340, with the dashed
line representing the previous results in Ref. [35], and the present
results are denoted by •.

APPENDIX: VALIDATION

The basic algorithms about Floquet analysis employed
through this study have been used previously and shown to
give accurate results [27,28]. However, most previous imple-
mentations were based on the spectral-element method with
fixed grid systems. The Floquet stability analysis has seldom
been employed for the study with moving grid, therefore an
appropriate validation is necessary. Here, we undertake a Flo-
quet stability analysis of the transition from the 2D to 3D wake
of a transversely oscillating cylinder. A rectangular domain

FIG. 10. (Color online) Instantaneous streamwise perturbation
vorticity for the flow past an transversely oscillating cylinder. Blue
(dark grey) and red (light grey) denote negative values and positive
values respectively. The parameters are A∗ = 0.4 and Re = 340,
corresponding to our second validation case. (a) β = 2.0 for mode A,
(b) β = 7.0 for mode B.
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is used. The circular cylinder is placed inside the domain,
with its center 16D away from the inlet, 25D away from the
outlet, 16D away from the top boundary, and 16D away from
the bottom boundary (D denotes the cylinder diameter). The
boundary conditions are imposed as that of pitching foil. The
smallest grid spacing near the cylinder is 0.01D, and the grid
is stretched out away from the cylinder surface. A time step
�t = 0.001 is used for the validation cases.

There are three parameters characterizing the flow behind
an oscillating circular cylinder: Re = UD/ν, A∗ = A/D, and
the nondimensional oscillation frequency f ∗ = f D/U , where
U is the free-stream velocity, D is the cylinder diameter, ν is
the kinematic viscosity, A is the amplitude of oscillation, and f

is the frequency of oscillation. We run two cases for Re = 350
with A∗ = 0.3 and f ∗ = 0.2, and for Re = 340 with A∗ = 0.4
and f ∗ = 0.2, following respectively Refs. [34,35]. We present
the comparisons in Fig. 9. Plotted is the magnitude of the
Floquet multiplier for the fastest growing mode over a range of
wave numbers. The current results are in good agreement with

previous studies [34,35], with two instability modes (modes
A and B) identified. We note that the authors of Ref. [35] use√|μ| instead of |μ|, so if we square root the Floquet multipliers
accordingly, our results compare well with theirs.

To demonstrate how the perturbations of mode A and
mode B respectively distribute in the wake, we choose two
representative cases, as shown in Fig. 10. It shows that the
forming primary vortex at the rear of the cylinder contains
both positive and negative regions of perturbation vorticity, and
a high concentration of perturbation in the high-strain region
between vortices. Further downstream, the perturbation is most
concentrated in the primary vortex cores. This qualitatively
accords well with that reported in Ref. [35], and is also similar
to the mode A in the wake of a fixed cylinder. Figure 10(b)
shows the perturbation-field streamwise vorticity for mode B at
A∗ = 0.4 and Re = 340 and β = 7.0. A significant difference
between mode A and mode B is identified. For mode B, the
perturbation-field streamwise vorticity repeats every half base
period rather than every period as occurs for mode A.
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