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Quantum signatures of chimera states
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Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by
the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of
chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the
quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime
can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information.
Our findings reveal the relation of chimera states to quantum information theory, and give promising directions
for experimental realization of chimera states in quantum systems.
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I. INTRODUCTION

In classical systems of coupled nonlinear oscillators, the
phenomenon of chimera states, which describes the spon-
taneous emergence of coexisting synchronized and desyn-
chronized dynamics in networks of identical elements, has
recently aroused much interest [1]. These intriguing spa-
tiotemporal patterns were originally discovered in models of
nonlocally coupled phase oscillators [2,3]. Since then, there
has been extensive work on the theoretical investigation of
these states [4–16], followed by spectacular experimental
observations of chimera states in optical [17], chemical [18],
mechanical [19,20], electronic [21,22], optoelectronic [23],
and electrochemical [24,25] setups. Classical chimera states
can serve as a prototype of symmetry-breaking dynamical
behavior for diverse phenomena such as bump states in
neural dynamics [26], turbulent-laminar flow patterns [27],
ventricular fibrillation [28], and in chemical reaction kinetics
and ecology [29].

While synchronization of classical oscillators has been
well studied since the early observations of Huygens in the
17th century [30], synchronization in quantum mechanics has
only very recently become a focus of interest. For example,
quantum signatures of synchronization in a network of globally
coupled van der Pol oscillators have been investigated [31,32].
Related works focus on the dynamical phase transitions
of a network of nanomechanical oscillators with arbitrary
topologies characterized by a coordination number [33], and
the semiclassical quantization of the Kuramoto model by using
path integral methods [34].

Contrary to classical mechanics, in quantum mechanics
the notion of phase-space trajectory is not well defined.
As a consequence, one has to define new measures of
synchronization for continuous variable systems such as
optomechanical arrays [33]. These measures are based on
quadratures of the coupled systems and allow one to extend the
notion of phase synchronization to the quantum regime [35].
Additional measures of synchronization open intriguing con-
nections to concepts of quantum information theory [36], such
as decoherence-free subspaces [37], quantum discord [38],
entanglement [39,40], and mutual information [41]. Despite
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the intensive theoretical investigation of quantum signatures
of synchronized states, to date, studies of the quantum
manifestations of chimera states are still lacking.

In this article we study the emergence of chimera states in
a network of coupled quantum van der Pol oscillators. Unlike
in previous work [42], we address here the fundamental issue
of the dynamical properties of chimera states in a continuous
variable system. Considering the chaotic nature of chimera
states [11], we study the short-time evolution of the quantum
fluctuations at the Gaussian level. This approach allows us to
use powerful tools of quantum information theory to describe
the correlations in a nonequilibrium state of the system. We
show that quantum manifestations of the chimera state appear
in the covariance matrix and are related to bosonic squeezing,
thus bringing these signatures into the realm of observability
in trapped ions [31], optomechanical arrays [33], and driven-
dissipative Bose-Einstein condensates [43]. We find that the
chimera states can be characterized in terms of Rényi quantum
mutual information. Our results reveal that the mutual infor-
mation for a chimera state lies between the values for synchro-
nized and desynchronized states, which extends in a natural
way the definition of chimera states to quantum mechanics.

II. MODEL

Similarly to Ref. [31], we consider a quantum network
consisting of a ring of N coupled van der Pol oscillators. Such
a network can be described by the master equation for the
density matrix ρ(t) [44]

ρ̇ = − i

�
[Ĥ ,ρ] + 2

N∑
l=1

[
κ1D(a†

l ) + κ2D
(
a2

l

)]
, (1)

where a
†
l ,al are creation and annihilation operators of bosonic

particles and D(Ô) = ÔρÔ† − 1
2 (Ô†Ôρ + ρÔ†Ô) describes

dissipative processes with rates κ1,κ2 > 0. In addition, we
have imposed periodic boundary conditions al = al+N for
the bosonic operators. In contrast to Ref. [31], we con-
sider a nonlocal coupling between the oscillators. There-
fore, the Hamiltonian in the interaction picture reads Ĥ =
�V
2d

∑N
l=1

∑l+d
m=l−d (a†

l am + ala
†
m), where V is the coupling

strength, d is the coupling range, and m �= l in the second
sum. In the particular case d = (N + 1)/2, N odd, one has
all-to-all coupling and recovers the results of Ref. [31].
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III. GAUSSIAN QUANTUM FLUCTUATIONS ABOUT
SEMICLASSICAL TRAJECTORIES

Our aim in this section is to discuss the quantum fluctuations
about a semiclassical trajectory in a way similar to Ref. [45].
We define the expansion of the bosonic operator al(t) =
αl(t) + ãl , where α(t) = [α1(t), . . . ,αN (t)] is the semiclassical
trajectory, and ˆ̃a = (ã1, . . . ,ãN ) describes the quantum fluc-
tuations. In this work we consider the semiclassical regime,
where the magnitude of αl(t) is much larger than the quantum
fluctuations described by ãl .

Let us consider the displacement operator D̂[α(t)] =
exp [α(t) · ˆ̃a† − α∗(t) · ˆ̃a], which enables us to define coherent
states |αl(t)〉 = D̂[α(t)]|0l〉, where |0l〉 is the vacuum state of
the lth oscillator, and al(t)|αl(t)〉 = αl(t)|αl(t)〉 [46]. By using
the expansion of the master equation about the mean-field
α(t) described in the Supplemental Material [47], we obtain a
master equation for the density operator in a comoving frame
ρα(t) = D̂†[α(t)]ρ(t)D̂[α(t)]

ρ̇α ≈ − i

�
[Ĥ (α)

Q ,ρα] + 2
N∑

l=1

[κ1D(ã†
l ) + 4κ2|αl|2D(ãl)]. (2)

In addition, the coherent dynamics of the fluctuations is
governed by the Hamiltonian

H
(α)
Q = i�

N∑
l=1

κ2(α∗
l )2ã2

l + �V

2d

N∑
l=1

l+d∑
m = l − d

m �= l

ã
†
l ãm + H.c. (3)

The mean fields appearing in Eq. (3) satisfy the equation of
motion

α̇l(t) = αl(t)(κ1 − 2κ2|αl(t)|2) − i
V

2d

l+d∑
m = l − d

m �= l

αm(t) (4)

with a similar equation for α̇∗
l (t). The equations of motion

Eq. (4) resemble a system of coupled Stuart-Landau oscilla-
tors [14]. By solving the equations of motion Eq. (4), one
obtains the time-dependent mean field α(t). Such a mean
field plays a fundamental role in the description of the master
equation Eq. (2). In particular, the mean field drives coherent
effects such as squeezing in Eq. (3) and it determines the
time-dependent rates, which appear in Eq. (2).

IV. CLASSICAL CHIMERA STATE

From our previous discussion, the classical equations of
motion (4) must be satisfied in order to describe the physics
in the comoving frame. In the polar representation αl(t) =
rl(t)eiφl (t) the equations of motion couple amplitude rl(t)
and phase φl(t) of the individual oscillators. We numerically
solve Eq. (4) for a network of N = 50 coupled oscillators
with coupling range d = 10, considering initial conditions
|αl(t0)| ≈ r0, where r0 = 1.58, and phases drawn randomly
from a Gaussian distribution in space [47]. Figure 1 depicts
the time evolution of a classical chimera state. In Fig. 1(a) we
show the space-time representation of the phases φl(t) of the
individual oscillators. One can observe that for a fixed time,
there is a domain of synchronized oscillators that coexists
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FIG. 1. (Color online) Space-time representation of the classical
chimera state for oscillators αl(t) = rl(t)eiφl (t): (a) φl(t) and (b) r2

l (t).
Parameters: d = 10, κ2 = 0.2κ1, V = 1.2κ1, and N = 50.

with a domain of desynchronized motion, which is a typical
feature of chimera states. Besides the phase, also the amplitude
exhibits chimera dynamics as we show in Fig. 1(b). One can
observe that the width of the synchronized region changes
with time. Similarly, the center of mass of the synchronized
region moves randomly along the ring [11]. In the case of
the uncoupled system with V = 0, the individual oscillators

exhibit a limit cycle with radius r0 =
√

κ1
2κ2

, which is depicted

in the insets of Fig. 2 by the green circle.

V. GAUSSIAN FLUCTUATIONS AND THE WIGNER
FUNCTION

As discussed, the classical equations of motion Eq. (4)
exhibit a chimera state. By using the knowledge we have
about the classical trajectory α(t), we can study the quantum
fluctuations in the comoving frame by solving the master
equation (2). For this purpose, we consider the pure coherent
state as an initial density matrix ρ(t0) = ⊗N

l=1 |αl(t0)〉〈αl(t0)|,
where |αl(t0)| ≈ 1.58 and we choose the phases as in the left
panel of Fig. 2. This initial condition corresponds to a fixed

FIG. 2. (Color online) Quantum signatures of the classical
chimera state. (a) Snapshot of the phase chimera depicted in Fig. 1 at
κ1t0 = 3000. We consider an initial density matrix ρ(t0), which is a
tensor product of coherent states centered around the positions of the
individual oscillators as depicted in the insets (Husimi function).
(b) After a short-time interval κ1�t = 0.5, quantum correlations
appear in the form of squeezing (black double arrows in the insets).
Parameters: d = 10, κ2 = 0.2κ1, V = 1.2κ1, and N = 50.
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time t0 = 3000/κ1 in Fig. 1. In the comoving frame, such
initial condition reads ρα(t0) = ⊗N

l=1 |0l〉〈0l|.
For convenience, let us write the bosonic operators al =

(q̂l + ip̂l)/
√

2� and ãl = ( ˆ̃ql + i ˆ̃pl)/
√

2� in terms of position
and momentum operators. In terms of complex variables
zl = (ql + ipl)/

√
2�, z̃l = (q̃l + ip̃l)/

√
2�, we define the co-

ordinates zT = (z1, . . . ,zN ) in the laboratory frame and z̃T =
(z̃1, . . . ,z̃N ) in the comoving frame, such that z = α(t) + z̃.
The variables ql,q̃l and pl,p̃l denote position and conjugate
momentum, respectively.

We consider the Wigner representation Wα(R̃,t) of the
density operator ρα(t), where R̃T = (q̃1,p̃1, . . . ,q̃N ,p̃N ). By
using standard techniques of quantum optics [44], the mas-
ter equation (2) can be represented as a Fokker-Planck
equation for the Wigner function, which depends on the
mean-field solution of Eq. (4) and contains information of
the chimera state. In the Supplemental Material [47], we
provide the explicit form of the Fokker-Planck equation
for Wα . Fortunately, even though the coefficients of the
equation are time dependent, one can derive an exact solution
Wα(R̃,t) = (2π )−N (det C )−1/2 exp (− 1

2 R̃T · C −1 · R̃), where
C (t) is the covariance matrix, whose matrix elements Cij =
〈 1

2 ( ˆ̃Ri
ˆ̃Rj + ˆ̃Rj

ˆ̃Ri)〉α − 〈 ˆ̃Ri〉α〈 ˆ̃Rj 〉α include information about

the correlations between quantum fluctuations ˆ̃R2l−1 = ˆ̃ql and
ˆ̃R2l = ˆ̃pl . The angular brackets 〈Ô〉α = tr(ραÔ) denote the

expectation value of an operator Ô calculated with the density
matrix ρα .

In the laboratory frame, the Wigner function is a Gaussian
distribution centered at the classical trajectory α(t), whereas
Wα(R̃,t) is centered at the origin in the comoving frame.
The Husimi function Q(z) = 1

π
〈z|ρ(t)|z〉 and the Wigner

function are quasiprobability distributions in phase space,
which are intimately related [44,47]. They allow one to
calculate quantum mechanical averages in a similar way as
classical averages, i.e., as an integral in phase space. In contrast
to the Husimi function, which is positive definite, the Wigner
function can have negative values [44]. In our work, however,
we discuss Gaussian quantum fluctuations and negative values
of the Wigner function are excluded. The insets in the right
panel of Fig. 2 depict the Husimi functions (obtained by using
the Gutzwiller ansatz [31]) of the individual nodes after a
short evolution time �t = 0.5/κ1. One can observe that even
if one prepares the system in a separable state, quantum
fluctuations arise in the form of bosonic squeezing of the
oscillators [44]. In the insets of Fig. 2, the arrows indicate
the direction perpendicular to the squeezing direction for the
individual oscillators. For oscillators within the synchronized
region, the squeezing occurs almost in the same direction. In
contrast, the direction of squeezing is random for oscillators
in the desynchronized region, which reflects the nature of the
chimera state.

VI. QUANTUM SIGNATURES OF A CHIMERA STATE IN
THE COVARIANCE MATRIX

Now let us study the consequences of the exact solution
for the short-time evolution of the Wigner function. Once
we obtain the solution of the equations of motion Eq. (4),
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FIG. 3. (Color online) Quantum fluctuations after a short-time
evolution. Similarly to Fig. 2, we consider an initial density matrix
ρ(ti), which is a tensor product of coherent states centered around
the classical positions of the oscillators. Snapshots of the phase (left
column) and covariance matrices (central column) after short-time
evolution κ1�t = 0.5 of the states: (a) chimera for V = 1.2κ1,
(b) synchronized state for V = 1.6κ1, and (c) desynchronized state
for V = 0.8κ1. Right column: Weighted spatial average �l(t) of the
covariance matrix for the states shown in (a), (b), and (c), respectively.
Parameters d = 10, κ2 = 0.2κ1, and N = 50.

one can find the corresponding covariance matrix C (t). The
left column of Fig. 3 show snapshots of the phases for
3(a) chimera, 3(b) synchronized, and 3(c) desynchronized
mean-field solutions of Eq. (4). The central column of
Fig. 3 depicts the corresponding covariance matrices after
a short evolution time �t = 0.5/κ1. For every plot, we
have initialized the system at time ti as a tensor product of
coherent states |αl(ti)〉 centered at the positions αl(ti) of the
individual oscillators. As a consequence, the covariance matrix
at the initial time is diagonal C2l−1,2l−1(ti) = 〈 ˆ̃q2

l 〉α = �/2
and C2l,2l(ti) = 〈 ˆ̃p2

l 〉α = �/2, which reflects the Heisenberg
uncertainty principle because 〈 ˆ̃ql〉α = 〈 ˆ̃pl〉α = 0.

After a short evolution time, quantum correlations are
built up due to the coupling between the oscillators, and
the covariance matrix exhibits a nontrivial structure, which is
influenced by the mean-field solution. For example, the central
panel of Fig. 3(a) shows a matrix plot of the covariance matrix
corresponding to a chimera state obtained from the same initial
condition as in Fig. (2). The covariance matrix acquires a
block structure, where the upper 40 × 40 block (corresponding
to nodes l = 1, . . . ,20) shows a regular pattern matching
the synchronized region of the chimera state. Similarly, the
lower 60 × 60 block shows an irregular structure, which
corresponds to the desynchronized dynamics of the oscillators
l = 21, . . . ,50. In a similar fashion, Figs. 3(b) and 3(c) show
the matrix C for completely synchronized and desynchronized
states, respectively.

In the case of a chimera state, this coincides with the results
shown in Fig. 2, where the squeezing direction of the oscillators
is related to the classical solution. In order to quantify these
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observations we define the weighted correlation as

�l(t) = V

2d

l+d∑
m = l − d

m �= l

C2l,2m(t). (5)

This spatial average highlights the structure of the covariance
matrix. The right column of Fig. 3 shows �l(t) for 3(a)
chimera, 3(b) synchronized, and 3(c) desynchronized states.
The chimera state exhibits a regular and an irregular domain,
exactly as the classical chimera does.

VII. CHIMERA STATES AND RÉNYI QUANTUM MUTUAL
INFORMATION

Now let us consider a partition of the network into spatial
domains of size L and N − L, which we call Alice (A) and
Bob (B), respectively. This partition can be represented by
considering a decomposition of the covariance matrix

C (t) =
(

CA(t) CAB(t)

C T
AB(t) CB(t)

)
. (6)

To study the interplay between synchronized and desyn-
chronized dynamics, which is characteristic of a chimera state,
we propose the use of an entropy measure [36,41]. Of particular
interest is the Rényi entropy Sμ(ρ) = (1 − μ)−1 ln tr(ρμ),
μ ∈ N, of the density matrix ρ, which is discussed in Ref. [48].
In terms of the Wigner representation of ρα , the Rényi entropy
for μ = 2 reads S2(ρα) = − ln [

∫
W 2

α (R̃,t)d2N R̃]. Now let us
consider the bipartite Gaussian state ρAB = ρα composed of
Alice and Bob and define the tensor product ρRef = ρA ⊗ ρB

of the two marginals ρA and ρB.
To measure Gaussian Rényi-2 mutual information

I2(ρA:B) = S2(ρA) + S2(ρB) − S2(ρAB), we require the calcu-
lation of the relative sampling entropy between the total density
matrix ρAB and the reference state ρRef as shown in Ref. [48].
This leads to a formula I2(ρA:B) = 1

2 ln (det CA det CB/ det C )
in terms of the covariance matrix Eq. (6). Figure 4(a) shows the
variation of I2(ρA:B) as a function of the size L of the partition
after an evolution time �t = 0.5/κ1. One can observe that
for a chimera state the mutual information is asymmetric as
a function of L and there is a critical size Lc = 20, where a
dramatic change of the correlations occurs.

Now let us consider the chimera state shown in Fig. 2, and
let us consider a partition where the size of Alice is Lc = 20.
Figure 4(b) shows the time evolution of mutual information
for such a state. In addition, by using the same partition as for

0.1 0.2 0.3 0.4 0.5

(b)(a)

FIG. 4. (Color online) Rényi quantum mutual information for the
states shown in Fig. 3. The green dots, blue diamonds, and purple
triangles represent the chimera, synchronized, and desynchronized
states, respectively. (a) Gaussian Rényi-2 mutual informationI2(ρA:B)
as a function of the size L of Alice after an evolution time �t =
0.5/κ1. (b) The time evolution of the mutual information during
the time interval �t for a fixed size Lc = 20. Inset: scheme of the
nonlocally coupled network. Parameters: d = 10, κ2 = 0.2κ1, and
N = 50.

the chimera state, we calculate the mutual information for the
synchronized and desynchronized states depicted in Figs. 3(b)
and 3(c), respectively. Our results reveal that the chimera state
has a mutual information which lies between the values for
synchronized and desynchronized states. This resembles the
definition of a chimera state given at the beginning of the
article.

VIII. CONCLUSION

We have shown that quantum signatures of chimera
states appear in the squeezing of coherent states, in the
covariance matrix, and in measures of mutual information.
To quantify the structure of the covariance matrix, we have
introduced a spatial average of the quantum correlation,
which reveals the nature of the classical trajectory, i.e.,
chimera, synchronized, or desynchronized state. The mutual
information for a bipartite state I2(ρA:B) extends the definition
of a chimera to the quantum regime and highlights the
relation to quantum information theory. Possible experimental
realizations of our model could be carried out by means of
trapped ions [49], as it was suggested in Ref. [31], Bose-
Einstein condensates in nonequilibrium [43,50], and in SQUID
metamaterials [51].
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