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Cross diffusion, whereby a flux of a given species entrains the diffusive transport of another species, can trigger
buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifications. Starting from a simple
three-component case, we introduce a theoretical framework to classify cross-diffusion-induced hydrodynamic
phenomena in two-layer stratifications under the action of the gravitational field. A cross-diffusion-convection
(CDC) model is derived by coupling the fickian diffusion formalism to Stokes equations. In order to isolate
the effect of cross-diffusion in the convective destabilization of a double-layer system, we impose a starting
concentration jump of one species in the bottom layer while the other one is homogeneously distributed over
the spatial domain. This initial configuration avoids the concurrence of classic Rayleigh-Taylor or differential-
diffusion convective instabilities, and it also allows us to activate selectively the cross-diffusion feedback by
which the heterogeneously distributed species influences the diffusive transport of the other species. We identify
two types of hydrodynamic modes [the negative cross-diffusion-driven convection (NCC) and the positive
cross-diffusion-driven convection (PCC)], corresponding to the sign of this operational cross-diffusion term. By
studying the space-time density profiles along the gravitational axis we obtain analytical conditions for the onset
of convection in terms of two important parameters only: the operational cross-diffusivity and the buoyancy
ratio, giving the relative contribution of the two species to the global density. The general classification of the
NCC and PCC scenarios in such parameter space is supported by numerical simulations of the fully nonlinear
CDC problem. The resulting convective patterns compare favorably with recent experimental results found in
microemulsion systems.
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I. INTRODUCTION

Diffusion plays a primary role in self-organization. When
coupled to linear or nonlinear reactions, diffusive transport
yields an impressive variety of patterns, ranging from fractal
trees driven by diffusion-limited-aggregation (DLA) [1] to
stationary (Turing patterns [2,3], Liesengang bands [4])
and traveling structures (chemical fronts [5,6] and waves
[6–9]). First theorized in a seminal work by Alan Turing [2],
the reaction-diffusion (RD) paradigm has been successfully
used to describe emergent phenomena in biological and
ecological systems [10], and thoroughly investigated by means
of relatively simple model systems such as the well-known
Belousov-Zhabotinsky (BZ) [11,12] and the chlorite-iodide-
malonic acid (CIMA) reactions [13].

In the gravitational field, diffusion can also trigger con-
vective patterns in initially stable stratifications, where a less
dense solution is layered on top of a denser miscible solution
[14–16]. Here, differential diffusion induces the interfacial
destabilization of a double-layer system either when the
component of lower layer diffuses faster than the upper one,
or vice versa. The former mechanism, describing a double-
diffusive (DD) instability, is well-known in oceanography,
where salty warmer water overlies cold fresh water and salt
fingering can occur because of the lower diffusion rate of
the salt with respect to the heat [17]. By contrast, when the
faster component is set on top, convective instability develops
in time because the upper species, by diffusing downwards
faster than the lower solute moves upwards, creates a density
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depletion area above the starting interface and an accumulation
below it. The resulting convective structures, symmetrically
positioned above and below the interface, are typical example
of a double-layer-convection (DLC) instability [15,16,18,19].

Currently, one active frontier in pattern formation re-
search concerns the study of novel structures, so-called
chemohydrodynamic patterns [20], arising from the inter-
play among diffusion, chemical kinetics, and convection.
Regarding double-layer configurations in vertically oriented
reactors, it has been shown that reactive processes can severely
modify the dynamics of the hydrodynamic patterns, switching
from a symmetric fingering growth of nonreactive cases to
nonsymmetric fingering if a rather simple A + B → C reaction
is at play [21–24]. Vertically growing [25] and laterally
traveling fingers [26] have been found in systems involving
more complex autocatalytic or oscillatory kinetics localized at
the interface between the two-layered reactants pools. In this
context the competition between thermal- and solutal-related
changes of density produced in situ by the reactive process
must be taken into account [27,28] to explain composite
structures which can be obtained with many active systems
[29–37]. The antagonism among different contributions to
convective flows induced by a reaction is also responsible for
complex dynamics such as spatiotemporal oscillations [38,39],
segmentation scenarios [40], and transition to chemical chaos
[41–43] in autocatalytic fronts and waves propagating in
vertically oriented reactors.

To date, most of the studies on chemohydrodynamic
instabilities have focused on systems where the influence of
cross-diffusive motions, i.e., fluxes induced in a given species
by the presence of concentration gradients in the another
ones [44], can be neglected. Much less conventional is the

1539-3755/2015/92(6)/063007(9) 063007-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.063007


M. A. BUDRONI PHYSICAL REVIEW E 92, 063007 (2015)

study of chemophysical processes in which cross-diffusion
terms feature a dominating role. The dramatic effect of this
contribution has been proved in nonreactive and reactive
spatially distributed systems, both theoretically [45–52] and
experimentally [49].

Nonetheless, cross-diffusion can also trigger an alternative
path to buoyancy-driven convection in initially stable strati-
fications. The first example of such a mechanism was shown
in a ternary system (polyvinylpyrrolidone(PVP)-dextran-H2O)
[53], where an aqueous solution of dextran was placed above
a denser aqueous solution of equimolar dextran containing
PVP. Starting from this buoyantly stable stratification, the
diffusion of PVP from the lower solution to the upper
one generates a coflux of dextran and, by means of this
cross-diffusion feedback, causes the local inversion of the
density profile around the initial interface with the consequent
appearance of fingered patterns. This specific hydrodynamic
scenario has been successively characterized and understood
by means of further experimental investigations [54–57],
and instability conditions were finally rationalized within a
diffusion-convection modeling [58].

Recently [59], we have extended the array of possible
experimental systems where cross-diffusion-driven convec-
tion can occur to the nonreactive AOT (sodium bis(2-
ethylhexyl)sulfosuccinate Aerosol OT) microemulsions (AOT-
ME). Microemulsions are liquid mixtures of an organic
component (more often termed oil), water, and surfactant.
Under the percolation threshold, ME appear at the nanoscale as
dispersed spherical or elongated droplets where the surfactant
constitutes a sort of membrane with the hydrophobic part
oriented to the outer organic phase and the hydrophilic heads
in contact with the inner aqueous phase segregated into the
droplet.

We studied experimentally convective fingering growing
symmetrically across the interface between two identical
stratified AOT-ME in a Hele-Shaw cell [60]. The instability
is promoted by a salt (NaBrO3) added to the lower denser
solution and free to diffuse toward the upper less-dense layer.
This generates a positive coflux of both water and AOT and,
in turn, produces a nonmonotonic density distribution along
the gravitational field. The resulting convective scenario is
similar to that observed with the PVP-dextran-H2O system.
Recently, we have shown that a similar but simplified version
of the ME experiments with a three-component system (H2O-
AOT in octane) [60] is sufficient to explore an even richer
spectrum of convective modes reminiscent of both DD or DLC
hydrodynamic instabilities by changing the initial composition
of the MEs along the gravitational axis.

Dispersed media such as ME, often characterized by large
cross-diffusion terms due to excluded volume effects, are
widely used to approach pattern formation in combination
with the BZ system [61–68] and the coupling between
cross-diffusion-driven convection and such reactive processes
promises to be an unparalleled source for a new generation of
chemohydrodynamic patterns. In order to pave the way toward
this unexplored world, a robust and simplifying theory to the
problem in the absence of any reaction is primarily needed.

The goal of this paper is to provide such a theoretical
framework starting from the simplest three-component case
(two solutes plus the solvent). A dimensionless model that

couples the fickian diffusion with Stokes equations is used
to describe cross-diffusion-driven hydrodynamic phenomena
in the case of a double-layer initial configuration with a
concentration jump in one of the solute across the two-layer
contact line, while the other solute is set homogeneously
over the whole spatial domain. The resulting density profile,
featuring a less dense on top of a denser solution, is initially
stable and allows us to isolate cross-diffusive effects in
the convective destabilization. We show that our starting
conditions can activate selectively specific elements of the
cross-diffusion matrix, further reducing the complexity of
the system description. Following a standard technique [15],
analytic solutions to the pure cross-diffusion problem are
used to reconstruct the space-time evolution of the density
profiles along the gravitational field, by which the onset and
the topology of convective patterns can be predicted. The
analysis of the density profile morphology leads to a parametric
classification of possible scenarios based on the sign of the
cross-diffusion terms and on the relative contribution of the
two species to the global density. The two types of cross-
diffusion-driven hydrodynamic modes identified through the
analytical procedure are reproduced and characterized by the
numerical integration of the nonlinear CDC equations.

II. CDC MODEL

Consider a two-dimensional vertical slab of width LX and
height LZ in a (X,Z) reference frame, where the gravitational
acceleration ḡ = (0,−g) is oriented downwards along the Z

axis. The solution T of density ρT , containing the solute
h with the initial concentration CT

h,0 and the solute j with
concentration CT

j,0, is placed on top of the solution B, with
concentration CB

h,0 = CT
h,0, CB

j,0 > CT
j,0 and density ρB > ρT

(see sketch in Fig. 1). In other words, the species h is
homogeneously distributed over the spatial domain, while
species j features a concentration jump downwards the
gravitational axis.

The resulting double-layer stratification is stable to clas-
sic Rayleigh-Taylor or buoyancy-driven instabilities due to
differential diffusion mechanisms, such as double-diffusion
or double-layer-convection instabilities, and thus it is perfect
to isolate the sole effect of cross diffusion on the system
convective stability. Upon contact, the two miscible solutions,
initially separated by a horizontal planar interface at LZ/2,

FIG. 1. Sketch of the two-dimensional stratification used to study
cross-diffusion-driven convection. The initial distribution of the
chemical solutes results in a step-function density profile.
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start mixing by diffusion without inducing any thermal effect.
The flux of each species is affected by concentration gradients
in the other one as described by fickian equations where the
cross-diffusive terms of the diffusion matrix D are taken into
account explicitly.

In order to analyze the effect of cross diffusion in the
onset of natural convection, diffusion equations are coupled
to Stokes equations as

∂tCj + (V · ∇)Cj = Djj∇2Cj + Djh∇2Ch, (1)

∂tCh + (V · ∇)Ch = Dhj∇2Cj + Dhh∇2Ch, (2)

∇P = μ∇2V − ρ̃(Cj ,Ch)g 1z, (3)

∇ · V = 0, (4)

where the velocity field is modified by density changes
according to the state equation:

ρ̃(Cj ,Ch) = ρT
[
1 + αj

(
Cj − CT

j,0

) + αh

(
Ch − CT

h,0

)]
. (5)

This expansion relies on the assumption that species
concentration slightly changes with respect to the initial
composition of the reference top solution with density ρT and
we can then admit a linear dependence of the global density
ρ̃ upon the solute concentrations. In Eq. (5), αj = 1

ρT

∂ρ̃

∂Cj

and αh = 1
ρT

∂ρ̃

∂Ch
are the solutal expansion coefficients of the

species j and h, respectively. In our framework, we consider
the main coefficients (Djj , Dhh) and the cross-diffusivity terms
(Djh, Dhj ) relating the influence of the diffusive motion of the
solute h to j (and vice versa) as constants and independent
from the local species concentration [49,60].

Hydrodynamic equations are derived in the Boussinesq
approximation, assuming the incompressibility of the fluid
and that density changes only affect the gravitational term ḡρ̃

in Eq. (3). V = (U,V ) is the velocity field, μ is the dynamic
viscosity, and P is the pressure.

The model is reduced to a dimensionless form by in-
troducing a characteristic system space scale L0. The time
and the velocity scales are then derived as t0 = L2

0/Djj

and v0 = L0/t0, while we use p0 = μ/t0 and �Cj,0 =
(CB

j,0 − CT
j,0) as the pressure and concentration references,

respectively. Moreover, we define the dimensionless density
as ρ(cj ,ch,z) = (ρ̃ − ρT )/(ρT αj�Cj,0). The introduction of
the scaled variables {τ = t/t0, (x,z) = (X,Z)/L0, (cj ,ch) =
(Cj − CT

j,0,Ch − CT
h,0)/�Cj,0, v = V/v0, p = P/p0} leads to

the following dimensionless equations:

∂τ cj + (v · ∇)cj = ∇2cj + δjh∇2ch, (6)

∂τ ch + (v · ∇)ch = δhj∇2cj + δhh∇2ch, (7)

∇p = ∇2v − (R ch + cj ) 1z, (8)

∇ · v = 0, (9)

where the dimensionless parameter δhh = Dhh/Djj is the ratio
between the main molecular diffusion coefficient of solute h to
that of j . Similarly, (δjh,δhj ) = (Djh,Dhj )/Djj . The buoyancy

ratio

R = αh

αj

(10)

quantifies the relative contribution of the initially homoge-
neous species to the density with respect to species j , featuring
the initial concentration jump. More in detail, R measures how
a change in h concentration can modify the density as com-
pared to the same variation of j concentration. This parameter
is conveniently used for expressing the dimensionless density
ρ as described below in Sec. III. Here R is assumed as a
positive quantity (i.e., the solution density increases upon the
increment of solute concentrations).

Equations (6)–(9) can be written in the (ω − ψ) form
by taking the curl of both sides of Eq. (8). The term ∇p

is eliminated and, by defining the vorticity ω = ∇ × v and
the stream function, ψ , through the relations (u = ∂zψ , v =
−∂xψ), the cross-diffusion-convection (CDC) model reads

∂cj

∂τ
+

(
∂ψ

∂z

∂cj

∂x
− ∂ψ

∂x

∂cj

∂z

)
= ∇2cj + δjh∇2ch, (11)

∂ch

∂τ
+

(
∂ψ

∂z

∂ch

∂x
− ∂ψ

∂x

∂ch

∂z

)
= δhj∇2cj + δhh∇2ch, (12)

∇2ω = R
∂ch

∂x
+ ∂cj

∂x
, (13)

∂2ψ

∂x2
+ ∂2ψ

∂z2
= −ω. (14)

The problem is closed through the initial conditions

∀ x : (cj ,ch,ψ) = (1,0,0) for z � z0,
(15)

(cj ,ch,ψ) = (0,0,0) for z > z0.

By following the above procedure, the model can be
straightforwardly extended to a n-component system and
specialized to different cases on the basis of which solute
features the initial concentration jump while the others are
homogeneously distributed along the spatial domain.

III. DENSITY-PROFILE-BASED CLASSIFICATION
OF THE INSTABILITY SCENARIOS

The double-layer initial condition represents a key speci-
ficity of the cross-diffusion problem under study. Before the
onset of an instability, we can assume that the flow is at rest and
the concentration profiles of the species do not vary along the
x direction. The initial evolution of the concentration fields can
be thus followed along the vertical coordinate z and described
by means of the cross-diffusion equations (i.e., Eqs. (11) and
(12) with ψ = 0). The information about the cross-diffusion
effect on the dynamics is embedded in the matrix δ. Due to
the sharp initial gradient imposed to the concentration profile
cj (z,0), the cross-diffusion term δhj dominates the initial part
of the dynamics while the other off-diagonal cross-diffusivity,
δjh, plays a negligible role.

We can then isolate two different cross-diffusion paths
depending upon the influence of the species featuring the
concentration jump on the initially homogeneously distributed
species, as controlled by the sign of the cross-diffusion
coefficient δhj . If δhj is positive, the diffusion of species j

from the bottom to the upper layer in response to the initial
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FIG. 2. (Color online) Typical spatiotemporal evolution of the
dimensionless concentration profiles cj (z,τ ) and ch(z,τ ) when
(a) δhj > 0 (4.70) or (b) δhj < 0 (−0.01). In each panel solid black
lines describe the initial distribution of the species, while dashed red
and dotted blue profiles depict progressively the spatial concentration
profiles at successive times.

concentration gradient generates a coflux in h [Fig. 2(a)]
and, as a result, the initially flat concentration profile ch(z,τ )
develops a nonmonotonic shape with a local maximum and
a minimum symmetrically located above and below the
initial interface, respectively. By contrast, the propagation
of solute j toward the upper layer triggers a counterflux
in h if δhj is negative. In the concentration profile ch(z,τ )
this produces a local depletion area in the upper layer and
an accumulation just below the initial interface located at
z0 = LZ/(2L0) [Fig. 2(b)]. We clearly observe an inversion in
the morphology of the concentration profiles when switching
from a positive to a negative δhj and the relative intensity of
the concentration extrema developing in time along ch(z,τ )
reflects the magnitude of δhj itself.

The fact that only δhj is initially at play greatly simplifies
the analytical approach to our cross-diffusion problem. As a
matter of fact, the exact solutions to the concentration profiles,
which present the general form [47]

cj (z,τ ) = AjjGj + AjhGh, (16)

ch(z,τ ) = AhjGj + AhhGh, (17)

(where the function G for the ith species reads Gi =
1
2 erfc[(z − z0)/

√
(4σit)], σi are the eigenvalues of the matrix

δ, the constants Ajj = (δjj − σh)/(σj − σh), Ajh = (σj −
δjj )/(σj − σh), Ahj = −δhj /(σh − σj ) and Ahh = δhj /(σh −
σj ) are obtained by substituting Gi in Eq. (17) and by
taking into account the initial conditions Ajj + Ajh = 1 and

Ahj + Ahh = 0 at z = z0 ∀ t), reduce to

cj (z,τ ) = 1

2
erfc

(
(z − z0)√

4τ

)
, (18)

ch(z,τ ) = −δhj

2(δhh − 1)
erfc

(
(z − z0)√

4τ

)

+ δhj

2(δhh − 1)
erfc

(
(z − z0)√

4δhhτ

)
, (19)

since in the limit case δjh = 0, σj and σh coincide with δjj

and δhh, respectively, and the constants Ajj = 1, Ajh = 0,
Ahj = −δhj /(δhh − 1), and Ahh = −Ahj .

The concentration profiles cj (z,τ ) and ch(z,τ ) constitute
the basis set to reconstruct the evolution of the dimensionless
density profiles according to the dimensionless state equation
[corresponding to Eq. (5) for the dimensional problem],

ρ(z,τ ) = cj (z,τ ) + R ch(z,τ ), (20)

i.e.,

ρ(z,τ ) =
(

1

2(δhh − 1)

)[(
δhh − 1 − δhjR

)

× erfc

(
(z − z0)√

4τ

)
+ δhjR erfc

(
(z − z0)√

4δhhτ

)]
.

(21)

Equation (20) implies that if the relative contribution of
species h to the global density (measured by R) is large enough,
the nonmonotonic concentration profile that characterizes this
species impacts the morphology of the dimensionless density
distribution along the gravitational axis. Due to buoyancy
forces, nonmonotonic density profiles can be responsible for
the convective destabilization of a double-layer system as
a local maximum of ρ(z,τ ) indicates a buoyantly unstable
situation in which denser fluid locally overlies a less-dense
medium. By isolating the parametric constraints that determine
the development of extrema points along ρ(z,τ ) and by
analyzing its shape, we can predict the emergence and the
qualitative topology of convective patterns [15,23,24,59,69].

More specifically, by studying where the gradient of ρ(z),

∂ρz(z,τ ) =
(

1√
4πτ (δhh − 1)

)

×
[

(1 + δhjR − δhh)exp

(
− (z − z0)2

4τ

)

−
(

δhjR√
δhh

)
exp

(
− (z − z0)2

4δhhτ

)]
, (22)

is locally zero, we obtain that ρ(z,τ ) presents symmetric
extrema with respect to z = z0 when z satisfies

(z − z0)2 = 4 δhhτ

(1 − δhh)
ln

(
δhjR

(1 + δhjR − δhh)
√

δhh

)
. (23)

A nonmonotonic density profile, characterized by a local
maximum overlying a minimum across z0 (also a signature of
a DD-type instability [15]), develops if the density gradient
at the interface ∂ρz(z)|z=z0 is positive; vice versa a DLC-type
density profile [15] (with a reversed ρ shape with respect to
the DD-type case) is expected if ∂ρz(z)|z=z0 is negative.
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FIG. 3. Classification of cross-diffusion-driven scenarios in the
(δhj ,R) parameter space based on the analysis of the dimensionless
density profiles. The symmetric hyperbolic curves describe the
instability threshold relating R to δhj . The shadowed area identifies the
domain where the system is buoyantly stable as the related density
profile increases monotonically downwards the gravitational axis.
PPC and NCC scenarios occur in the domain of positive and negative
δhj , respectively.

By taking into account the sign of ∂ρz(z)|z=z0 and the
existence of the logarithm in Eq. (23), we find that a
nonmonotonic density profile across z0 generally occurs when

R >

√
δhh(1 + √

δhh)

|δhj | . (24)

Thanks to Eq. (24), the possible instability scenarios can
be classified in the reduced parameter space (δhj , R). As
illustrated in Fig. 3, this shows three main regions. Under
the hyperbolic curves relating R to the operational cross-
diffusivity, δhj (shadowed area in Fig. 3), the system is
buoyantly stable to a cross-diffusion-driven hydrodynamic
instability. In this region the dimensionless density profile
describing the system increases monotonically downwards
z. The regions where nonmonotonic density profiles can
develop, with the characteristic morphologies shown in Fig. 3,
extend above the black curve. The sign of δhj discriminates
the domains where positive cross-diffusion-driven convection,
PCC scenarios (∂ρz(z)|z=z0 > 0, δhj > 0), or negative cross-
diffusion-driven convection, NCC scenarios (∂ρz(z)|z=z0 < 0,
δhj < 0), are to be expected. The instability threshold R =
f (δhj ) is clearly symmetric with respect to the ordinate axis,
δhj = 0. The curves describing the system marginal stability
shift to lower values of R when decreasing δhh, indicating
that a high main-diffusivity of the initially homogeneously
distributed species plays a stabilizing effect in the onset of
cross-diffusion-driven convection.

IV. NONLINEAR SIMULATIONS

In order to complement the results obtained from the
density-profile-based classification, we perform nonlinear
simulations of Eqs. (11)–(14). This allows us to determine
the onset time of the instability, to follow the dynamics by

which fingering nucleates and grows, and to characterize the
modes that dominate the convective patterns.

A. Numerical details

Equations (11)–(14) are solved by means of the alternat-
ing direction implicit method (ADI) [70], using a squared
spatial domain Lx = Lz = 200, and equal meshing for space
integration along the horizontal and vertical spatial directions
(hx = hz = 0.5). We apply no-flux boundary conditions for
the concentration field of the chemical species at the four
solid boundaries of the two-dimensional reactor while no-slip
boundary conditions, required at rigid walls for the flow, apply
to the stream function. Simulations are run using the time step
ht = 1 × 10−3, which was tested to give convergent solutions.
The problem is finally defined by the initial conditions
Eq. (15). According to the previous discussion in Sec. III
(Fig. 3), positive and negative values of δhj should be used in
order to simulate a PCC and a NCC hydrodynamic scenario,
respectively. As illustrative examples we consider values of
the δhj with the same order of magnitude characterizing cross-
diffusion terms in microemulsion systems recently studied as
model systems to approach experimentally cross-diffusion-
driven hydrodynamic instabilities [60]. We then analyze the
system dynamics for different values of the buoyancy ratio R

for which condition Eq. (24) is satisfied. We also checked that
no instability develops for values within the stable region of
the parameter space (δhj , R).

B. Results

Let us fist give an overview on the phenomenology of the
two possible instabilities. In the upper panel of Fig. 4 we show
the dynamical destabilization of the two-layer interface due
to a PCC mechanism while in the lower panel is illustrated
a typical NCC scenario. The two arrays of snapshots follow
the spatiotemporal evolution of the instability by mapping
the vorticity ω(x,z,τ ) over the simulation spatial domain. In
both cases, the unstable area starts from the border of the
spatial domain where a numerical perturbation can break
the symmetry and extends along the horizontal direction.
As convective fingers form, they grow vertically along the

FIG. 4. Typical spatiotemporal evolution of a PCC (upper panel)
and a NCC (lower panel) instability. The PCC scenario is obtained
with δhj = 4 and R = 0.5, while the NCC scenario with δhj = −0.01
and R = 100. Each sequence of snapshots maps the vorticity ω(x,z,τ )
over the simulation spatial domain. The amplitude of ω(x,z,τ ) in the
plots ranges between −10 (dark areas) and 10 (bright areas).

063007-5



M. A. BUDRONI PHYSICAL REVIEW E 92, 063007 (2015)

gravitational axis but they also undergo a slow drifting toward
the side where the instability nucleates, progressively merging
with preexisting fingers. This is due to the delayed formation
of new fingers, which experience the effect of residual flows.

The PCC scenario is induced by the positive cross-diffusion
term δhj . As previously shown in Fig. 2(a), solute j diffuses
from the bottom to the upper layer due to the initial gradient
and triggers a nonmonotonic distribution ch(z,τ ) featuring
a local density maximum over a minimum downwards z,
symmetrically located around z0. If the buoyancy ratio R

meets the requirement of Eq. (24), a nonmonotonic density
profile with the morphology shown in the positive domain of
Fig. 3 can take place. In the presence of the gravitational field,
this induces a hydrodynamic instability reminiscent of a DD
scenario [15], which symmetrically develops toward the upper
and the lower layer.

The NCC-type convective pattern is determined by a
negative cross-diffusion coefficient δhj . Here the motion of
solute j develops the nonmonotonic concentration profile
ch(z,τ ) shown in Fig. 2(b). As a consequence, a density profiles
with the shape described in Fig. 3 for negative δhj can develop,
provided that R satisfies the instability condition of Eq. (24).
On the basis of the morphology of this density profile, we
can better interpret the convective patterns shown in Fig. 4
(lower panel), with fingers localized in the top and the bottom
layer. During the development of the instability, the initial
interface is not deformed because of the formation of the
density maximum located below the initial interface. On the
one side, this acts as a density barrier preventing the finger
growth from the top to the bottom layer; on the other hand, it
is the source for convective fingering in the bottom layer. The
NCC scenario reminds the typical patterns arising from a DLC
instability [15].

C. Characterization

The main features of the cross-diffusion-driven convective
scenarios, namely the time needed for the onset of the fingering
instability (t∗) and the dominant wavelength (λ∗), are analyzed
in Figs. 5 and 6 as a function of R, for three different values
of δhj . The dominating modes (and the corresponding λ∗)
characterizing these instabilities have been calculated from the
fast Fourier transform of the transverse profile of the vorticity
along the horizontal interface at z = z0, when the convective
patterns are fully developed along the whole x axis.

For both classes of instability the system becomes con-
vectively more unstable by increasing the buoyancy ratio
which corresponds to intensifying the density extrema along
the non-monotonic profiles shown in Fig. 3. In turn, both λ∗
and t∗ decrease while increasing R. It is worth noticing that
both observables follow a linear trend when plotted in the
log-log scale, indicating a power-law relation linking these
hydrodynamic properties to the parameter R. In particular,
irrespectively of the convective scenario at play and the
value of δhj , the wavelength scales as λ∗ = Rβ with β =
−0.30 ± 0.02, while the average exponent β = −0.70 ± 0.02
recurs for the instability onset time.

The mixing length (Lm), which measures the extent of the
fingering area in the course of time, has been also quantified on
the basis of the concentration profile ch(x,z,τ ) transversely av-

FIG. 5. (Color online) Analysis of the PCC convective patterns
by means of (a) the characteristic wavelength, λ∗, and (b) the onset
time, t∗, as a function of the buoyancy ratio R. For the δhj values
considered (black �= 4.73; red �= 9.46, blue �= 18.92), λ∗ follows
a common power-law scaling described by the exponent β ∼ −0.3.
This is also true for t∗, showing β ∼ −0.7.

eraged over the x direction: 〈ch〉(z,τ ) = 1
Lx

∫ Lx

0 ch(x,z,τ ) dx .
The fingering area coincides roughly with the nonmonotonic
area growing around z0 in 〈ch〉(z,τ ). The tip (zt ) and the
back (zb) of this growing nonmonotonic area are, respectively,
located as the sup {z} : |〈ch〉(z,τ )| > ε0 and the inf {z} :
|〈ch〉(z,τ )| > ε0, where the concentration reference ε0 
 1.
Lm = zt − zb defines the distance between these two end-
points.

Figure 7(a) compares the spatiotemporal evolution of zt

and zb at four different values of R, for the PCC instability;
the corresponding Lm trends are plotted as a function of the
time in Fig. 7(b). An analogous characterization is presented
in Fig. 8 for NCC scenarios. Both the PPC and the NCC
dynamics show an initial diffusive transient where zt , zb

(and, consequently, Lm) increase monotonically, scaling as
the square root of the time. The length of this induction period
coincides with t∗ and, thus, decreases exponentially with R

as shown in Figs. 5 and 6. When the system undergoes the
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FIG. 6. (Color online) Analysis of the NCC convective patterns
by means of (a) the characteristic wavelength, λ∗, and (b) the onset
time, t∗, as a function of the buoyancy ratio R. For the δhj values
considered (black � = −0.01; red � = −0.02, blue � = −0.04), λ∗

follows a common power-law scaling described by the exponent β ∼
−0.3. This is also true for t∗, showing β ∼ −0.7. Note that the average
values of β correspond to the scaling exponents characterizing the
PCC scenario.

hydrodynamic instability, zt (τ ), zb(τ ), and Lm(τ ) switch to
a linear behavior. The slope of Lm(τ ) in the linear regime
gives an averaged value of the instability growth rate, which
decreases slightly by lowering R. While the PCC scenarios
exhibit a highly symmetric spatiotemporal development with
regard to the initial interface [see Fig. 7(a)], we can observe in
Fig. 8(a) that the NCC growth is more enhanced in the bottom
layer, where the divergence from the diffusive regime takes
place earlier as compared to the upper layer.

V. CONCLUDING DISCUSSION

Cross-diffusion can sustain a wealth of self-organized
patterns, including convective fingering. In this paper we
have discussed a general method to trigger and control pure
cross-diffusion-driven hydrodynamic instabilities by using a

FIG. 7. (Color online) Spatiotemporal characterization of PCC
hydrodynamic instabilities when R equals 0.5 (dash-dotted blue
curve), 1 (dotted red curve), 2 (dashed gray curve), and 3 (solid
black curve). In panel (a) we plot the evolution of the tip (zt > z0)
and the back (zb < z0) of the fingering area; in panel (b) we follow
as a function of the time the corresponding mixing length, Lm.

double-layer three-component system in which a concen-
tration jump is imposed initially to one solute while the
other is homogeneously distributed over the spatial domain.
Depending upon the sign of the operational cross-diffusion
term, which ties the motion of the initially heterogeneous
species to the homogeneous one, we can have two main
scenarios. The NCC scenarios occur because the species free to
diffuse from the bottom to the upper layer induces a counterflux
in the other species controlled by a negative cross diffusivity
and, as a consequence, a density depletion and an accumulation
area develop above and below the initial interface, respectively;
vice versa, an interface deforms into a PCC fingering when
the bottom-top diffusing species produces a coflux of the
other species via a positive cross diffusivity δhj . In turn, this
generates in the course of time a local density maximum
overlying a density minimum. The NCC and PCC patterns
show strong similarities with the well-known DLC and DD
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FIG. 8. (Color online) Spatiotemporal characterization of NCC
hydrodynamic instabilities when R is fixed to 500 (dash-dotted blue
curve), 1000 (dotted red curve), 5000 (dashed gray curve), and 10 000
(solid black curve). As described in the caption of Fig. 7, in panel
(a) we plot the temporal evolution of the tip (zt > z0) and the back
(zb < z0) of the fingering area; in panel (b) we follow as a function
of the time the corresponding mixing length, Lm.

instabilities, respectively, as they are described by isomorphic
density profiles along the gravitational axis.

Note that both the NCC and the PCC scenarios can
be separately induced in the same three-component system
provided that the two off-diagonal elements of the diffusion
matrix present opposite sign. Based on the study of the
evolution of analytical density profiles we have parametrically
isolated instability conditions and identified the regions for
the two possible convective scenarios in a simple parameter
space consisting of the cross diffusivity at play, δhj , and
the buoyancy ratio, R. Nonlinear simulations of our CDC

model confirm the validity of this general classification and
the characterization of the main hydrodynamic properties of
cross-diffusion-driven convective patterns reveals a power-
law scaling of the instability onset time and characteristic
wavelength as a function of R. Interestingly, universal scaling
exponents are found in both NCC and PCC scenarios for λ∗
(β ∼ −0.3) and t∗ (β ∼ −0.7).

The spatiotemporal evolutions and the characteristics of
the convective patterns obtained by numerical solution of the
CDC equations compare favorably with experimental results
recently reported for AOT-ME systems studied in a vertically
oriented Hele-Shaw cell [59,60]. In their simplest formulation,
these experiments involve water (solute 1) and AOT (solute 2)
as the two species giving cross-diffusive interplay while the
octane features the solvent. In the experimental conditions
considered (composition, temperature), the diffusion matrix
of this system show a cross-diffusion term δ12 (by which the
motion of the AOT influences the diffusion of the water)
large and positive, while δ21 is small and negative [60].
In excellent agreement with the analytical prediction and
numerical simulations discussed in this paper, the experiments
show NCC scenarios when a starting concentration jump is
set in the water spatial profile (while [AOT] is constant over
the whole reactor). To our best knowledge this is the first
experimental example of this convective mode. By contrast,
PCC patterns develop with an initial concentration jump in the
AOT (keeping homogeneous the initial distribution of water).

Our approach can be employed to design new experiments
where cross-diffusion-driven convection can occur in three-
component systems but can also be straightforwardly extended
to n-component cases. More importantly, this is a benchmark
study for future experimental investigations of systems where
cross-diffusion-driven convection is coupled with chemical
reactions to yield new chemohydrodynamic patterns.

Finally, understanding the mechanisms and the conditions
for a hydrodynamic instability is crucial to control undesired
phenomena (such as fingering in oil extraction [71,72])
but also to promote rapid mixing and optimized transport
when necessary (for instance in convective techniques for
CO2 sequestration [24,73]). In this context, cross-diffusion
convection can be very efficient and deepening its possible
impact in many issues of applied relevance is one of the main
goals of future work.

ACKNOWLEDGMENTS

I thank Prof. A. De Wit, Dr. F. Rossi, and Prof. T. J. Steger
for valuable suggestions and fruitful discussions. Regione
Sardegna is gratefully acknowledged for financial support
in the framework of “Asse IV Capitale Umano, Obiettivo
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A. De Wit, Phys. Rev. E 68, 055301 (2003).
[26] D. Escala, M. A. Budroni, J. Carballido-Landeira, A. De Wit,

and A. Munuzuri, J. Phys. Chem. Lett. 5, 413 (2014).
[27] J. A. Pojman and I. R. Epstein, J. Phys. Chem. 94, 4966 (1990).
[28] S. Kalliadasis, J. Yang, and A. De Wit, Phys. Fluids 16, 1395

(2004).
[29] G. Bazsa and I. R. Epstein, J. Phys. Chem. 89, 3050 (1985).
[30] J. A. Pojman, I. R. Epstein, T. J. McManus, and K. Showalter,

J. Phys. Chem. 95, 1299 (1991).
[31] I. Nagypál, G. Bazsa, and I. R. Epstein, J. Am. Chem. Soc. 108,

3635 (1986).
[32] I. Nagy and J. A. Pojman, J. Phys. Chem. 97, 3443 (1993).
[33] C. Chinake and R. Simoyi, J. Phys. Chem. 98, 4012 (1994).
[34] A. Keresztessy, I. Nagy, G. Bazsa, and J. A. Pojman, J. Phys.

Chem. 99, 5379 (1995).
[35] A. Komlosi, I. Nagy, G. Bazsa, and J. A. Pojman, J. Phys. Chem.

102, 9136 (1998).
[36] J. A. Pojman, R. Craven, A. Khan, and W. West, J. Phys. Chem.

96, 7466 (1992).
[37] F. Rossi and M. L. Turco Liveri, Ecol. Model. 220, 1857 (2009).
[38] L. Rongy, P. Assemat, and A. De Wit, Chaos 22, 037106 (2012).
[39] M. A. Budroni, L. Rongy, and A. De Wit, Phys. Chem. Chem.

Phys. 14, 14619 (2012).
[40] F. Rossi, M. A. Budroni, N. Marchettini, and J. Carballido-

Landeira, Chaos: Interdisc. J. Nonlin. Sci. 22, 037109 (2012).

[41] L. Ciotti, M. A. Budroni, M. Masia, N. Marchettini, and M.
Rustici, Chem. Phys. Lett. 512, 290 (2011).

[42] N. Marchettini, M. A. Budroni, F. Rossi, M. Masia, M. L. Turco
Liveri, and M. Rustici, Phys. Chem. Chem. Phys. 12, 11062
(2010).

[43] M. A. Budroni, M. Rustici, and E. Tiezzi, Math. Model. Nat.
Phenom. 6, 226 (2011).

[44] E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems
(Cambridge University Press, Cambridge, New York, 2009).

[45] R. Krupiczka and A. Rotkegel, Chem. Eng. Sci. 52, 1007 (1997).
[46] E. P. Zemskov, K. Kassner, and M. J. B. Hauser, Phys. Rev. E

77, 036219 (2008).
[47] V. K. Vanag and I. R. Epstein, Phys. Chem. Chem. Phys. 11,

897 (2009).
[48] E. P. Zemskov, V. K. Vanag, and I. R. Epstein, Phys. Rev. E 84,

036216 (2011).
[49] F. Rossi, V. K. Vanag, and I. R. Epstein, Chem. Eur. J. 17, 2138

(2011).
[50] E. P. Zemskov, K. Kassner, M. J. B. Hauser, and W. Horsthemke,

Phys. Rev. E 87, 032906 (2013).
[51] I. Berenstein and C. Beta, J. Chem. Phys. 136, 034903

(2012).
[52] I. Berenstein and C. Beta, Chaos: Interdisc. J. Nonlin. Sci. 23,

033119 (2013).
[53] B. N. Preston, T. C. Laurent, W. D. Comper, and G. J. Checkley,

Nature 287, 499 (1980).
[54] T. C. Laurent, B. N. Preston, W. D. Comper, G. J. Checkley,

K. Edsman, and L. O. Sundelof, J. Phys. Chem. 87, 648 (1983).
[55] W. D. Comper, G. J. Checkley, and B. N. Preston, J. Phys. Chem.

88, 1068 (1984).
[56] W. D. Comper, G. J. Checkley, and B. N. Preston, J. Phys. Chem.

89, 1551 (1985).
[57] W. D. Comper, R. P. W. Williams, G. J. Checkley, and B. N.

Preston, J. Phys. Chem. 91, 993 (1987).
[58] S. Sasaki, J. Phys. Chem. 100, 20164 (1996).
[59] M. A. Budroni, L. Lemaigre, A. De Wit, and F. Rossi, Phys.

Chem. Chem. Phys. 17, 1593 (2015).
[60] M. A. Budroni, J. Carballido-Landeira, A. Intiso, A. De Wit,

and F. Rossi, Chaos 25, 064502 (2015).
[61] V. K. Vanag and D. V. Boulanov, J. Phys. Chem. 98, 1449 (1994).
[62] V. K. Vanag and I. R. Epstein, Phys. Rev. Lett. 87, 228301

(2001).
[63] V. K. Vanag and I. R. Epstein, Science 294, 835 (2001).
[64] V. K. Vanag and I. R. Epstein, Proc. Natl. Acad. Sci. USA 100,

14635 (2003).
[65] V. K. Vanag, Physics Uspekhi 47, 923 (2004).
[66] F. Rossi, R. Varsalona, and M. L. T. Liveri, Chem. Phys. Lett.

463, 378 (2008).
[67] T. P. d. Souza and J. Perez-Mercader, Chem. Commun. 50, 8970

(2014).
[68] R. Tomasi, J.-M. Noel, A. Zenati, S. Ristori, F. Rossi, V. Cabuil,

F. Kanoufi, and A. Abou-Hassan, Chem. Sci. 5, 1854 (2014).
[69] L. Rongy, P. M. J. Trevelyan, and A. De Wit, Phys. Rev. Lett.

101, 084503 (2008).
[70] D. W. Peaceman and H. H. Rachford, J. Soc. Ind. Appl. Math.

3, 28 (1955).
[71] T. K. Sherwood and J. C. Wei, Ind. Eng. Chem. 49, 1030 (1957).
[72] D. Avnir and M. Kagan, Nature 307, 717 (1957).
[73] V. Loodts, C. Thomas, L. Rongy, and A. De Wit, Phys. Rev.

Lett. 113, 114501 (2014).

063007-9

http://dx.doi.org/10.1103/PhysRevA.38.3151
http://dx.doi.org/10.1103/PhysRevA.38.3151
http://dx.doi.org/10.1103/PhysRevA.38.3151
http://dx.doi.org/10.1103/PhysRevA.38.3151
http://dx.doi.org/10.1016/0167-2789(88)90062-0
http://dx.doi.org/10.1016/0167-2789(88)90062-0
http://dx.doi.org/10.1016/0167-2789(88)90062-0
http://dx.doi.org/10.1016/0167-2789(88)90062-0
http://dx.doi.org/10.1021/acs.jpcc.5b01906
http://dx.doi.org/10.1021/acs.jpcc.5b01906
http://dx.doi.org/10.1021/acs.jpcc.5b01906
http://dx.doi.org/10.1021/acs.jpcc.5b01906
http://dx.doi.org/10.1021/ja00181a011
http://dx.doi.org/10.1021/ja00181a011
http://dx.doi.org/10.1021/ja00181a011
http://dx.doi.org/10.1021/ja00181a011
http://dx.doi.org/10.1017/S0022112010005008
http://dx.doi.org/10.1017/S0022112010005008
http://dx.doi.org/10.1017/S0022112010005008
http://dx.doi.org/10.1017/S0022112010005008
http://dx.doi.org/10.1063/1.4790192
http://dx.doi.org/10.1063/1.4790192
http://dx.doi.org/10.1063/1.4790192
http://dx.doi.org/10.1063/1.4790192
http://dx.doi.org/10.1017/S0022112081001614
http://dx.doi.org/10.1017/S0022112081001614
http://dx.doi.org/10.1017/S0022112081001614
http://dx.doi.org/10.1017/S0022112081001614
http://dx.doi.org/10.1017/S0022112081002619
http://dx.doi.org/10.1017/S0022112081002619
http://dx.doi.org/10.1017/S0022112081002619
http://dx.doi.org/10.1017/S0022112081002619
http://dx.doi.org/10.1063/1.4756930
http://dx.doi.org/10.1063/1.4756930
http://dx.doi.org/10.1063/1.4756930
http://dx.doi.org/10.1063/1.4756930
http://dx.doi.org/10.1103/PhysRevLett.104.044501
http://dx.doi.org/10.1103/PhysRevLett.104.044501
http://dx.doi.org/10.1103/PhysRevLett.104.044501
http://dx.doi.org/10.1103/PhysRevLett.104.044501
http://dx.doi.org/10.1021/jp202201e
http://dx.doi.org/10.1021/jp202201e
http://dx.doi.org/10.1021/jp202201e
http://dx.doi.org/10.1021/jp202201e
http://dx.doi.org/10.1063/1.4774321
http://dx.doi.org/10.1063/1.4774321
http://dx.doi.org/10.1063/1.4774321
http://dx.doi.org/10.1063/1.4774321
http://dx.doi.org/10.1021/jz5000403
http://dx.doi.org/10.1021/jz5000403
http://dx.doi.org/10.1021/jz5000403
http://dx.doi.org/10.1021/jz5000403
http://dx.doi.org/10.1103/PhysRevE.68.055301
http://dx.doi.org/10.1103/PhysRevE.68.055301
http://dx.doi.org/10.1103/PhysRevE.68.055301
http://dx.doi.org/10.1103/PhysRevE.68.055301
http://dx.doi.org/10.1021/jz402625z
http://dx.doi.org/10.1021/jz402625z
http://dx.doi.org/10.1021/jz402625z
http://dx.doi.org/10.1021/jz402625z
http://dx.doi.org/10.1021/j100375a039
http://dx.doi.org/10.1021/j100375a039
http://dx.doi.org/10.1021/j100375a039
http://dx.doi.org/10.1021/j100375a039
http://dx.doi.org/10.1063/1.1689912
http://dx.doi.org/10.1063/1.1689912
http://dx.doi.org/10.1063/1.1689912
http://dx.doi.org/10.1063/1.1689912
http://dx.doi.org/10.1021/j100260a020
http://dx.doi.org/10.1021/j100260a020
http://dx.doi.org/10.1021/j100260a020
http://dx.doi.org/10.1021/j100260a020
http://dx.doi.org/10.1021/j100156a049
http://dx.doi.org/10.1021/j100156a049
http://dx.doi.org/10.1021/j100156a049
http://dx.doi.org/10.1021/j100156a049
http://dx.doi.org/10.1021/ja00273a015
http://dx.doi.org/10.1021/ja00273a015
http://dx.doi.org/10.1021/ja00273a015
http://dx.doi.org/10.1021/ja00273a015
http://dx.doi.org/10.1021/j100115a058
http://dx.doi.org/10.1021/j100115a058
http://dx.doi.org/10.1021/j100115a058
http://dx.doi.org/10.1021/j100115a058
http://dx.doi.org/10.1021/j100066a019
http://dx.doi.org/10.1021/j100066a019
http://dx.doi.org/10.1021/j100066a019
http://dx.doi.org/10.1021/j100066a019
http://dx.doi.org/10.1021/j100015a022
http://dx.doi.org/10.1021/j100015a022
http://dx.doi.org/10.1021/j100015a022
http://dx.doi.org/10.1021/j100015a022
http://dx.doi.org/10.1021/jp981557s
http://dx.doi.org/10.1021/jp981557s
http://dx.doi.org/10.1021/jp981557s
http://dx.doi.org/10.1021/jp981557s
http://dx.doi.org/10.1021/j100197a062
http://dx.doi.org/10.1021/j100197a062
http://dx.doi.org/10.1021/j100197a062
http://dx.doi.org/10.1021/j100197a062
http://dx.doi.org/10.1016/j.ecolmodel.2009.04.040
http://dx.doi.org/10.1016/j.ecolmodel.2009.04.040
http://dx.doi.org/10.1016/j.ecolmodel.2009.04.040
http://dx.doi.org/10.1016/j.ecolmodel.2009.04.040
http://dx.doi.org/10.1063/1.4747711
http://dx.doi.org/10.1063/1.4747711
http://dx.doi.org/10.1063/1.4747711
http://dx.doi.org/10.1063/1.4747711
http://dx.doi.org/10.1039/c2cp41962a
http://dx.doi.org/10.1039/c2cp41962a
http://dx.doi.org/10.1039/c2cp41962a
http://dx.doi.org/10.1039/c2cp41962a
http://dx.doi.org/10.1063/1.4752194
http://dx.doi.org/10.1063/1.4752194
http://dx.doi.org/10.1063/1.4752194
http://dx.doi.org/10.1063/1.4752194
http://dx.doi.org/10.1016/j.cplett.2011.07.052
http://dx.doi.org/10.1016/j.cplett.2011.07.052
http://dx.doi.org/10.1016/j.cplett.2011.07.052
http://dx.doi.org/10.1016/j.cplett.2011.07.052
http://dx.doi.org/10.1039/c0cp00109k
http://dx.doi.org/10.1039/c0cp00109k
http://dx.doi.org/10.1039/c0cp00109k
http://dx.doi.org/10.1039/c0cp00109k
http://dx.doi.org/10.1051/mmnp/20116112
http://dx.doi.org/10.1051/mmnp/20116112
http://dx.doi.org/10.1051/mmnp/20116112
http://dx.doi.org/10.1051/mmnp/20116112
http://dx.doi.org/10.1016/S0009-2509(97)86093-9
http://dx.doi.org/10.1016/S0009-2509(97)86093-9
http://dx.doi.org/10.1016/S0009-2509(97)86093-9
http://dx.doi.org/10.1016/S0009-2509(97)86093-9
http://dx.doi.org/10.1103/PhysRevE.77.036219
http://dx.doi.org/10.1103/PhysRevE.77.036219
http://dx.doi.org/10.1103/PhysRevE.77.036219
http://dx.doi.org/10.1103/PhysRevE.77.036219
http://dx.doi.org/10.1039/B813825G
http://dx.doi.org/10.1039/B813825G
http://dx.doi.org/10.1039/B813825G
http://dx.doi.org/10.1039/B813825G
http://dx.doi.org/10.1103/PhysRevE.84.036216
http://dx.doi.org/10.1103/PhysRevE.84.036216
http://dx.doi.org/10.1103/PhysRevE.84.036216
http://dx.doi.org/10.1103/PhysRevE.84.036216
http://dx.doi.org/10.1002/chem.201002069
http://dx.doi.org/10.1002/chem.201002069
http://dx.doi.org/10.1002/chem.201002069
http://dx.doi.org/10.1002/chem.201002069
http://dx.doi.org/10.1103/PhysRevE.87.032906
http://dx.doi.org/10.1103/PhysRevE.87.032906
http://dx.doi.org/10.1103/PhysRevE.87.032906
http://dx.doi.org/10.1103/PhysRevE.87.032906
http://dx.doi.org/10.1063/1.3676577
http://dx.doi.org/10.1063/1.3676577
http://dx.doi.org/10.1063/1.3676577
http://dx.doi.org/10.1063/1.3676577
http://dx.doi.org/10.1063/1.4816937
http://dx.doi.org/10.1063/1.4816937
http://dx.doi.org/10.1063/1.4816937
http://dx.doi.org/10.1063/1.4816937
http://dx.doi.org/10.1038/287499a0
http://dx.doi.org/10.1038/287499a0
http://dx.doi.org/10.1038/287499a0
http://dx.doi.org/10.1038/287499a0
http://dx.doi.org/10.1021/j100227a025
http://dx.doi.org/10.1021/j100227a025
http://dx.doi.org/10.1021/j100227a025
http://dx.doi.org/10.1021/j100227a025
http://dx.doi.org/10.1021/j150650a008
http://dx.doi.org/10.1021/j150650a008
http://dx.doi.org/10.1021/j150650a008
http://dx.doi.org/10.1021/j150650a008
http://dx.doi.org/10.1021/j100254a049
http://dx.doi.org/10.1021/j100254a049
http://dx.doi.org/10.1021/j100254a049
http://dx.doi.org/10.1021/j100254a049
http://dx.doi.org/10.1021/j100288a044
http://dx.doi.org/10.1021/j100288a044
http://dx.doi.org/10.1021/j100288a044
http://dx.doi.org/10.1021/j100288a044
http://dx.doi.org/10.1021/jp9619898
http://dx.doi.org/10.1021/jp9619898
http://dx.doi.org/10.1021/jp9619898
http://dx.doi.org/10.1021/jp9619898
http://dx.doi.org/10.1039/C4CP02196G
http://dx.doi.org/10.1039/C4CP02196G
http://dx.doi.org/10.1039/C4CP02196G
http://dx.doi.org/10.1039/C4CP02196G
http://dx.doi.org/10.1063/1.4922186
http://dx.doi.org/10.1063/1.4922186
http://dx.doi.org/10.1063/1.4922186
http://dx.doi.org/10.1063/1.4922186
http://dx.doi.org/10.1021/j100056a013
http://dx.doi.org/10.1021/j100056a013
http://dx.doi.org/10.1021/j100056a013
http://dx.doi.org/10.1021/j100056a013
http://dx.doi.org/10.1103/PhysRevLett.87.228301
http://dx.doi.org/10.1103/PhysRevLett.87.228301
http://dx.doi.org/10.1103/PhysRevLett.87.228301
http://dx.doi.org/10.1103/PhysRevLett.87.228301
http://dx.doi.org/10.1126/science.1064167
http://dx.doi.org/10.1126/science.1064167
http://dx.doi.org/10.1126/science.1064167
http://dx.doi.org/10.1126/science.1064167
http://dx.doi.org/10.1073/pnas.2534816100
http://dx.doi.org/10.1073/pnas.2534816100
http://dx.doi.org/10.1073/pnas.2534816100
http://dx.doi.org/10.1073/pnas.2534816100
http://dx.doi.org/10.1070/PU2004v047n09ABEH001742
http://dx.doi.org/10.1070/PU2004v047n09ABEH001742
http://dx.doi.org/10.1070/PU2004v047n09ABEH001742
http://dx.doi.org/10.1070/PU2004v047n09ABEH001742
http://dx.doi.org/10.1016/j.cplett.2008.08.082
http://dx.doi.org/10.1016/j.cplett.2008.08.082
http://dx.doi.org/10.1016/j.cplett.2008.08.082
http://dx.doi.org/10.1016/j.cplett.2008.08.082
http://dx.doi.org/10.1039/C4CC02321H
http://dx.doi.org/10.1039/C4CC02321H
http://dx.doi.org/10.1039/C4CC02321H
http://dx.doi.org/10.1039/C4CC02321H
http://dx.doi.org/10.1039/c3sc53227e
http://dx.doi.org/10.1039/c3sc53227e
http://dx.doi.org/10.1039/c3sc53227e
http://dx.doi.org/10.1039/c3sc53227e
http://dx.doi.org/10.1103/PhysRevLett.101.084503
http://dx.doi.org/10.1103/PhysRevLett.101.084503
http://dx.doi.org/10.1103/PhysRevLett.101.084503
http://dx.doi.org/10.1103/PhysRevLett.101.084503
http://dx.doi.org/10.1137/0103003
http://dx.doi.org/10.1137/0103003
http://dx.doi.org/10.1137/0103003
http://dx.doi.org/10.1137/0103003
http://dx.doi.org/10.1021/ie50570a038
http://dx.doi.org/10.1021/ie50570a038
http://dx.doi.org/10.1021/ie50570a038
http://dx.doi.org/10.1021/ie50570a038
http://dx.doi.org/10.1038/307717a0
http://dx.doi.org/10.1038/307717a0
http://dx.doi.org/10.1038/307717a0
http://dx.doi.org/10.1038/307717a0
http://dx.doi.org/10.1103/PhysRevLett.113.114501
http://dx.doi.org/10.1103/PhysRevLett.113.114501
http://dx.doi.org/10.1103/PhysRevLett.113.114501
http://dx.doi.org/10.1103/PhysRevLett.113.114501



