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Phenomenological Blasius-type friction equation for turbulent power-law fluid flows
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We propose a friction formula for turbulent power-law fluid flows, a class of purely viscous non-Newtonian
fluids commonly found in applications. Our model is derived through an extension of the friction factor analysis
based on Kolmogorov’s phenomenology, recently proposed by Gioia and Chakraborty. Tests against classical
empirical data show excellent agreement over a significant range of Reynolds number. Limits of the model are
also discussed.
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I. INTRODUCTION

Since the pioneering works of Prandtl and Blasius in the
early 1900’s, the physics and the engineering communities
have put a great effort into describing kinetic energy loss and
pressure drop in the transportation of fluids along pipes and
channels. This endeavor has been mainly driven by industrial
applications, where the challenge is to maximize the fraction
of the energy input into the system, usually through pumps,
that is transferred to the mean axial momentum.

The main source of loss of the axial momentum is the
viscous dissipation through frictional effects, mainly imposed
by the no-slip boundary condition on rigid walls. In the vicinity
of the wall, neighboring parallel layers with different charac-
teristic velocities generate large velocity gradients, inducing
energy dissipation through viscous (molecular) diffusion.

In turbulent flows, an important mechanism to describe
the loss of the mean axial momentum is due to an interplay
between diffusive and inertial effects. In the transitional region
between the viscous and inertial sublayers, small instabilities
between parallel layers, triggered by viscous stress, are
amplified by inertial forces. As the Reynolds number, a
nondimensional ratio of viscous to inertial forces, increases
above a critical level, the flow develops an intermittent
population of coherent vortical eddies transporting parcels of
fluid from the high-momentum centerline region to the low-
momentum near-wall region, and vice versa. This momentum
transport, orthogonal to the main axial direction, retains part
of the inputted energy. However, the main contribution of this
turbulent-mixing mechanism is to enhance the viscous energy
dissipation, by moving the high momentum parcels of the flow
near the centerline to the highly dissipative viscous sublayer
near the wall. This has led to several attempts to stabilize
turbulent flows through the use of riblets on the rigid surfaces
and through the addition of chemicals in the fluid.

Indeed, in Ref. [1], Toms showed that the addition of a
minute amount of polymers in a turbulent Newtonian solvent,
resulting in a non-Newtonian solution, can significantly
reduce drag. The physical mechanism behind this remarkable
experimental fact remains elusive, and most works concerning
drag reduction mechanisms focus on the elastic nature of the
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solutions, see Refs. [2,3]. However, it has been shown that fluid
flows described by purely viscous non-Newtonian models,
such as the power-law model (Ostwald de Waele model), also
displays drag reducing properties, see Ref. [4].

Power-law fluids are commonly used to model the transport
of polymeric substances in industrial processes. They are
characterized by a nonconstant and nonlinear relation between
the applied stress, τ , a quantity expressing the internal forces
that neighboring particles of a continuous media impart
on each other, and the rate of strain, γ̇ ≡ (∇u + ∇ut ), a
measure of the deformation of the fluid expressed in terms
of gradients of velocity. The power-law model is built by
replacing the Newtonian constant dynamic viscosity, μ, by
a general viscosity, η, a function of the magnitude of the rate
of strain. More precisely, for power-law fluids,

τ = η( ˙|γ |) γ̇ , (1)

where η( ˙|γ |) = K ˙|γ |n−1
, and | · | is a Euclidian tensor norm.

The constant K is the proportionality consistency parameter,
and n is the flow index, measuring the degree to which the
fluid is shear thickening (n > 1), or shear thinning (n < 1).
Although much of our subsequent analysis holds for general
power-law fluids, emphasis will be placed on shear-thinning
fluids for its drag-reducing properties, which results from the
attenuation of both viscous and inertial effects. Indeed, exper-
imental data shows that turbulent fluctuations are suppressed
in directions orthogonal to the principal axial direction, see
Refs. [4], [5], [6]. This happens because large velocity gradi-
ents lower local viscosity, so that neighboring parallel layers
with different velocities transfer less momentum to each other.
This reduces instability between the layers, and attenuates
the flow’s orthogonal motion. Figure 1 displays snapshots of
power-law flows obtained from DNS data simulated by the
authors. The ratio of inertial to viscous effects, as measured by
Reτ , are fixed around Reτ = 400. One observes that the flow
pattern is less heterogeneous, the lower the index n, indicating
a reduced velocity fluctuation.

II. FRICTION FACTOR FOR POWER-LAW FLOWS

The viscous effects of the wall vicinity on the mean axial
momentum can be encapsulated in a single number, the friction
factor, f , a dimensionless quantity defined as f = 2τw/ρU 2,
where U is a characteristic velocity of the flow, usually the
mean velocity, ρ is the fluid’s density, and τw is the wall shear
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FIG. 1. Axial velocity for DNS data for power-law flows in a 3D
channel with smooth walls at y+ ≈ 15, and Reτ = 400. From top
to bottom, Newtonian (n = 1.0), PL (n = 0.75), PL (n = 0.5). The
flow is from left to right. White represents high velocity and black
low. Momentum imbalances decrease with n.

stress, a measure of force per unit area exerted by the fluid on
the wall surface. In Ref. [7], Blasius established the empirical
law f ∼ 1/Re1/4, relating the friction factor and the Reynolds
number, after the onset of turbulence, valid over the range
Re ∼ 3000–100 000. In Ref. [8], Nikuradse extended Blasius’
results, and included the dependence of the roughness of the
wall, r , as a fraction of the radius of the pipe, R.

In Ref. [9], Metzner and Reed introduced a description
of different power-law flows with a newly defined Reynolds
number, based on a suitable definition of a global effective
kinematic viscosity, ν, which takes into account the depen-
dency of the local dynamic viscosity on the characteristics of
the flow itself,

Re = ReMR = UL

ν
, ν ≡ K((3n + 1)/4n)n8n−1

ρ U 1−nLn−1
. (2)

As for the Newtonian case, this is a nondimensional ratio of
viscous and inertial properties of the flow, where the numerical
constants are chosen based on similarity arguments for friction
factor of laminar flows. In Ref. [10], Dodge and Metzner
published a semiempirical analysis of the friction factor of
fully developed turbulent power-law fluid flows based on
ReMR . They have obtained the following relation

1√
f

= 4

n0.75
log10

(
Re

f
n−2

2

)
− 0.4

n1/2
. (3)

For n = 1, (3) reduces to the celebrated Prandtl’s equation for
Newtonian flows. Indeed, the form of DM’s equation can be
obtained by assuming that dominant dissipation mechanisms
stems from the logarithmic layer, see Ref. [11]. In practical
applications, Eq. (3) is the most commonly used friction factor
formula for power-law fluids among several available explicit
formulas, see Ref. [12] for a statistical comparison of friction
formulas. We remark that these formulas are mostly empirical
models, lacking a solid physical basis.

III. KOLMOGOROV’S SCALING

Kolmogorov’s theory of fully developed turbulent New-
tonian fluid flows was originally formulated in purely di-
mensional grounds, and it is based on Richardson’s energy
cascade scenario. Fluctuating energy is injected at large
scales, it cascades through intermediate scales, the so-called
inertial range, and it is dissipated at small scales. The cascade
hypothesis states that in the inertial range, the average energy
flux is constant, independent of the kinematic viscosity, ν, and
equals the mean energy dissipation rate, ε, see Refs. [11,13].

Denoting the energy flux at scale � by 	�, it is assumed
that in the inertial range, 	� is independent of �, and it
satisfies 	� ∼ u3

�/� ∼ ε, which implies the Kolmogorov’s
spectral relation u� ∼ ε1/3�1/3. This results in the expression
t I� ∼ ε−1/3�2/3 for the inertial eddy turnover time.

Kolmogorov’s phenomenology implies the existence of
a transitional scale, �d , called the Kolmogorov’s dissipative
scale, between the inertial and dissipative ranges, where both
viscous and inertial effects are important, meaning that the
eddy turnover time t I� equals tν� ∼ �2/ν, the characteristic time
that diffusion takes to dissipate energy at scale �. Equating
both times, one obtains �d ∼ (ν3/ε)1/4. At the top of the
inertial range, the global energy flux relation ε ∼ U 3/L

holds. Inserting this relation into the relation for �d results
in �d/L ∼ 1/Re3/4. Because at this scale, the inertial and
the dissipative time scales are equal, we obtain ud/U ∼
(�d/L)1/3 ∼ 1/Re1/4.

Despite of the complex nature of non-Newtonian rheology,
Kolmogorov’s phenomenology can be recovered for turbulent
power-law fluid flows, including the inertial range spectral
relation u� ∼ ε1/3�1/3, see Refs. [4,6,14]. In order to obtain
Kolmogorov’s dissipative scales for power-law fluid flows, one
has only to modify the dimensional analysis for the viscous
time scale, replacing the constant kinematic viscosity by the
effective kinematic viscosity, ν, defined in (2). The transitional
Kolmogorov’s dissipative length and time scales become

�
(n)
d ∼ K

3
2(n+1) ε

n−2
2(n+1) , t

(n)
d ∼ K

1
(n+1) ε

−1
(n+1) . (4)

As for Newtonian flows, the hypothesis of constant energy
flux on the top of the inertial range implies ε ∼ U 3/L.
Inserting this relation into (4), we obtain

u
(n)
d

U
∼

(
�

(n)
d

L

)1/3

∼ 1

Re
1

2(n+1)

. (5)

The mean-field arguments above assume that for turbulent
flows, the only relevant global physical quantities at the
transitional scale, �d , are the effective kinematic viscosity, ν,
and the global energy dissipation rate ε. This is the reason why
classical Kolmogorov’s framework is frequently applied only
under the assumptions of homogeneity and isotropy of the flow,
where no other physical scales are available. However, it has
been recently shown that much of the theory can be extended to
inhomogeneous and anisotropic flows in wall-bounded flows,
even in the presence of roughness elements, see Refs. [15,16].
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IV. PHENOMENOLOGICAL FRICTION FACTOR

In Ref. [16], Gioia and Chakaborty introduced a phe-
nomenological framework to model Nikuradse’s experiments
on turbulent friction in rough pipes. We follow their approach
to model the Reynolds stress tensor of power-law flows
bounded by smooth walls.

Let us decompose the velocity field, u(x,t), in mean and
fluctuating components, u(x,t) = 〈U〉(x) + u′(x,t), where the
symbol 〈·〉 represents a suitable average. We denote by U

the norm of the mean flow ‖〈U〉‖. The Reynolds equation
describing the mean momentum of incompressible power-law
fluids, see, e.g., Ref. [17], is

ρ

(
∂〈Ui〉

∂t
+ 〈Uj 〉∂〈Ui〉

∂xj

)

= ∂

∂xj

[〈(η( ˙|γ |) ˙|γ |)ij 〉 − 〈p〉δij − ρ〈u′
iu

′
j 〉]. (6)

This is a momentum conservation equation, and the terms
in brackets represent three distinct stress tensors. The first
term represents the power-law viscous stress, the second one
is an isotropic stress arising from the mean pressure field,
and the third term, τR = ρ〈u′

iu
′
j 〉, is the Reynolds stress

tensor, which arises from the fluctuating velocity components
communicating excitation with the mean flow.

As for Newtonian flows in smooth pipes, for low Reynolds
number, velocity fluctuations are relatively small and, thus,
the viscous stress tensor is dominant. We only remark that
for power-law fluids, because of the nonlinear nature of its
viscosity term, the mean viscous stress possesses correlations
of fluctuating components as well. This has been associated
to a delay in transition to turbulence observed in numerical
simulations, see, e.g., Refs. [5,6].

Our phenomenology assumes that for moderately large
Reynolds number, there exists a viscous wet surface W of
constant thickness in the flow, parallel to the wall, such that
above it the velocity of the flow is ∼U . In this upper region, the
fluid flow carries a high horizontal momentum per unit volume
(ρ U ). Below W , the velocity of the flow is small, and the
fluid has a negligible horizontal momentum per unit volume.
We also assume that over the wet surface W , stress is mainly
induced by vertical fluctuations of horizontal momentum, so
that the Reynolds stress is the dominant stress term over W .
Below W , the Reynolds stress contribution decays fast, so that
in the immediate vicinity of the wall, stress is manly induced
by viscous forces. This description suggests a momentum
balance so that the wall shear stress, τw, is of the order of
the momentum transport in the vertical direction across W ,
implying τw scales as τR �W . This hypothesis, also assumed
by Gioia and Chakraborty in Ref. [16], is key to our subsequent
analysis, and it is supported by moderately large Re numerical
simulations, see, e.g., Ref. [6].

Now, the analysis proceeds with the pictorial description of
eddies that straddle the wet surface W . The eddies transport
fluid of high horizontal momentum across W in the wall
direction, and fluid of negligible horizontal momentum across
W in the centerline direction. The net rate of momentum
transport across W is set by vN , the eddy’s velocity normal to
W . Our key hypothesis is that vN ∼ u

(n)
d .
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FIG. 2. Axial and vertical velocity fluctuations (renormalized by
the shear velocity uτ ) for the same DNS data shown in Fig. 1, from
channel’s bottom wall to its center in the counterclockwise direction.

In Fig. 2, we exhibit the fluctuating velocities in the axial
direction, u′, and in the vertical direction, v′, obtained from
direct numerical simulations of 3D channel power-law flows
for the moderate frictional Reynolds number Reτ ∼ 400. One
can notice that the r.m.s. of the axial velocity component u has
the same scale in the center of the channel, and in a region
very close to the wall, whereas vN decreases much faster.

Since we have assumed that the wall shear stress scales
as the momentum transport in the vertical direction across W ,
we obtain τw ∼ ρ U vn, which is reminiscent from the analysis
presented in Ref. [16]. Inserting this relation into the definition
of friction coefficient, and using (5), we propose the following
friction formula:

f = τw

1
2ρU 2

= g(n)
u

(n)
d

U
= g(n)

1

Re
1

2(n+1)

, (7)

where the nondimensional parameter, g(n), is dependent only
on the flow index n. Equation (7) is our main result. Notice that
for n = 1, one recovers Blasius’ scaling for Newtonian flows. It
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FIG. 3. Comparison of generalized Blasius formula (7), Dodge
and Metzner’s formula, and empirical data from Bogue [18] and
Dodge [19]
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is possible to derive different expressions for g(n), and fit them
with experimental data. Assuming a rational expression for
g(n), we use an extensive set of data available in the literature
to fit g(n), resulting in

f =
(

0.102 − 0.033n + 0.01

n

)
1

Re
1

2(n+1)

MR

. (8)

In Fig. 3, we compare (8) with 80 points drawn from
experimental data not used in the fitting procedure. We
also display the Dodge and Metzner’s empirical law (3) for
comparison. The accuracy is very good, with a relative error
less than 1.5% for all points in the fully developed region.

V. DISCUSSION

We have derived (7), a Blasius-type formula for the
friction factor of power-law fluids, based on Kolmogorov’s
phenomenology adapted to power-law fluid scaling, and
inspired by the stress tensor analysis proposed by Gioia and
Chakraborty in Ref. [16]. In contrast to Dodge and Metzner’s
equation, the equation is explicit and easy to use. As for the
Newtonian Blasius’ relation, its domain of validity extends
over a limited range of Reynolds number, before wall effects
have to be taken into account.

For low Reynolds number, velocity fluctuations are rela-
tively small, the inertial range is immature, and the viscous
stress tensor, defined in (6), is dominant in the entire flow.
Therefore, τw scales as ρνU/L. As for the Newtonian case, it
implies that the laminar friction coefficient satisfies f ∼ 1/Re,
as observed in several experiments and numerical simulations,
see, e.g., Refs. [4,5,6]. We remark, however, that due to
suppression of flow instabilities, it is well known that shear-
thinning flows present delayed transition to turbulence, see
Ref. [5]. This suggests that Blasius-type range starts only for
higher Re. Transition to turbulence in non-Newtonian flows is
an interesting subject in itself, and further investigations are
necessary to characterize the beginning of the Blasius-type
range.

For sufficiently high Re, after transition to turbulence,
the effective viscosity, ν, is still an important parameter in
near wall regions, alongside the wall shear stress, τw. As
for Newtonian flows, we can define the friction velocity
uτ ≡ (τw/ρ)1/2, and the wall viscous length scale, δ(n)

ν ≡ ν/uτ .
For the analysis in Ref. [16], the roughness scale r

was crucial. Here we modify their analysis in terms of
Kolmogorov’s length scale �

(n)
d and the wall viscous length

scale, δν . Let s denote the characteristic size of the eddies
transporting momentum over W , and let an δ(n)

ν denote the
characteristic thickness of the viscous surface, where an is a
O(1) constant that needs to be estimated from experiments (in
turbulent Newtonian flows, a1 is typically 5, see Ref. [11]).

In our moderate Reynolds number scenario, as Re increases,
eddies in the transitional region become both slower and
smaller, as well as the thickness of the viscous layer. Indeed,
it is easy to derive from (5) and (7) that

�
(n)
d

L
∼ 1

Re
3

2n+2

,
δ(n)
ν

L
∼ 1

Re
4n+3
4n+4

. (9)

The ratio, H , between the transitional Kolmogorov scale, �
(n)
d ,

and the thickness of the viscous layer, anδ
(n)
ν , therefore, satisfies

H (Re,n) ≡ anδ
(n)
ν

�
(n)
d

= 23−n
√

2

(3n + 1)ng1/2(n)
× an

Re
4n−3
4n+4

. (10)

For a range of Re so that s ∼ �
(n)
d < anδ

(n)
ν , i.e., H > 1, the flow

near the wall is well described by the phenomenology of last
section, and (7) is a good approximation. However, if �

(n)
d �

anδ
(n)
ν , i.e., H < 1, then transitional eddies become too large to

get absorbed in the viscous layer, so that our phenomenology
breaks down, and wall properties have to be considered.

Notice that for n > 0.75, the ratio H decays with increasing
Re. This implies that for this class of flows, our phenomenol-
ogy is no longer valid for sufficiently large Reynolds number.
For Newtonian flows, n = 1, the valid range extends from
around 3000 to around 100 000. For shear-thickening flows,
let us take n = 1.2, for example, the ratio H is already O(1) for
Re ∼ 6000, so that our phenomenology seems to be valid only
on a very restricted range of Re. However, for shear-thinning
flows, let us take n = 0.9, for example, H approaches 1 only
for Re above 109, indicating that validity of Blasius-type
formula is substantially extended for higher Re for this class
of flows.

For n < 0.75, an interesting phenomenon occurs. For this
class of shear-thinning flows, the ratio H increases with
increasing Re and is always above O(1), suggesting that
our phenomenology never breaks down due to wall effects,
although in real fluid flows, degradation of polymers and
roughness effects may eventually become relevant. Figure 4
displays the behavior of H against Re for some values of n. An
extensive set of experiments or simulations of power-law fluid
flows with very high Re is not available in the literature, and
further investigations are needed to confirm the predictions for
very high Reynolds number.

In the literature, some empirical equations have similar
functional form, such as f = 0.0682n−1/2Re−1/(1.87+2.39n),
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FIG. 4. Plot of H ≡ δ(n)
ν /�

(n)
d versus Re. For n > 0.75, δ(n)

ν

becomes eventually of the order of �
(n)
d , when our phenomenological

scaling breaks down. For n = 1 (Newtonian), the ratio is of order
O(1) in the range of Re ∼ 105, which is a well-known upper limit
for Blasius’ law. For n = 0.9, the domain of validity is pushed above
Re ∼ 109. We set an = 1.
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proposed by Hanks and Ricks in Ref. [20]. The reason
behind possible deviations may come from one of our central
hypothesis, τw ∼ τR �W , which neglects the effects of the
viscous stress tensor on the wet surface W . Other reasons may
be the absence of wall roughness effects, or even because of
intermittency not included in our phenomenology, in the spirit
of Landau’s criticism of Kolmogorov’s theory. A thorough
empirical study is therefore necessary in order to compare
Eq. (7) with other proposed friction equations.
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