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Between giant oscillations and uniform distribution of droplets: The role of varying
lumen of channels in microfluidic networks
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The simplest microfluidic network (a loop) comprises two parallel channels with a common inlet and a common
outlet. Recent studies that assumed a constant cross section of the channels along their length have shown that
the sequence of droplets entering the left (L) or right (R) arm of the loop can present either a uniform distribution
of choices (e.g., RLRLRL. . . ) or long sequences of repeated choices (RRR. . . LLL), with all the intermediate
permutations being dynamically equivalent and virtually equally probable to be observed. We use experiments and
computer simulations to show that even small variation of the cross section along channels completely shifts the
dynamics either into the strong preference for highly grouped patterns (RRR. . . LLL) that generate system-size
oscillations in flow or just the opposite—to patterns that distribute the droplets homogeneously between the
arms of the loop. We also show the importance of noise in the process of self-organization of the spatiotemporal
patterns of droplets. Our results provide guidelines for rational design of systems that reproducibly produce either
grouped or homogeneous sequences of droplets flowing in microfluidic networks.
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I. INTRODUCTION

Here we demonstrate that variation of the cross section
of microchannels along their length in microfluidic networks
may determine the type of spatiotemporal patterns of droplets
traveling through them. The simplest network is a microfluidic
loop with two channels having a common inlet and a common
outlet. We show that if these channels widen downstream,
the droplets are distributed homogeneously over the loop.
In contrast, narrowing of the lumen of the channels toward
the exit of the loop produces long trains of drops flowing in
alternation into each of the parallel ducts. This observation
provides important insight into the simple one-dimensional
models [1] that so far have been used to model the dynamics
of flow of droplets in microfluidic networks. It may also
be used to construct simple microfluidic systems that either
“homogenize” or “chop” the sequences of drops. Finally, the
observation may have biological connotations to the flow of
blood in vascular networks.

Sequences of droplets flowing through—even simple—
microfluidic networks often produce remarkably complex
and beautiful patterns [2–5]. This complexity may be rooted
in the interactions at many different length scales. Local
interactions include collisions between neighboring droplets
at the T junction [6–8] and capillary forces caused by a
specific geometry of its walls [9]. However, the most important
mechanism that gives rise to the complex dynamics is the
long-range interaction associated with the changes in the
pressure field that the droplets both introduce (by increasing
the hydraulic resistance of the channel they occupy) and
respond to (by choosing branches with higher inflow of the
continuous liquid). The general dynamics of the flow of
droplets can be analyzed with simple models of motion of point
charges of resistance along the network of one-dimensional
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wires, as introduced by Schindler and Ajdari [1] and later used
by multiple researchers in computer simulations [2–5,10–13]
and analytical studies based both directly on the discrete model
[3,10,14] and on its continuous generalizations [15,16].

Although simplified, the 1D model captures important
aspects of collective interactions between the droplets, caused
by the modification of the hydraulic resistance of the channels
in which they flow. At diverging junctions droplets of size
comparable or larger than the cross section of the channel can
either split [17–20]—a scenario that we do not consider here—
or enter the channel presenting momentarily the highest volu-
metric rate of inflow [6]. Since the rate of flow through a branch
of a network is a function of resistance, the inflow of a droplet
into a particular microchannel influences the trajectories of
subsequent drops. The dynamics of flow of drops in networks
has been studied in detail in a spectrum of microfluidic
systems, ranging from the simplest, two-channel loops [2,3,10]
to a long series of identical loops [5] to a successively
bifurcating cascade of loops [15,21] to a large square grid
of short channels [22]. Even the simplest nontrivial network,
i.e., the simple loop exhibits highly complicated dynamics
and complex dependencies on parameters [2–4,10–15,23]
such as flow rates, intervals between droplets (or, equivalently,
frequency of feeding droplets into the system), the additional
hydraulic resistance incorporated by droplets, and length of
arms of the loop. None of these papers has considered the
effects of varying the cross section of the arms along their
length on the dynamics of the system. This factor, however,
is of practical relevance, both because of the finite precision
of microfabrication that introduces undesired variation and of
the simplicity of the deliberate introduction of such a variation
in prototyping techniques. As we show below, variation of the
lumen along a fluidic branch in a network can have a critical
influence on the global flow pattern.

Any particular droplet entering the loop (see Fig. 1) may
flow into either the left (L) channel or the right (R) channel.
The sequence of these “choices” is a good descriptor of the
dynamics of the system. This sequence can be conveniently
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FIG. 1. (Color online) (a) A schematic rendering of a symmetric
microfluidic loop. The thin gray lines mark the equidistant points in
the parallel channels. [(b)–(e)] Exemplary momentary configurations
of droplets in the loop for three different patterns: (b) perfectly
homogeneous (chopped) sequence; (c) an intermediately chopped,
random configuration; and [(d)–(e)] perfectly queued sequence at
two instants.

encoded as a binary string, composed of these two (L and
R) characters. Depending on the parameters, the additional
hydraulic resistance carried by the droplets, the volumetric
flow rate, and the frequency of dripping, this string can either
be periodic or not. If it is periodic, then there are many possible
patterns repeated infinitely [2]. Which of the many different
stable states is selected, depends on the history of the system
and on the initial conditions from which the flow started. If we
define N = NL + NR as the number of droplets in one period
of the dynamics of the system, with NL and NR coding for the
numbers of drops traveling through the left or right arm, then
the number of distinct spatiotemporal patterns is given by

� = (NL + NR − 1)!

NL! NR!
(1)

provided NL and NR are relatively prime numbers [2]. If they
are not, then the simple combinatorial equation overestimates
the number of patterns because it does not exclude redundant
cyclic shifts. In that case the correct evaluation of � can
be performed using Pólya enumeration, as it was shown by
Glawdel et al. [3].

The theoretical model does not estimate the probability
of falling into any single specific pattern when starting from
random initial conditions. From computer simulations [2] we
note that although some patterns are easier to obtain than
other ones, the probabilities do not differ significantly. In
different words, the basins of attraction of different patterns

in the space of all possible initial conditions seem to be of
comparable volume. The spectrum of all possible patterns
includes interesting limiting cases, i.e., the ones that are
maximally “homogenized” [Fig. 1(b)], and ones that are
maximally “queued” [Figs. 1(d) and 1(e)]. Neither theory
nor simulations suggest that these limiting patterns may be
privileged over the vast majority of intermediate cases [as in
Fig. 1(c)]. The probability of any of the limiting sequences to
occur in a randomly started experiment should be of the order
of 1/�—a very small number for large N (for example, for
N = 30, 1/� < 10−6).

Thus, on the basis of the existing theory, one would not
expect any of the patterns (including the chopped or queued
pattern) to prevail in the experiments. The goal of this article is
to explain why this is not necessarily true in a real experiment
and how a small modification of the system may enforce
or suppress the tendency to either homogenize or queue the
distribution of droplets in networks.

II. EXPERIMENTAL MOTIVATION

Several experimental reports confirm the predictions of the
simplest model [1] in systems with relatively short parallel
channels [2,3,10,14,15,23]. The existence (i.e., the appearance
and stability) of all predicted patterns for NL = NR = 4
(� = 10) and for smaller NL, NR was demonstrated in
Ref. [2]. Adjacent bands of regular (periodic) and irregular
dynamics as well as stepwise dependence of the period on the
frequency of dripping were reported in Refs. [2,3,10,14,23].
All these results agreed with simulations and analysis based
on Schindler’s model [1]. In all the experiments it was
observed that after some number of repetitions the pattern may
spontaneously switch into a different one; such a behavior was
attributed to fluctuations of experimental conditions, i.e., to
the experimental noise.

The fundamental assumptions of the ideal model [1] should
be even better fulfilled in systems comprising long channels—
i.e., channels that can accommodate hundreds of droplets—
because such systems are closer to the approximation of single
lane ducts. Also the role of noise, which should be proportional
to the effects associated with the flow of a single droplet, should
decrease in relation to the overall dissipation in a large system.
From this, and from the fact that the number � of possible
trajectories explodes in a factorial fashion with N , one can
expect that in a large system the chance of observing any
particular pattern, as well as the chance of coming back to a
pattern once abandoned (due to noises or disturbances) should
be vanishingly small.

In order to verify these predictions, we performed an
experiment using the same technology as in the recent
experiment that confirmed the ideal model [2]; the only
difference was that the two channels forming the loop were
much longer (about 180 mm, more than 400 times longer than
they were wide). These channels could comprise hundreds of
droplets at a time. Quite surprisingly, our predictions proved
completely wrong: Instead of observing an erratic creeping of
the system over the whole space of allowed configurations, the
system always settled into the “maximally queued” pattern, as
in Figs. 1(d) and 1(e). This behavior was neither dependent on
the frequency of feeding the droplets into the loop nor on the
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droplet size: As long as droplets were able to pass the junction
without breaking up, the long queues always appeared. We also
observed that this behavior did not depend on the method of
generation of droplets: We reproduced the same results with
(i) a well-tuned droplet on demand (DOD) system [24] that
produced a sequence of equally spaced monodisperse droplets,
(ii) with an improperly vented DOD valves producing droplets
with a considerable variation in their size, and even (iii) without
an active control of the generation of drops, when both their
volume and spacing between the drops changed in response to
the changing load of the system. Although initially (if starting
from the empty channels) the droplets tended to form patterns
similar to these from Fig. 1(b) and Fig. 1(c) (i.e., “chopped”),
the long trains of drops always appeared within minutes and
persisted, no matter how long the experiment ran.

Puzzled by this result we considered the following ques-
tions: (i) Can the observed dynamics be explained within the
ideal model? If not, (ii) then what kind of nonlinearities or
other corrections should be taken into account to find the
possible reason in a minimalistic yet plausible way? If yes,
(iii) then why there was not a single report of this problem in
the literature related to a wide range of simulated microfluidic
networks?

The last question proved most helpful in searching the
literature for aspects that have not been considered. Most
reports on modeling flow of drops in microfluidic networks
focus on systems with channels of varied lengths yet always
of constant cross section. This seems a natural choice, first,
for the clarity of analysis and, second, because it is typical
and experimentally easiest to prepare chips with (nominally)
constant height and width of the channels. If the cross section
of the channels were truly constant, then it would be necessary
to look for the reason of queuing in subtle and little known
effects, such as, e.g., distance-dependent hydrodynamic inter-
actions between droplets [25]. From auxiliary measurements
we found that this effect was negligible under the conditions
of the experiment described here. Moreover, we observed the
queuing dynamics regardless of interdroplet separation even
though the cooperative effects, if any, should be negligible
for large intervals between droplets. We thus focused further
analysis on the effects of a variable cross section on the
dynamics of flow of drops through networks. An extra reason
to follow this path was the fact that both the process of milling
long channels and bonding chips in a hot press are prone
to systematic deviations of the depth of channels—due to
thermal expansion of spindle in milling and due to nonuniform
temperature and pressure field in a press.

III. THEORY AND SIMULATIONS

In the case of flow of simple, Newtonian fluid, the variation
of cross section of the channel along its length cannot produce
any variation in time. Even though the local pressure gradient
depends on the local geometry, any given spot along the
channel is always filled with the same liquid. Yet, when
the fluid is complex and nonhomogeneous, such as e.g., a
suspension of droplets, the local pressure gradients will depend
on the content of the channel at any given point. In consequence
also the total hydrodynamic resistance of the channel may
depend on the position of droplets along its length and change

in time. Even for a simple liquid the hydrodynamic resistance
(R) is very sensitive to changes in the transverse dimensions
(say, d) of the channel. According to the Hagen-Poiseuille law,
reduction of the diameter of the duct from d to γ d (γ < 1)
changes the resistance by a factor γ −4. In the case of an
immiscible droplet, this scaling is much more complicated:
Not only does the droplets’ cross-sectional area decrease by
a factor γ 2, but also its length increases by a factor γ −2.
Further, its linear speed of flow must—by conservation of
mass—increase approximately γ −2 times. In a very rough
approximation, the elongated droplet of high viscosity may
be described as a slug of Hagen-Poiseuille flow of the length
�l, with effective viscosity ηeff being the difference between
the viscosity of the discrete and the continuous liquids,
ηeff = ηd − ηc. Within this crude approximation, the resistance
introduced into the channel by a droplet is proportional
to �l/d4, and the change associated with reduction of the
diameter of the pipe scales as γ −6. For example, a mere 10%
decrease of the diameter of the pipe results in a 23% increase in
the length of the drop and in almost doubling of the resistance
the droplet adds to the resistance of the channel. The above
estimation is rough: The only important insights that we draw
from it are that (i) the total resistance to flow in a microfluidic
channel increases when droplets move into a narrower segment
and that (ii) this effect may be significant. Instead of dealing
with unknown dependence of these additional resistances on a
cross section of channels, flow rates, and sizes of droplets, we
simply assume that the resistance of a droplet is given by rup in
the upstream segments and rdown in the downstream segment
(see Fig. 2). As the resistances of individual droplets may
differ (due to emulated noise in simulations or polydispersity
of droplets in experiments), we will instead use the ratio of

FIG. 2. (Color online) Upper panel: Change of the shape and
additional resistance of a droplet due to the varying cross section
of channels. Lower panel: Modifications of the asymmetric loop
to be tested with respect to queuing. Thin lines correspond to
the segments of modified cross section—narrower than the other
channels. Configurations indicated by solid frames induced queuing,
dashed frames—chopping (suppression of queues).
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these resistances:

α = rdown

rup
, (2)

having in mind that α may be equal to rnarrow/rwide > 1 in loops
narrowing downstream or rwide/rnarrow < 1 in the opposite
case.

Networks comprising segments of slightly different cross
sections may be simulated without adding new features to
the Schindler’s model; it is enough to divide channels into
subsections, each having its own geometry and its own
resistance multiplier for droplets, and simulate the divided
channels as being connected in series. The notion of slightly
different cross sections requires clarification: We use this term
to emphasize the fact (or assumption) that the dynamics of
the system is dominated by collective effects of additional
resistance carried by droplets and not by local effects of passing
through the junctions between channels of different cross
section. The presence (and motion) of droplets in such a section
involves additional pressure drop due to capillary effects [26].
This transient pressure drop could be taken into account for
reliable analysis and simulation, but for simplicity—since we
only want to demonstrate that the queuing phenomenon may
be related to a nonconstant cross section of channels—we will
neglect it.

Therefore, using the simple model and neglecting capillary
effects on channel contractions, we tested several simple
modifications of a classic asymmetric loop. We introduced
narrowed sections of channels equal to either half or the
whole length of the single parallel section and we varied their
location. The bottom panel of Fig. 2 shows the configurations
that we tested. The segments marked with the thin line are
narrower than those drawn with the wide solid line.

We observed that these systems varied strongly in their
tendency to form long queues: Some of the geometries exhib-
ited queuing (. . . LLLLRRRR . . . ), some seemed to suppress
queues (i.e., to prefer frequent switching between L and R),
and the behavior of others depended strongly on the initial
conditions. Specifically, geometries B and C were neutral in
the sense, in that they exhibited the full range of combinatorial
patterns, as in the unmodified case A. Geometries D, K, and M
tended to suppress queuing—even if the simulation had been
started from a “perfect queue.” The cases F and G were difficult
to classify; for some specific sets of starting configurations the
preferred patterns were “queuelike” yet the length of queues
were far from maximum. Finally, L, N, and, most of all, E
formed queues of the maximum possible length (i.e. longer
than half of the length of the channels).

A. The onset of oscillations

In the following analysis we focus on systems with
narrowed sections positioned at the downstream half of the
parallel channels (as in Fig. 2, case E). For simplicity, we
consider a symmetric loop with both parallel sections of
equal length and having identical segments of reduced lumen.
Examples of the process described here are shown in Fig. 3—
the three snapshots of experiment (details of the experiment are
provided in Sec. IV) and corresponding computer simulation
illustrate the evolution of patterns at the beginning (just after

first droplets reach the end of the loop that was initially
filled solely by the continuous liquid), in an intermediate
state (as the queues start grow), and with fully developed
queues.

When the first droplet enters the (initially empty) loop, it
may flow into any of the arms. In real systems the choice
is predetermined by inevitable deviations from the perfect
symmetry of channels and T junctions, and in simulations
the decision must result from the details of algorithm and
from the finite precision arithmetics. This droplet increases
the hydraulic resistance of the chosen channel by rwide. The
subsequent droplet will then choose the opposite branch, and,
once it flows in, it increases the resistance of the second
channel by the same amount, balancing the rates of flow
through each of the arms. If the symmetric loop did not
comprise the narrowed sections, this simple mechanism would
lead to a “chopped” state with alternating L/R trajectories
of the droplets. This uniform configuration of droplets can
be sustained ad infinitum: As a drop leaves a branch and
decreases its resistance, the next droplet will flow to the
same arm of the loop. Interestingly, the introduction of a
narrowing at the downstream termini of the arms destroys
the stability of the “chopped” state. When a droplet passes
into the narrowed section, the drops’ contribution to the
resistance of the channel increases from rwide to rnarrow, so
the excess of flowing resistance in this branch is amplified
by a factor α = rnarrow/rwide [see Eq. (2)]. This increase must
be compensated by new droplets entering the opposite branch
and since they introduce smaller resistive contributions, one
droplet does not balance the inequality of resistances of the
two branches. The combination of the change in the resistive
charge of the droplets and the delay between a decision taken
at the inlet and its amplification at the narrowing, provides
for the instability of the chopped states: The perturbation will
be larger and larger with each cycle, finally leading to the
oscillation of the maximum possible amplitude.

Figure 4(a) shows an example of development of queues in
a simulation with α = 2.44. In Fig. 4(b) we graphed a zoom
on the dynamics of the system in the fully developed queued
state. The top panels of these plots show a discrete function
taking on two distinct values: +1 if a droplet flows to the right
arm (R) and −1 if to the left (L).

Integrating this signal over time leads to the function C(t)
plotted in the second panel of Fig. 4(a). This function may
be interpreted as the difference between the numbers CR(t)
and CL(t) of droplets that flew to the right and left channels,
respectively (from the beginning of the simulation). Due to
the symmetry of the loop, both CL(t) and CR(t) increase with
the same average speed and C(t) = CR(t) − CL(t) oscillates
around zero. However, the amplitude of changes of C(t)
provides a measure of queuing. In a perfectly chopped
state C(t) ∈ (−1,1) because droplets enter the channels in
alternation. In a queued state C(t) departs far from zero
because long trains of droplets follow the same trajectory. We
normalized the rates of flow through each of the branches by
the total volumetric flow rate—hence the rates of flow through
each of the two branches oscillate around the value of 0.5
[third panel of Fig. 4(a) and second panel of Fig. 4(b)]. At
bottom panels we also plot the numbers of droplets residing
in the right or left arm of the loop at any given instant of time,
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FIG. 3. (Color online) Top panel [(a)–(c)]: Photographs of the experiment with evolving pattern of droplets in the loop with narrowing
channels: (a) at the beginning, (b) intermediate, and (c) stationary states. Bottom panel [(d)–(f)]: Snapshots of corresponding simulations.

and the corresponding numbers of droplets in the initial (not
narrowed) sections.

Since the simulation starts with empty channels, at the
beginning droplets enter both channels in an alternating
manner; both trains of droplets move downstream their arms at
almost the same speed and reach the narrow segments almost
in the same time and then, similarly, they reach the end of the
loop. In the absence of any noise, this behavior could continue
infinitely; locking the system in this metastable state is possible
because the loop is symmetric. The onset of queuing requires
a small perturbation or a finite level of noise. We will discuss
the role of noise in detail in the next section. Interestingly,
the growth of queues is not monotonic. Usually two or more
shorter chains grow independently to finally combine into the
queue of the terminal (maximum) length.

At first sight the fully established queued state in the
system comprising the narrowed sections [Fig. 3(c), Fig. 3(f),
Fig. 4(b), and Fig. 4(c)] resembles the queued pattern from
Figs. 1(d) and 1(e) in a symmetric loop without any con-
strictions. There are, however, important differences. First, in

the system without constrictions, the queued pattern is solely
one of multiple degenerated stationary states and it thus can
be easily destroyed by a random perturbation. In the system
with the narrowed sections the queued state is the only stable
stationary state and is robust against noise. Second, in the
constant cross-section system both the number of droplets and
the rates of flow are—to within a single droplet and its effect
of the flow rate—constant in each branch. In the narrowing
loop both of these quantities change significantly within each
cycle. The magnitude of these changes increases with the
degree of modification: The narrower the cross section of
the modified segments, the larger these deviations. Moreover,
exactly these cyclic variations contribute to the stability of
the queued state: The large momentary differences of the
flow rates determine the trajectories of drops entering the
loop. Random perturbations may change the trajectories of
the droplets only at the ends of the queues—as only at the
moment of switching the flow rates in both arms are of
similar value. Third, in the unmodified system, the droplets
formed mutually complementary patterns in the two arms:
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FIG. 4. (Color online) Onset of oscillations in the symmetric loop comprising sections of narrowed channels from a computer simulation.
(a) Time dependence of key variables in the simulation started from an empty system. The “inlet choice” signal (top panel) is assigned the
value +1 if a droplet flows to the right channel and −1 if to the left. The second panel plots the difference C(t) = CR(t) − CL(t) between the
number CR(t) of droplets that had chosen the right channel and CL(t) for the left one. The third inset shows the flow rates through the arms
(solid blue for the left channel and dashed red for the right one) normalized by the total volumetric flow through the loop. The fourth chart
plots the momentary numbers of droplets in the whole loop (thick black solid line), in the right arm (thick solid red line), and in the left arm
(thick dashed blue line). The thin lines show the number of drops in the initial (not narrowed) sections of these channels. (b) Magnified part
of the same plots, comprising single, fully established cycle of oscillation, with characteristic instants of time marked by roman numerals.
(c) Positions of droplet queues at these instants: (I) Due to a long series of droplets previously loaded into the left channel, its resistance
becomes higher than of the right channel; new droplets start to enter the right channel; (II) the front of the queue in the left channel reaches
the end of the loop; (III) the front of the queue in the right channel approaches the narrowed (and momentarily empty) section; the flow rate
in the right channel achieves maximum value, while rate of flow in the left channel is minimum; (IV) symmetric to (I); (V) completion of the
cycle—the system comes back to the configuration (I).

The positions of droplets in one channel matched positions
of the gaps in the second (see the thin lines in Fig. 1). In the
modified system this rule no longer holds—the lengths of the
queues are substantially longer than half the length of each
channel [see Fig. 3(c), Fig. 3(f), and Fig. 4(c)] and are not
complementary. For example, in configuration II in Fig. 4(c)
the queues from the two arms flow into the outlet at the same
time, possibly leading to mutual collisions of droplets leaving
each of the arms. This lack of complementarity causes both
the total number of droplets in the loop and the pressure drop
at constant flow rate conditions (or the flow rate in constant
pressure) to vary within each cycle.

B. Suppressing oscillations

If, on the other hand, narrowed sections are positioned at
the upstream half of the parallel channels (as in Fig. 2, cases
D, K, and M), the oscillations not only do not occur but also
will be suppressed (if the queued state is artificially created by
the initial configuration). It means that the same loop, traveled
by the same sequence of droplets (i.e., with the same flow
rate, volumes, and separation between droplets) will behave
completely differently after switching the direction of flow.
In particular, reversing the direction of flow in the system
shown in Fig. 3 will lead to patterns with a low number of
the same choices (i.e., LL or RR) in order. Mathematically,

the reversal of the direction of flow means changing α [see
Eq. (2)] from rnarrow/rwide to rwide/rnarrow. If α > 1 corresponds
to amplifying fluctuations of “flowing resistance” and growing
oscillations to highest available amplitude, then reversal of the
flow means that the oscillations become damped. Nevertheless,
it does not simply mean the reversal of the direction of
evolution nor the substitution of the target of the evolution
from perfect queuing (. . . LLLLRRRR . . . ) to perfect chop-
ping (. . . LRLRLRLR. . . ). For α > 1 the evolution leads to
uniquely defined state of the perfect queues (perhaps with
some minor deviations only at the very ends of the queues,
caused by high levels of noise). In contrast, reversing the flow
(α < 1) does not lead to a single, unique state but to a family
of microstates that distribute droplets between two arms more
or less homogeneously. These microstates can easily mutate
into each other because (in contrary to the queues for α > 1)
the system is always almost balanced—the difference of flow
rates between arms is as small as the effect of single droplets,
so a random permutation may be located in any spot along
the sequence. Thus in the case of α < 1 the evolution seems
to escape from queue rather than run towards any particular,
highly chopped pattern.

Although the confirmation of this finding in computer
simulation is straightforward, as the simulation may be started
from any initial configuration of droplets, experimental tests
require more caution. Typical experiment starts from empty
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loop and then continue to more or less uniform distribution
of droplets. Therefore, in order to prove that queuing is
suppressed, the queue must be created artificially. We did it by
freezing the flow in one of the arms (by placing a piece of dry
ice above the chip), so droplets could not enter the blocked
channel. After removing the ice and melting the frozen oil, the
channel was again open for flow, but the artificially created
queue was not stable and evolved to a chopped state after
several cycles [see the details in Sec. IV and in particular
those in Fig. 7(b)].

C. Effects of noise and of geometry on formation of queues

As discussed above, the onset of queuing usually requires
a random perturbation that may change the “ideal” pattern of
L and R choices. In a small experimental systems it is likely
that the experimental noise is too small to induce a change of
the stationary pattern of trajectories. In a large system, with a
large number of droplets, their time of residence in the parallel
arms is long enough for small perturbations to accumulate.
In simulations, we added artificial noise by randomizing the
intervals between subsequent droplets entering the loop and
by randomizing the volume and charge of resistance of the
droplets. Intervals between the droplets and their resistances
were drawn from a symmetric triangular distribution centered
at the required mean value with ranges given as a specified
percentage of the mean. For example, in the simulations plotted
in Fig. 3(d)–Fig. 3(f) and Fig. 4, the emulated noise was ±10%
of droplet resistance and ±10% of the interdroplet interval. The
standard deviations of the corresponding distributions were

√
6

times smaller, i.e., 4.1% of a mean value.
We used simulations to test the minimum amplitude of

noise needed for initiating the process of queuing. In order
to quantify how quickly the queues grow, we constructed
a quantity reflecting the extent to which the state of the
system resembled a “perfect queue” comprising a maximum
number of droplets in a row. An exact estimation of this
maximum length is not straightforward, but it is of the order of

the maximum number of droplets in the whole loop. This
number is also difficult to calculate exactly yet, using the
“mean-field approximation” for an unmodified loop, we obtain
the following estimation:

N̄L = LLf̄L

v̄L

, N̄R = LRf̄R

v̄R

, (3)

where N̄i is the average number of droplets, Li is the
length, f̄i is the average frequency of entering droplets, and
v̄i is the average velocity in the i-th channel (i = L or
R). For a symmetric, unmodified loop (LL = LR = L) the
corresponding values are equal:

v̄L = v̄R = Q

2A
, f̄L = f̄R = f

2
, (4)

N̄tot = N̄L + N̄R = 2ALf

Q
, (5)

where Q is the total volumetric flow rate, f is the frequency
of feeding droplets into the loop, and A is the cross-sectional
area of the channels. Here we assume that A = wh is constant
along channels while the increase of the hydraulic resistance
introduced by the droplets results from modification of the
aspect ratio w/h of the width (w) and height (h) of the channel.
This way the resistance of droplets is changed, but their length,
separation and velocity are not.

The “perfect queue” should contain at least N̄tot/2 droplets
flowing one after another into the right channel and the same
number of drops then flowing into the left arm. We monitor the
interval required for the onset of the oscillations as the interval
from the start of simulation until the first occurrence of N̄tot/2
subsequent droplets following through the same channel.

Figure 5 shows the time required for the onset of oscillations
as the function of α [defined in Eq. (2)]. We run the simulations
keeping constant flow rate and varying the frequency of
feeding droplets into the loop, the volume of the droplets,
and the amplitude of noise (same for the intervals between the
drops and the resistance they carried). We note that the time

FIG. 5. (Color online) Time of approach to a fully developed oscillation, as a function of the factor of increase of the hydrodynamic
resistance of droplets entering the narrowed section of the channel. The three graphs differ in the noise level: (a) 3%, (b) 10%, and (c) 30%
of the mean interval between drops and of the mean resistance of the drops. Simulations were performed for varied frequency (Hz) of feeding
droplets into the loop and for varied resistance equivalent length (mm) of the droplets (see the legend). The dashed line is a power function
proportional to (α − 1)β , with β = 0.8. All simulations were performed for a symmetric loop with arms of length 20 mm, divided into two
equal segments of different cross section. The linear velocity of feeding droplets (in the common inlet channel) was set to 3.1 mm/s. The
resistance equivalent lengths are given with respect to the initial (wide) segments of the loop.
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required for the onset of oscillations depends very weakly
on the resistance of droplets and on the frequency of drops
entering the loop. It is possible that this dependence, visible
especially at the low noise level on the left graph in Fig. 5,
results mainly from the hidden influence of these quantities on
the overall fluctuations in the flux of hydrodynamic resistance
through the system. This is because we define the amplitude of
the noise in relation to the resistance of droplets or frequency
of feeding the droplets; increasing these parameters increases
also the amplitude of fluctuations. These effects play a crucial
role when the level of noise is small and α is too small to induce
permutation of a pattern without a random perturbation.

D. Effects of noise and of geometry on the quality of queues

Apart from the onset of oscillations, the “quality” of queues
is also of interest. In order to test the stability of the queued
states we monitored to what extent the state of the system
resembled the perfect queue. We note that the sole number of
identical subsequent decisions overlooks states that differ only
very slightly from a “perfect queue.” For example, for N̄tot/2 =
12 the string LLLLLLLRLLLLLLLL will be rejected despite
more than 12 L choices almost in a row. In order to take
into account these imperfections we introduced the following
criteria:

(i) The amplitude of oscillation, defined as the difference
between maximum and minimum of value of C(t) within a
cycle. To avoid ambiguities in identification of the cycle and
calculating its length, we use its rough estimate N̄tot.

(ii) The number of changes from L to R or vice versa
during the cycle. Perfect queuing should yield 1 or 2 changes
depending on whether the actual length of the cycle is longer
or shorter than the estimate N̄tot. In contrast, perfectly chopped
state (in a symmetric loop) produces maximum possible value,
which is equal to the length of the cycle.

Figure 6 shows how these two measures of queuing depend
on the factor α, defined in Eq. (2). Each point in these
graphs represents a data point from a simulation, started
from random initial conditions and recorded after a long
time (10 000 droplets). In these simulations N̄tot = 116. We
varied the level of noise (0, 10, or 90%) and α, with all the
other parameters held constant. α < 1 corresponds to loops
comprising downstream halves of the two parallel channels
wider (less resistant) than the upper ones, and α > 1 codes for
systems with narrowed sections. At moderate level of noise
(10% or 4.1% in terms of the standard deviation) both criteria
indicate perfect queuing already for values of α as close to
1 as just α > 1.02. The slight increase of the amplitude of
oscillations is due to the hidden dependence of both Ntot and
the actual length of the queues on the cross-sectional area
of modified sections (changing together with α). For the large
level of noise (90%) and α > 1, there are visible imperfections
in the queues, increasing for α ≈ 1. In stark contrast, when the
downstream sections provide for a lesser resistance introduced
by the droplets than the upstream sections of the channels (i.e.,
for α < 1), queuing is suppressed, regardless of the level of
noise. Interestingly, at a high level of noise the number of
changes per cycle is close to half its length, just as if the
sequence of L/R choices was random. On the other hand,
the amplitude of oscillation measured for real random binary

FIG. 6. (Color online) The amplitude of oscillations and the
number of changes of the trajectories of droplets within one cycle as a
function of α. Data shown for long, randomly initialized simulations
of the symmetric loop containing about 120 droplets. The amplitude
of oscillations assumes high values in states with long queues, while
the number of changes of the trajectories assumes small values in the
queued state. From the graphs it is clear that when the downstream
halves of the channels induce higher hydrodynamic resistance of
droplets (α > 1) queues form, while the reduction of the resistance
of introduced by the droplets in the downstream sections (α < 1)
suppress queues. This behavior is stabilized by a moderate level of
noise.

strings (resulting from the Bernoulli process, as repeated coin
flipping), is higher than that recorded in the simulation. We
attribute this fact to the mechanism of suppression of long
queues (see Sec. III B).

It is also very interesting to note that in the absence of
noise (0%) all the above regularities become less evident. For
example, for α > 1 queuing may be overcome by regular
memorized patterns [2] (notice the characteristic structure
of bands in the dependence on α). Locking the system in a
“perfectly chopped” state is still possible, although it requires
very special initial conditions, as starting from the empty
loop. Interestingly, suppression of long queues in widening
channels (α < 1) is still efficient in the absence of noise: Even
if simulation starts from perfect queues, they disappear. This
is because the imbalance needed for changing a pattern comes
collectively from all droplets if starting from a queue and from
one droplet only (plus fluctuations or noise) if starting from
the chopped pattern (as well as from the empty loop).

IV. EXPERIMENTAL RESULTS

Our predictions have been fully confirmed in experiments.
We manufactured four different microfluidic chips, each
comprising two kinds of channels: “narrow” and “wide.”
Despite these names, used for consistency, the channels, milled
in a slab of extruded polycarbonate (Makrolon) and sealed

063008-8



BETWEEN GIANT OSCILLATIONS AND UNIFORM . . . PHYSICAL REVIEW E 92, 063008 (2015)

FIG. 7. (Color online) Snapshots of the experimental systems after long time of evolution at constant conditions. Direction of flow is
marked with arrows. Black lines demarcate segments of channels with different cross sections, labeled as “wide” (width × height = 370 ×
400 μm) and “narrow” (370 × 340 μm). (a) Queuing state of the long, symmetric loop. The “wide” channels (in fact “deep”) are 230 mm
long, and the “narrow” (shallow) are 250 mm long. (b) The same chip with reversed flow direction. (c) Queuing state in the symmetric loop of
moderate length (66 mm per channel, equally divided between shallowed and deepened sections). This is the same chip as in Fig. 3(a)–Fig. 3(c),
but there with larger separation between droplets. (d) Dynamics of queuing state in the chip (a). (e) Two identical, short loops in series; the first
one is flown from shallow to deep, and the second is the opposite. Each arm is 18 mm long. (f) Two identical loops in series, both flown from
“wide” to “narrow,” and each arm is 55 mm long.

thermally [27], are of the same width of 370 μm and differ
only in height: 340 μm for the “narrow” channels and 400 μm
for the “wide,” with smooth, 1-mm-long, transitions between
them. As working liquids we used hexadecane with 0.5%
(w/w) of Span80 surfactant and water dyed with 8% (w/w)
red ink (Encre Rouge/Waterman, Paris). For these liquids and
channel geometries we estimate the corresponding value of α

for droplets of the volume of 60 nl to be α ≈ 2 for the linear
velocity of droplets close to 5 mm/s, as used in the presented
experiments. The smooth (1-mm-long) transitions between
the wide and narrow segments of the channels produce very
small changes in the curvature of the droplet and the capillary
pressure (of the order of tens of Pa). The chips comprised one or

two symmetric loops and one or two T junctions for generating
droplets. Using two generators placed on opposite ends of the
loop enabled us to invert the flow direction so droplets could
enter the loop starting from shallowed segments as well as
from the deepened ones. Droplets could be created passively
by introducing constant rates of flow of the two liquids, yet in
order to increase the range of frequencies and sizes of droplets
we used a DOD technique based on pressurized containers
equipped with valves and long capillaries between the valves
and the chip [24].

The chip presented in Figs. 7(a)–7(b) (microphotographs)
and in the graph in Fig. 7(d) comprises a long loop with arms
that are 48 cm long, each including 25 cm of deepened segment
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and 23 cm shallowed. As long as droplet separation was large
enough to avoid mutual collisions at the inlet bifurcation [7],
this chip always behaved in agreement with our predictions:
Droplets flowing towards shallower segments formed perfect
queues, as in Fig. 7(a), whereas in the opposite direction the
patterns were quasirandom, avoiding long queues—a typical
example is shown in Fig. 7(b). Regardless of the initial state,
the time of formation of the perfect queues was not longer than
10 cycles.

Figure 7(d) shows cyclic changes in the flow rates and in
occupation of channels in the system from Fig. 7(a), with
a fully developed queue. These experimental data can be
qualitatively compared with the plots in Fig. 4.

Figure 7(c) presents queuing in a symmetric loop [the same
as in Figs. 3(a)–3(c)] with arms of length of 66 mm (33 mm
shallowed and 33 deepened). In Figs. 3(a)–3(c) the center–to–
center separation of droplets at the inlet was set to 1.47 mm—as
closely as possible to the limit of the collision regime [7], and
in Fig. 7(c) it is 10 mm. Supporting video [28] shows the
evolution of this system from the empty loop up to the fully
developed queues.

Figures 7(e) and 7(f) exemplify the use of the understanding
of which geometries promote or suppress queuing in construct-
ing microfluidic systems. Each of the systems comprises two
identical loops connected in series. In Fig. 7(f) both loops are
traversed from the deepened to the shallowed segments, so the
queues are visible in both of the loops. In Fig. 7(e) only the
second loop is oriented for queuing; the first loop is oriented
so the flow proceeds from the shallowed segments towards
the deeper ones, so queuing is suppressed. Unlike the long and
moderate loops from Figs. 7(a)–7(c), these from Fig. 7(f) could
present also patterns other than perfect queuing; it is clear that
noise is required to induce transitions in loops of such a small
size. Notice that the effective margin of noise in the second
loop is elevated by varying intervals between droplets at the
output of the first loop.

V. CONCLUSIONS

We believe that our work may shed new light on the dy-
namics of the flow of droplets through microfluidic networks.
We demonstrated that a theoretical description [2–5,10,11]
built on the ideal model [1] does not describe the effects
caused by varying the cross section of a channel and the
noise that is always present in real experiments. Adding a
small intentional modification of channels may be used for
turning a chaotic system into a device that reproducibly either
distributes droplets uniformly between the parallel channels
or forms long queues of droplets. The experiments confirmed
our numerical predictions. We found that droplets flowing
through a microfluidic loop comprising two channels that

narrow towards the outlet group themselves spontaneously
into queues of maximum possible length. This behavior is
independent on any parameters of flow, provided the droplets
neither break at the bifurcation nor collide there. Although
the mechanism of formation of queues is related to noise,
once established, the queues cannot be destroyed even by
large amplitude of random perturbations in the intervals or
volumes of droplets. We also demonstrated in simulation and
experiments that after reversing the flow direction (i.e., when
droplets flow from narrow channels into widened sections),
the queues are suppressed—resulting in uniform distribution
of droplets in the loop.

Our results can be used for further studies on the dynamics
of flow in microfluidic networks. They can be also directly
applied for randomizing flow of droplets through branches
(with channels that widen in the downstream direction), for
alternate directioning of long queues to one of two outputs
(with narrowing channels), and for simple, low-cost generation
of periodically changing difference of flow between branches.
The latter may be used, for example, for scanning the processes
of splitting or collisions of droplets in a T junction as a function
of the difference of flow rates.

The results described here may be also helpful in under-
standing the flow of blood in branched systems of vascular
capillaries. Interestingly, the smallest capillaries are equipped
with a mechanism of regulated constrictions at the initial
section of the capillary: The regulation of lumen is provided
by smooth muscles called precapillary sphincters or possibly
by other mechanisms called precapillary resistance [29]. Could
these constrictions be the evolutionarily developed mechanism
of suppressing oscillations and promoting uniform distribution
of red blood cells? In fact, giant oscillations were recently
found in artificial microvascular networks [30] and earlier in
theoretical models of blood capillary networks [31], although
they were never observed in real microvascular networks.

Oscillations similar to our finding were recently discovered
in a stratified flow of two miscible liquids in a narrowing loop
[32]. It suggests a possible existence of a common mechanism
of oscillations caused by flow of complex fluids through
parallel, narrowing ducts.
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