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Small- and large-scale characterization and mixing properties in a thermally driven thin liquid film
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We study aqueous, freestanding, thin films stabilized by a surfactant with respect to mixing and dynamical
systems properties. With this special setup, a two-dimensional fluid can be realized experimentally. The physics
of the system involves a complex interplay of thermal convection and interface and gravitational forces.
Methodologically, we characterize the system using two classical dynamical systems properties: Lyapunov
exponents and entropies. Our experimental setup produces convection with two stable eddies by applying a
temperature gradient in one spot that yields weakly turbulent mixing. From dynamical systems theory, one
expects a relation of entropies, Lyapunov exponents, a prediction with little experimental support. We can
confirm the corresponding statements experimentally, on different scales using different methods. On the small
scale the motion and deformation of fluid filaments of equal size (color imaging velocimetry) are used to compute
Lyapunov exponents. On the large scale, entropy is computed by tracking the left-right motion of the center fluid
jet at the separatrix between the two convection rolls. We thus combine here dynamical systems methods with a
concrete application of mixing in a nanoscale freestanding thin film.
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I. INTRODUCTION

Chaotic or turbulent mixing is essential for many indus-
trial processes, so a profound understanding is essential for
practical applications. Despite the fact that basic mechanisms
for mixing in dynamical systems [1,2] are well understood,
mixing characterization in experiments proves difficult due
to more complex conditions and imperfections in real-world
implementations. Here the restrictions are finite time, finite
length, and complex geometries.

The system under consideration is a freestanding aqueous
thin film, which is thermally driven to induce convective
motion. The film is almost two dimensional and can show a
transient thick phase (several micrometers) and a equilibrium
thin phase (∼10–50 nm), both immiscible due to the forces
separating them, similar to bubbles (the thin phase) in a
three-dimensional liquid phase. Thin liquid films bound to a
frame with two free surfaces without contact to a substrate,
stabilized by a surfactant, are also known as foam films.
Hereafter, we use the term thin film to describe our system.

We have previously examined the thinning behavior of
liquid films with focus on an accelerated thinning mechanism
by mixing [3]. The thinning speed of the film, i.e., the transition
of the whole film to the thin phase, depends primarily on
the mixing of thin and thick phases. Without mixing, such a
film typically undergoes thinning within several hours; with
thermal driving, a flow is established that eventually mixes
the phases and leads to a thinning in seconds. Consequently,
it is of high interest to understand this mixing and eventually
quantify it. In the above-mentioned article, the basic physics
are explained. Here we give a quantitative analysis of the
mixing properties of the experiment in terms of Lyapunov
exponents and entropies. We first discuss briefly the properties
of thin liquid films, followed by an explanation of our approach
to the characterization of mixing for this highly sophisticated
system.

Thin film dynamics is governed by gravitational, capillary,
and interfacial forces, where the latter are specified in the

disjoining pressure. Combining long- and short-range
molecular forces, i.e., electrostatic, van der Waals, and steric
forces [4,5], the disjoining pressure depends strongly on the
distance between the interacting surfaces. Whereas films
on substrates are established in industry and research [6],
freestanding thin liquid films still provide a challenge in
experiments and theory alike. Consequently, the study of thin
films is central to current scientific activities, e.g., [7–12]. We
contribute by presenting a way to quantify mixing of vertically
oriented, freestanding, thermally forced, nonequilibrium thin
films.

As a result of the aforementioned force balance two
stable equilibria may occur, depending on the chemical
composition of the bulk solution and chosen surface active
agents (surfactants): Common black films with a thickness of
more than 10 nm are formed when electrostatic interactions
balance the dominant van der Waals force and of course gravity
and capillarity [4,13] and Newton black films are stable with
a thickness of less than 10 nm, due to repulsive short-range
steric forces [14,15]. In this study we will focus on films
in their transient phase before reaching equilibrium with a
typical thickness in the range of 0.1–1 μm. The effect of
additional forces has been studied by a several authors, mostly
for micrometer-thick systems [16,17].

Quantifying the degree of complexity of an evolving system
is a ubiquitous problem in natural science [18]. We will focus
on two ways of measuring dynamical complexity: the metric
or Kolmogorov-Sinai (KS) entropy hKS, which measures the
rate of information production as a fluid particle evolves
along a pathline, and the Lyapunov exponents (LEs), which
give the rates at which nearby fluid paths diverge [19]. The
principle concept of the KS entropy is very natural, as the
information contained in the time evolution is a characteristic
of the underlying dynamics (cf. Brudno’s theorem [20]).

From data one can obtain an estimate by studying the
symbolic dynamics acquired by assigning different symbols
to different cells of a finite partition of the phase space. The
probability distribution of realized sequences (words) is a
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signature dynamical evolution. The average information gain
is obtained by comparing sequences of lengths m and m + 1,
in the limit of large m: Letting the length of the words m go to
infinity and the partition diameter to zero, one obtains the KS
entropy, which is often used as a measure of complexity of a
system.

Lyapunov exponents λ characterize the exponential di-
vergence of nearby trajectories, typical for chaotic sys-
tems [21,22]. One can alternatively state that LEs characterize
the sensitivity of a system to initial conditions Xi . They are
related to the KS entropy hKS by the Pesin formula

h =
n∑

i=1

λi > hKS. (1)

Positive Lyapunov exponents indicate that solutions diverge
exponentially on average and negative ones indicate conver-
gence. They are computed from time series using embedding
techniques [22]; in our case, we can use the spatial information
directly and use instead stretching and folding of a fluid area
to estimate the local dynamical characteristics directly from
the experiment.

II. EXPERIMENT

In this section we describe in detail the experiment, that
is, the flow structure that is crucial for the analysis. Then we
explain the data analysis we applied, first for the LEs and
then for the entropies. In principle, we follow complementary
approaches: The LEs are computed from microscopic informa-
tion, whereas the entropies are determined from the large-scale
circulation. Ideally, both quantities should coincide, to be
tested by Pesin’s formula. We will show the results below.

A. Setup

The experimental setup consists of a vertical rectangular
aluminium frame with rounded corners, 45 × 20 mm2, en-
closed by an atmosphere-preserving cell with a glass window
for video recording (see Fig. 1). Thermal forcing is effected
by inserting a cooled copper needle (radius 1 mm) at the film
center (T = −169 ◦C); the needle enters the cell through a
fitting hole. The ambient temperature was constant at 20 ◦C;
the corresponding Rayleigh number Ra ∼ 106, such that the
flow is weakly turbulent with a Reynolds number of Re � 150.

FIG. 1. Setup of the experiment: a, schematic sketch of the free-
standing thin film; b, light source; c, camera; and d , cooling rod with
liquid nitrogen reservoir.

homoclinic
orbit

hyperbolic
points

(a) (b)

FIG. 2. (Color online) Snapshot of a turbulent convecting thin
film. An image of the nonmoving film has been subtracted; the frame
and frozen center region including the cooling tip are not shown.
On the top, a layer of black film has formed. (a) The convection
is not yet fully developed such that corner vortices are observed;
they disappear after transients. (b) Weakly turbulent convection has
developed. The orbit schematic of the convection is added as an
overlay. Orbit schematic: The gray traces represent orbits moving
away or towards the center of convection. The elliptic orbits are
marked with a light blue circle around the stationary elliptic point
(blue cross) in the center of the convection zones. Orange marks the
limit between converging and diverging orbits.

Note that for very thin films it is not clear how viscosity
changes with the film thickness, since surface forces may
matter. We are not aware of any investigations in that direction
and will not discuss this further. The given number denotes
an order of magnitude such that only dramatic changes in
viscosity are relevant, e.g., if the film has a transition to a
thin black film and changes structure too. The temperature
across the film (in the z direction; see Fig. 1) is approximately
constant and the Marangoni number Ma � 0. The solution
from which the liquid film was drawn consists of the surfactant
n-dodecyl-β-maltoside (β-C12G2, Cβ = 0.4 mM), prepared
with filtered deionized water and stabilized with 25 vol. %
glycerin [23]. The thin liquid film is illuminated with a diffuse
broad spectrum light source and its reflection is captured
by a high speed camera. Our vertically oriented thin film is
produced initially thick (500–5000 nm) by pulling it with
a glass rod from the reservoir. Quickly, a wedgelike profile
develops with black film in a small region, with a sharp
horizontal boundary towards the thick film below (see Fig. 2).

The interference of incident and reflected light yields a
striped pattern, which can be used to infer the film thickness.
Each color cycle (red to blue) corresponds to multiples n

of the smallest negative interference condition (2n + 1)λη =
4h cos �, where the refraction index η is assumed to be
temperature independent and � is the angle of incidence [24].
The velocity is measured by color imaging velocimetry [25]
with u ∼ 0.02 m/s.

For ideal two-dimensional (2D) flows, turbulent or not,
surface forces are neglected, which also is a reasonable
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assumption for experiments with thick (i.e., several microme-
ters) freestanding liquid films. However, for thin liquid films a
complete description involves all occurring forces. A previous
time scale analysis for our setup [3] revealed that the dominant
driving mechanism is the temperature gradient with Rayleigh
number Ra ∼ 106. Other forces can be neglected to first order.
The high surface elasticity provided by the surfactant allows
the thin film to remain stable in the presence of shear forces
(high convection velocities) and thermal fluctuations due to
external heating or cooling. This also applies to the equilibrium
phase at a thickness below 50 nm.

B. Flow description

This paper presents experimental work and subsequent data
analysis, thus we do not discuss the equations of motion of the
film, but refer to recent work and reviews for the suitable
equations in our situation [5,26,27]. However, we now discuss
the observations in order to give the reader an impression of
the flow we consider in terms of dynamical systems properties.

We use a point thermal force to drive our system such
that we have two rolls, one on each side of the cooling
rod (see Fig. 2). The cold rod drives a stable two-eddy
convection with a jet of fluid in the center as the driving
mechanism and separation at the same time. The deflection
of the jet at the lower frame border is sequential and
nondeterministic. For the analysis of the large-scale flow, the
alternation between the left and the right eddy was visually
tracked, recorded during a long time interval and converted
into a binary time series as detailed in Sec. II C. Further
information on this technique is available in our previous
works [3,25,28].

In an abstract way, our flow can be described by geometry
(boundary conditions) and four fixed points: The flow is
bounded by the enclosing rectangle, which in the upper region
is given by the black film region. Boundary conditions are
complicated. In the first step they are assumed to be no slip.
Then we have the centers of the convection rolls, which
are elliptic fixed points. There are two hyperbolic points at
the bottom and directly below the lowest part of the ice
surrounding the cooling needle and a separatrix running top
down, whose connection forms a separatrix [see Fig. 2(b)].
This description holds on short time scales; for long times,
we must consider that the whole system is in a transient state,
which, however, evolves on much larger time scales such that
our considerations are reasonable. A look at corresponding
video material will clarify this characterization.

We want to characterize the flow, based on measurements.
Key characteristics for mixing and flow in general are stretch-
ing or folding of the liquid filaments. We consider respective
orbits of fluid elements advected by the two convection rolls,
which are stably positioned below the cooling rod. One key
question regards the mixing inside the rolls, the other one
mixing between the rolls. In contrast to other systems, such
as the blinking vortex [1], the vortices are maintained and
mixing happens across the separatrix due to small differences
in the middle downward flow. Conceptually, we can use the
basic ideas of twist maps as one common example for reduce
dynamical systems showing mixing. That is, we study the
left-right transport, i.e., the mixing between the two rolls.

FIG. 3. (Color online) Example of the cluster identification for
one frame, including center-of-mass and selected principle compo-
nents (not to scale).

Below, in Sec. II C, we explain how typical stretching rates
are extracted from the experiment, as described in more detail
in [25]. We recall the procedure briefly here in order to be
complete. Then we analyze in terms of symbolic dynamics in
that we analyze the series of liquid transported left and right,
i.e., we reduce flow to the fluid exchange between the two
rolls. This way we have a local measure by the stretching and
a more global one by the transport across the separatrix.

C. Data analysis

The captured video data are postprocessed to enhance
colors and contrast. To analyze the behavior of domains of
the same thickness the video is converted into a binary image:
Fluid filaments of a selected thickness are marked as 1 and the
remaining background area is marked as 0.

As the spectrum repeats continually this technique is only
valid if the overall thickness deviation is smaller than a full
period of the smallest wavelength. Subsequently, in each
frame all clusters of the same thickness are numbered and
consecutively linked through the following frames (Fig. 3).
This enables us to track the volume, velocity, deformation
rate, and angular velocity of the moving fluid. For each cluster
the velocity is calculated using the shift of its center of mass
per frame. The deformation rate is calculated by determining
the change of the scale of the principal components per frame.
Similarly, the angular velocity is given by the rotation of the
principal component. Averaging over all frames then delivers
the spatial characteristics of the flow field generated by the
cooling tip. The cluster finding algorithm is operating with a
linear backward memory of variable depth. However, for now,
a tracking of one frame backward is sufficient to maintain
connectivity of each cluster through all frames. The memory
needs to be limited as merging or dividing clusters would
be considered connected, thereby distorting the velocity and
deformation rate.

The intermittency of the mixing film is captured by the
probability P (�x,�t); we calculate the distance �x for fixed
�t (on logarithmic scale). The result is plotted in Fig. 4. We
observe basically ballistic transport for small �t , as could
be expected because the more chaotic small scales are not
resolved and the large-scale transitions are not found by our
cluster analysis.

In the generated velocity field (Fig. 5) the fluid is stretched
in regions of high velocity and compressed when it enters areas
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FIG. 4. (Color online) Probability P (�x,�t) for different time
scales �t measured in frames with a frame rate of 100 frames/s. The
transport is ballistic over one decade. Larger times are not shown due
to the insufficient number of data.

of lower velocity. Due to the shear that is present between
layers of different velocity, folding happens. These two
processes are the main aspects of mixing in a two-dimensional
fluid. Diffusion processes can be neglected as the Reynolds
number is of the order of 103.

The overall mixing can be characterized within each vortex
as an averaging of the stretching rate over the vortex area.
The global mixing between the vortices is characterized by
the probability of a fluid element to cross the separatrix. This
procedure can be seen in the context of effective diffusion,
because the averaged turbulent velocity field is a kind of
random walker with possibly anomalous and space-dependent
transition rates, which when averaged yield the diffusion
coefficient. The transition from one cell to the other is the
minimal setup, as discussed in [29].

We use a naive approach to analyze our film: Take a spot of
material of size �x, compute its time derivative approxima-
tively from the time evolution as a finite difference, and then
use averaging to determine the macroscopic properties. This
is in contrast to studies with particles where the velocity of
relative dispersion is calculated and is possible only because
we have already a field at hand. From the clusters of the same
thickness, we obtain the eigenvalues ei

1,2 along the principal
axes; they correspond directly to the size of the spot numbered
i. Averaging the ei over time and filtering yields an estimate for

the fields e1,2(x,y). Now we compare that with the definition
of the diffusion coefficient

D = lim
�t→0

〈
[x(t + �t) − x(t)]2

�t

〉
.

In our situation the limit cannot be reached, due to sampling,
and consequently we should use methods like the finite-size
LE [30], which is ongoing work. Here we show the results
for the finite-size spots with �t = �s fixed to the minimal
sampling time. We make of course an error in mixing different
spot sizes, which we counteract by choosing homogeneous
spots of similar size.

The space-dependent diffusion is then estimated by

Dest =
〈

[x(t + �st) − x(t)]2

�s

〉
.

The average is performed over the number of available frames
and all tracked fluid filaments per frame, which sums up to
∼ 106 events. Of course this is a very rough approach, but we
will see that in a certain time range we obtain reasonable results
and can compare this with the enhancement of thinning. This
is not, however, the full story: For mixing it can be desirable to
have faster than normal diffusion, the characterization of a real
process involves finite intervals �t and �x, and the degree of
anomaly is given by the scaling �t ∼ �xα , with α = 2 for
normal diffusion. Since we prescribe �t and determine �x

accordingly, the full statistical characterization is given by the
probability function P (�x,�t) (see Fig. 4). So we characterize
mixing within the two rolls by an effective diffusion approach
and the mixing between the two rolls by the statistics of the
crossings of the separatrix in the middle of the setup.

The fluid itself offers no contrast to track the motion of
filaments. However, the above-described reflection imaging
transforms the relative thickness difference of convected
filaments into a thickness map whose evolution can be
followed and analyzed. Compared to other techniques such
as seeding beads or injecting ink, which are unpractical due to
the resulting perturbation of the thin liquid layer, the thickness
tracking is noninvasive and precise. A drawback (not important
here) is that only a relative instead of an absolute thickness
map is available and fine layering of filaments is subject to
diffusion, thus limiting the resolution.
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FIG. 5. (Color online) Averaged (a) horizontal and (b) vertical velocity field of the forced advection. The cooling rod is positioned at
approximately prod(x,y) = [2 mm,10 mm].
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In this study we investigate as well the center stream in
between the two stable vortices, which is deflected either to
the right or to the left at the bottom of the frame. At the cooling
rod fluid from both vortices is formed into a center stream. As
the convection is bound by the frame, the center jet is deflected
sequentially to the left or to the right at the bottom hyperbolic
point. This gives a relative measure of the amount of fluid
mixed macroscopically between the left and right eddy. The
binary series of transports can then be used to estimate the
efficiency of this mechanism by calculating the entropy and
stochastic properties.

III. METHODS AND RESULTS

In this section we present methods and results based on
the data obtained as described above. Section III A treats
Lyapunov exponents, estimated by the stretching and folding
of small fluid elements. In this sense we only find finite-size
values, which characterize the small-scale properties of the
flow (and not the infinitesimal ones, as one would need for
the true Lyapunov exponents). Within that section we briefly
recall and comment on the relation of measures from mixing
theory and dynamical systems. In Sec. III B results on the
estimation of entropies are shown. We estimate the charac-
teristic entropies by the symbolic dynamics approach [22,29]
forming words of a certain length, compute their frequencies
as estimators of the probabilities, and eventually obtain an
estimate for the entropy production with increasing word
length. At the end of this section we compare both measures
using known relations.

A. Lyapunov exponents

In dynamical systems theory, LEs are key quantities for the
characterization of systems. An equivalent is the efficiency in
mixing theory for fluids. Essentially, in a fluid, the stretch of
a fluid filament is important, analogous to the stretching of a
phase space element in a dynamical system. In our case, both
quantities are identical. Furthermore, the mixing efficiency is
nothing but a normalized version of the Lyapunov exponent
for an ergodic system, since the time and ensemble average
need to coincide for the equivalence to hold.

In the following we describe how to estimate mixing
efficiency and LEs λ starting from the stretch s of a fluid
filament along its trajectory, where

s = lim
�x0→0

�xt

�x0
(2)

for the fluid velocity measured in the Eulerian (i.e., laboratory)
frame. Here �x0 denotes the initial separation of two fluid
points at time t = 0 and �xt the corresponding separation
at time t . To satisfy the limit towards elements �x0 of
infinitesimal length, the cluster data are filtered to contain
only the smallest clusters available. The local stretching rate
ds
dt

(see Fig. 6) is measured in a moving reference system
(Lagrangian); therefore the velocity of the separating edges of
a fluid filament are observed.

The Lyapunov exponents λ describe the typical property
of chaotic systems, in particular 2D systems with hyper-
bolic points: The trajectories of two nearby points diverge
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FIG. 6. (Color online) Semilogarithmic plot of the spatially av-
eraged stretching distribution. For better visibility stretching and
contracting rates are displayed in contrasting color. The main
difference lies in the behavior for contracting values, which can be
zero, i.e., the spot observed vanishes. This is reminiscent of our
data analysis (explained above) and is not expected for a perfect
measurement.

exponentially. We can relate that to fluid motion (for details
see, e.g., [21,31]). The exponential divergence for infinites-
imally small times is expressed as �xt ∼ �x0e

λt . The local
Lyapunov exponent is then given as the long time average of
the logarithmic stretching rate (see Fig. 7)

εs = D ln s

Dt
→ λl = lim

t→∞
1

t

∫ t

0
εsdt ′, (3)

where we recognize the difference from the stretch (2) in
averaging the logarithm or the ratio of the lengths directly.
For ergodic systems, the time and (phase) space average are
identical and we can compute alternatively

〈λ〉x,t = 〈
lim

�x0→0
λl

〉
x
, (4)

with the notation 〈 〉x for the space average. We can compute
the two Lyapunov exponents from the contraction (−) and
elongation (+) of the tracked fluid filaments and obtain as an
estimate of the overall mixing properties of the flow

〈λ−〉x,t = −1.43, 〈λ+〉x,t = 0.92. (5)

FIG. 7. (Color online) Distribution of the stretching rate εs . The
average over time gives the Lyapunov exponents 〈λ−〉x,t = −1.43 and
〈λ+〉x,t = 0.92, indicated by the vertical lines. Clearly, the distribution
of negative and positive LEs is different.
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If the flow is conservative ‖λ−λ+ = 1‖, here we find a
contraction considerably smaller than −1/0.92 � −1.087. It
is explained by the fact that we measure not only the stretch,
but in addition the general volume loss of a spot of a certain
color due to film thinning and diffusion of the thickness
map, as explained above (see Fig. 3); this contributes to the
negative LE.

The distributions of the positive and negative LEs are quite
different. This is explained by the dynamics: Elongation (the
positive LE) takes place mainly in the rapid flow region
between the two fixed points (the separatrix). This leads to
a very pointed distribution with faster than exponential decay
(see Fig. 7, dark gray part). In contrast to this, contraction
happens over the whole region of the film with quite different
and much slower dynamics. Additionally, the contraction rate
data have a lower signal to noise ratio compared to the
elongation rate, as the absolute values are smaller and closer
to the resolution limit of the setup.

Before discussing the estimation of the entropy we describe
the connection between the LE and mixing efficiency. Both
quantities are closely related:

〈Es〉 = 1

t

∫ t

0

εs√ �D ⊗ �D
dt ′. (6)

We see that the difference lies in the normalization. It
involves the symmetric part of the velocity gradient �D =
1
2 [ �∇�v + ( �∇�v)T ] (equivalent to the stretching tensor), where
�D ⊗ �D needs to be constant over the pathlines for this

expression to be valid. It is used as a normalization to
obtain a stretching efficiency smaller than or equal to one.
Using this normalization, one can demonstrate [1] that the
upper bound of the efficiency for two-dimensional flows is
Es,max = √

2/2 = 0.707 [1]. Since the stretching tensor is not
readily available from the cluster data and is only used as a
normalization in Eq. (6) it was not used here and we refer to
the unnormalized Lyapunov exponents.

B. Entropy

Similar to the Lyapunov exponent, the entropy production
of a dynamical system is a measure of its chaoticity. Here
we compute the Kolmogorov-Sinai entropy hKS for the center
jet deflection and compare it to 〈λ−/+〉x,t , which we obtain
from the stretching rates of the fluid filaments. The topological
entropy h is the upper limit for the average Lyapunov exponent
h � 〈λ〉 [31] and the Pesin formula equates the topological
entropy with the sum of all positive Lyapunov exponents
h = ∑n

i=1 λ+,i > hKS and sets the limit for hKS [32]. More
precisely, the relation between the topological entropy h and
hKS is given via the variational principle h(T ) = sup[h(μ)KS :
μ ∈ PT (X)], where μ ranges over all T -invariant Borel
probability measures on X. Thus h is an upper limit for the KS
entropy. A direct relation between Lyapunov exponents and
entropy is available via the information dimension

DI = h(μ)

(
1

〈λ+〉x,t

+ 1

|〈λ−〉x,t |
)

(7)

of an ergodic invariant measure μ of a smooth invertible map
with Lyapunov exponents 〈λ+〉x,t > 0 > 〈λ−〉x,t [21,33]. Here

〈λ+〉x,t and 〈λ−〉x,t denote Lyapunov exponents calculated
from stretching (+) and contraction (−) rates, respectively.
Comparing Eq. (7) to the Kaplan-Yorke conjecture [34] DL =
1 + 〈λ+〉x,t /|〈λ−〉x,t |, with Lyapunov dimension DL, suggests
that h(μ) = 〈λ+〉x,t in the case of the natural measure of a 2D
smooth invertible map.

Let us now compute the values for the entropy to the degree
our data allow with respect to the length of the time series
and accuracy. First, we need to define a kind of alphabet to
identify words. Our procedure follows essentially [29] and
for more details we refer to that work. The jet is deflected into
either the left or the right vortex at the bottom of the frame. We
analyze the deflection pattern to check for systematic effects
(e.g., tilting of the device), which would lower the mixing
efficiency of this fluid transport.

The sequence of left (treated as 0) and right (treated
as 1) transports is a binary time series from which one
can associate a word of length n, out of a finite alphabet:
Wn

k = (Sk,Sk+1, . . . ,Sk+n−1). The block entropies Hn are then
calculated from the word probability distributions P (Wn):

Hn = −
∑
Wn

P (Wn) ln P (Wn), (8)

where Wn represents the set of all possible words of length n.
The entropy per unit time is defined as

hn = Hn+1 − Hn,

hKS = lim
n→∞ hn.

(9)

In the presented case the practical limit of hKS is given by
the finite series of events thus truncating the number of possible
words and the possible entropy gain by increasing the word
length. Here hn can be interpreted as the rate of information
production, which for a finite signal decreases when the
combined length of all possible words Wn becomes longer
than the signal itself:

∑
Wn n > lS . The mixing efficiency is

maximal when the jet deflection is uniformly distributed for
left and right. Therefore, we use a set of uniform left-right
probability as a benchmark for the measurement data. As
expected, the entropy hn remains constant with increasing
word length until the finite-size limit of the data set is reached;
longer sets hit this limit at longer word lengths (see Fig. 8).

The entropy hn of the different distributions below this limit
is identical, in particular for the data with the same length
as the measurement set. Therefore, the deviation in hn of the
measurement data when compared to the uniformly distributed
data sets cannot simply be omitted as a finite-size effect. The
hn of the measurement data is approximately 15%– 20% below
the possible maximum given by the random sequences, which
indicates a nonuniform process or deterministic behavior [see
Fig. 8(b)].

One might assume that the sequence is tilted towards one
side and that this preference causes the flow pattern to be
more predictive. To check for this property we compared
the data set to skewed random distributions, which have a
lower entropy production due to the higher predictability of
the signal. In Fig. 9 random sets with an uneven distribution
up to a probability of P = 0.9 for one direction of the flow
are compared. The entropy production of a 77/23-skewed
distribution is comparable to the measurement data. In this case
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FIG. 8. (Color online) (a) Block entropy Hn and (b) entropy hn with increasing word length of the measurement set (set length 2 × 103),
compared to random distributions (RND) of variable set length lset.

the deflection of the center jet would be directed towards one
side approximately 8 out of 10 times. However, the distribution
of left and right transports in the measurement data is even,
which shows that the deterministic components of the signal
is not due to a simple asymmetry in the experimental setup.

Conditional probabilities. Another option to check for
deterministic components is to look for recurrent sequences in
the signal. Therefore, we calculate the conditional probabilities
P (Wn|Wm) with n = m = 1, . . . ,4 to look for recurring
patterns with a memory of up to 4. This limit applies due
to the finite data set size; therefore, the total word length
lW = n + m for our measurement is restricted to 8. For
each word length the conditional probabilities of all possible
combinations are calculated giving a matrix of size n × n.
Again we compare to a random signal of the same size as the
measurement data set. For a random data set of infinite length
one expects an even distribution of conditional probabilities.
However, as we compare finite-size data sets, the conditional
probabilities become nonuniform at longer word lengths as
not all combinations are represented equally [see Fig. 10(b)].
The figure displays the deviation from a perfect random
distribution, which would show as a 50% gray tile.

The conditional probabilities of the data set deviate sub-
stantially from the even distribution the random data provide
[see Fig. 10(a)]. The jet is more likely to alternate between
left and right transports, which is evident by the higher
conditional probabilities of alternating binary combinations,
i.e., P (Wn|1010),P (Wn|0101). Some combinations with two
or more consecutive transfers in the same direction show
a higher than average probability, but these are always
combined with alternating sequences. Uniform combinations,
i.e., P (Wn|0000),P (Wn|1111), are extremely rare events.

The diminished entropy production with increasing word
length is caused by a preference for alternating transfers, which
are evidenced by nonuniform conditional probabilities. The
signal is more predictable and most common combinations are
already covered with shorter length words, thus the additional
words carry less new information.

Eventually, we compare the results from the entropy and
LE estimation. For the LE we obtained λ+ = 0.92 and λ− =
−1.43. For the Shannon entropy we can read off the entropy
gain from Fig. 9 (red line and markers) as hKS = 0.82. Using
the Kaplan-Yorke conjecture, we should find a coincidence
h � 〈λ+〉 with a Kaplan-Yorke dimension of 1.92. Given the
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FIG. 9. (Color online) (a) Block entropy Hn and (b) entropy hn of the measurement data compared to random distributions (RND) with
varying skewness. The skewness is given as the ratio of left versus right transports. The data set length is constant.
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FIG. 10. (a) Conditional probabilities for measurement data compared to (b) a random distribution. Each tile represents the conditional
probability P (Wm|Wn), where Wm is plotted on the x axis and Wn is plotted on the y axis. The word length lW = 1, . . . ,4. The grayscale for
each plot is centered at the expected probability, i.e., for lW = 2: P (Wm|Wn) = 0.25 for all possible combinations. From this value the scale
covers 50% deviation, i.e., lW = 2: black, P (Wm|Wn) = 0.125; white, P (Wm|Wn) = 0.375.

error sources in the LE estimation and the relatively short time
series, we consider this result a very good coincidence.

IV. DISCUSSION AND SUMMARY

We presented a relatively simple experiment exhibiting
complex dynamics, where weakly turbulent mixing reaches
down to the nanoscale, at least in one dimension. This renders
the flow two dimensional, however with additional forces
acting between the surfaces: disjoining pressure and capillary
pressure.

With respect to turbulence, we observed that the relatively-
low-Ra convection generates a weakly turbulent flow with two
prominent rolls. The turbulence mainly can be observed inside
the rolls on shorter time scales, whereas transport between
the rolls is on a slow scale and shows signs of chaos. To
characterize the flow, we took advantage of our measurement
capacities and the color imaging velocimetry (CIV) technique.
In addition to the flow field, concluded from Lagrangian
trajectories, we obtained local deformation rates that are used
to estimate the Lyapunov exponents. With respect to mixing,
we clearly observed the typical chaotic filamentation. As
mentioned in the context of weak turbulence, global mixing on
the large scale happens between the left and right convection
rolls.

We focused on two different methods to quantify the
dynamics of the flow: Lyapunov exponents and entropies.
Whereas the LEs are calculated using small-scale dynamics
using CIV, i.e., tracking of small fluid spots, entropies
have been calculated using the left-right transport across the
separatrix. Qualitatively, these two observations are related by
the two spots generating the dynamics: the hyperbolic fixed

points. They determine the microscopic properties (LEs) and
the transport across the separatrix. Thus, based on dynamical
systems principles, one expects that both quantities coincide.
Given the two different approaches and the very different
spatial scales, this coincidence is a formidable confirmation
of theory. For the given experimental setup, temperature
could not be controlled, which limits the generality of our
results. A setup with temperature control is currently built
such that one can verify the results using the improved
configuration.

The presented data were gathered from eight individual
runs of the experiment. Entropy production and conditional
probabilities were calculated for the data set and compared
to truly random data sets of varying size and skewness.
The conditional probabilities show that an alternating pattern
of left and right transports is preferred, which increases
the predictability and lowers the entropy production of the
measurement data with respect to uniformly distributed data.
The number of left and right transports in the data is even
with a deviation of 2% from the exact left-right randomly
uniform distribution, which can be accredited to inaccuracy
of experimentally obtained data (rod not positioned at the
exact center) and limited data set length. Although the entropy
production hn is comparable to a skewed random distribution
with an approximately 70/30 shift, these are two unlinked
deterministic mechanisms that lead to a decrease of hn.

Due to the shortness of the time series, an entropic analysis
has errors beyond a certain length of the words formed. In order
to have a quantitative measure for this length we compared the
measurement with numerically determined left-right random
sequences without memory. As displayed by the random
data sets of varying size, a larger data set would yield
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higher accuracy in the entropy production rate and conditional
probabilities, but the fundamental scaling behavior remains
the same. Thus the statistical evaluation of the measurement
data is valid.

Using such a numerical validation procedure, we found
clearly that the asymmetry found should be attributed to
higher-order memory in the data. This is quite plausible, since
we are investigating a fluid system, where memory is built
in for advected particles and so for advected fluid particles
too. The calculated KS entropy serves as an upper limit to
the Lyapunov exponents, which were calculated from the
stretching rates. Experimentally, we used color tracking, which
focuses on small scales. This area tracking algorithm provides
detailed information about the flow field and is adaptable to
work on any data of deformable clusters with high enough
contrast with respect to their surrounding.

One key question regards the consistency of the LE and
entropy estimates. We found astonishingly close results for
the entropy and LE using the Kaplan-Yorke conjecture. Both

agreed within an error of 10%. The values of 0.92 and −1.43
indicate a relatively moderate large-scale mixing, which is due
to the fact that the setup involves only two main flow regions
in which one has to achieve mixing.

However, in practical terms, such nanofluidic devices can
be well used as free-standing mixers with very flexible
surface properties. The mixing times are then quite fast,
since the device dimensions can be miniaturized further. The
true advantage lies in the very good ratio of the surface and
volume of the film: Such a film has an enormous surface; in our
setup the ratio was 1:105, which is probably only achievable
with thin films. The free-standing property, finally, allows us
to avoid problems with solid-liquid interface forces; rather,
one can focus on a chemically favorite design of the equally
treated surfaces.

Generally, we think that with our relatively simple ex-
periment we can answer deep physical questions on the
microscopic nature of thin film flows and treat at the same
time very practice-oriented topics.
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