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Dissipative dynamics of a particle in a vibrating periodic potential: Chaos and control
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The dissipative chaotic dynamics of a particle subjected to a horizontally vibrating periodic potential is
characterized theoretically and confirmed numerically in the case of an external chaos-controlling periodic
excitation also acting on the particle. Theoretical predictions concerning the chaotic threshold in parameter space
are deduced from the application of Melnikov’s method that fully determine the chaos-control scenario. Also, the
structure of diverse regularization regions in parameter space is explained theoretically with the aid of an energy
analysis. It was found that the phase difference between the two periodic excitations involved plays a crucial role
in the chaos-control scenario, with the particular feature that its optimal value depends upon the ratio between
the damping coefficient and the excitation frequency. This constitutes a genuine feature of the chaos-control
scenario associated with nonsteady potentials which is in contrast to the case of steady potentials. Additionally,
we demonstrate the robustness of the chaos-control scenario against the presence of low-intensity Gaussian noise
and reshaping of chaos-suppressing excitations.
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I. INTRODUCTION

The dynamical outputs of a complex nonlinear system
in response to external excitations are of both fundamental
theoretical relevance and practical interest. In particular, the
application of judiciously chosen periodic external excitations
constitutes a universal procedure to control chaos in general
systems. The present work studies the chaotic dissipative
dynamics of a particle subjected to a horizontally vibrating
periodic potential and driven by an external periodic excitation
according to the model equation

..
x + sin [x − f (t)] = −δ

.
x + F (t), (1)

where f (t) and F (t) are periodic functions while δ is
the damping coefficient, with particular emphasis on the
suppressory effect of the external excitation F (t) on the chaos
induced by the horizontally vibrating periodic potential

V (x,t) = 1 − cos [x − f (t)]. (2)

Diverse versions of the dimensionless Eq. (1) arise in many
physical contexts, such as the chaotic phase oscillation of a
proton beam in a cooler synchrotron [1,2], the dynamics of a
cylindrical pinion that is kept at a distance from a sinusoidally
vibrating rack while the two are coupled by the lateral Casimir
force [3], and the dynamics of a bright soliton appearing in a
Bose-Einstein condensate in a horizontally vibrating shallow
optical lattice [4]. Phase modulation of periodic potentials has
also been considered in the wave equation describing beam
propagation in a periodically curved waveguide array [5], as
well as in studies of Wannier-Stark resonances in optical and
semiconductor superlattices [6]. Also, there have been studies
of coupled systems of particles subjected to horizontally
vibrating periodic potentials. A case is that of repulsively,
power-law interacting particles in one dimension [7]. When
the presence of dissipation is unavoidable, the consideration of

chaos-suppressing (CS) excitations F (t) is especially pertinent
since it means the possibility of complete regularization of
the dynamics in the whole phase space over finite regions
of parameter space [8]. This is the case, for example, of the
aforementioned nanoscale noncontact rack-and-pinion setups
[3] as well as the formation of vortices in a Bose-Einstein
condensate [9]. To the best of the authors’ knowledge, the
general chaos-control scenario described by Eq. (1) has not as
yet been investigated.

Here we undertake theoretical and numerical studies of this
new chaos-control scenario by focusing on the simple case in
which the two time-periodic functions involved are harmonic
and satisfy a simple resonance condition. The remainder of the
communication is organized as follows. Section II studies the
chaotic dynamics arising from Eq. (1) in the absence of any
CS excitation. Analytical estimates of the chaotic threshold
in parameter space are obtained by using Melnikov’s method
(MM) while numerical experiments provide confirmation of
the theoretical predictions. Also, the structure of diverse
nonchaotic regions arising beyond the chaotic threshold in
parameter space is explained theoretically with the aid of an
energy analysis. The effectiveness and robustness of resonant
harmonic excitations F (t) at suppressing the chaos induced by
the sinusoidally vibrating periodic potential is demonstrated
theoretically and confirmed numerically in Sec. III. Finally,
Sec. IV is devoted to a discussion of the major findings and of
some open problems.

II. VIBRATING-POTENTIAL-INDUCED CHAOS

We shall concentrate in this section on the chaotic behavior
induced by a horizontally and sinusoidally vibrating potential
in the absence of any CS excitation,

..
x + sin [x − γ cos (ωt)] = −δ

.
x, (3)
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which is equivalent to

..

θ + sin θ = −δ
.

θ + δγω sin (ωt) + γω2 cos (ωt), (4)

θ (t) ≡ x(t) − γ cos (ωt), (5)

where θ and x are the particle phases relative to the vibrating
potential frame and the laboratory frame, respectively. Note
that Eq. (5) tells us that chaotic dynamics may be equivalently
studied in any of such frames. Thus, to obtain analytical
estimates of the chaotic threshold in parameter space (γ,ω,δ),
we assume that system (4) satisfies the MM requirements,
i.e., the dissipation and excitation terms are small-amplitude
perturbations of the underlying conservative pendulum

..

θ +
sin θ = 0.

A. Melnikov’s method predictions

Melnikov introduced a function [now known as the
Melnikov function (MF), M(t0)] which measures the distance
between the perturbed stable and unstable manifolds in the
Poincaré section at t0. If the MF presents a simple zero,
the manifolds intersect transversally and chaotic instabilities
result. See Refs. [10,11] for more details about MM. Regarding
Eq. (4), note that keeping with the assumption of the MM
[10,11], it is assumed that one can write δ = εδ,γ = εγ , where
0 < ε � 1 while η,γ ,ω are of order one. This means that the
term δγω sin (ωt) in Eq. (4) is O(ε2) and one should drop it
to calculate the MF. However, it will be kept in calculating
the MF to obtain a reliable estimate of the chaotic threshold in
parameter space since nonperturbative values of the parameters
were used in the numerical experiments. Thus, bearing in mind
this caveat, the application of MM to Eq. (4) yields the MF

M±(t0) = −D ± A cos (ωt0) ± B sin (ωt0),

D ≡ 8δ,

A ≡ 2πγω2 sech (πω/2),

B ≡ 2πγ δω sech (πω/2), (6)

where the positive (negative) sign refers to the top (bottom)
homoclinic orbit of the underlying conservative pendulum

θ0(t) = ±2 arctan [sinh (t)],
(7)

.

θ0(t) = ±2 sech (t).

Note that A cos (ωt0) + B sin (ωt0) �
√

A2 + B2,∀t0, and
hence the relationship

D �
√

A2 + B2 (8)

represents a sufficient condition for M±(t0) to be negative
(or null) for all t0. Therefore, a necessary condition for the
occurrence of a homoclinic bifurcation and the subsequent
chaotic instabilities is D <

√
A2 + B2 or [cf. Eq. (6)]

γ > γth = γth(δ,ω) ≡ 4δ cosh (πω/2)

πω
√

δ2 + ω2
, (9)

where γth is the threshold amplitude providing an estimate
of the boundary of the region in parameter space in which
homoclinic chaos occurs (see Fig. 1). We now compare

FIG. 1. (Color online) Plots of the chaotic threshold amplitude
γth [see Eq. (9)]. Top panel: γth vs ω and δ. Middle panel: γth vs ω for
δ = 0.4 (thin line) and δ = 0.2. Bottom panel: γth vs δ for ω = 1.8
(thin line) and ω = 0.9. The quantities plotted are dimensionless.

the theoretical prediction obtained from MM (recall the
aforementioned caveat) with the Lyapunov exponent (LE)
calculations for Eq. (2). Computer simulations of Eq. (2)
showed that MM-based predictions provide useful quantitative
information regarding the onset of chaos even when the values
of the excitation amplitude γ and damping coefficient δ do
not reasonably satisfy the MM requirements [10,11]. In this
regard, it is worth recalling that, even in the case of small
values of γ and δ, one cannot expect too good a quantitative
agreement between these two kinds of approaches because
MM is a perturbative technique generally related to transient
chaos, while LE provides information solely concerning steady
responses. We computed the LEs using a version of the
algorithm introduced in Ref. [12], with integration typically
up to 104 drive cycles for each fixed set of parameters.
The numerical results confirmed the effectiveness of the
estimation procedure (9). This unreasonable effectiveness of
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FIG. 2. (Color online) Chaotic regions (dots) in the δ-γ param-
eter plane corresponding to Eq. (3) for ω = 0.67. A dot is plotted
on a 100 × 140 grid when the corresponding maximal LE is larger
than 10−3. The line represents the theoretical chaotic threshold
[cf. Eq. (9)].

MM predictions beyond the perturbative regime has previously
been reported in diverse contexts (see, e.g., Ref. [8]). An
illustrative example is shown in Fig. 2, where one sees how
the chaotic regions in the δ-γ parameter plane are reasonably
well bounded by the estimate (9). Worth noting, however, is
the existence of regularization islands inside the global chaotic
region in the δ-γ parameter plane, which cannot be explained
from MM. The following subsection presents an energy-based
analysis providing such an explanation.

B. Energy-based analysis

By analyzing the variation in the system’s energy, one can
obtain useful information about the structure of chaotic and
nonchaotic regions in parameter space. Indeed, Eq. (2) has the
associated energy equation

.

E = .
x cos (x) sin [γ cos (ωt)] − δ

.
x

2

+ 2
.
x sin (x) sin2

[γ

2
cos (ωt)

]
, (10)

where E(t) ≡ (1/2)
.
x

2
(t) + U [x(t)] [U (x) ≡ 1 − cos x] is the

energy function. Integration of Eq. (10) over any interval
[nT ,nT + T/2] (T ≡ 2π/ω), n = 0,1,2, . . . , yields

E(nT + T/2) = E(nT ) − δ

∫ nT +T/2

nT

.
x

2
(t)dt

+
∫ nT +T/2

nT

.
x cos (x) sin [γ cos (ωt)]dt

+ 2
∫ nT +T/2

nT

.
x sin (x) sin2

[γ

2
cos(ωt)

]
dt.

(11)

Next, one applies the first mean value theorem [13] to the last
integral in Eq. (11) to obtain

T

4
.
x(t∗) sin[x(t∗)][1 − J0(γ )], (12)

where Jn(γ ),n = 0,1,2, . . . is the Bessel function of the first
kind while t∗ ∈ [nT ,nT + T/2]. After using the Fourier series
of sin [γ cos (ωt)], the second integral in Eq. (11) reads

2
∞∑

k=0

(−1)kJ2k+1(γ )

×
∫ nT +T/2

nT

.
x cos (x) cos [(2k + 1)ωt]dt. (13)

After integrating by parts the integrals in Eq. (13) and applying
again the first mean value theorem to the first (for k = 0) of
remaining integrals [notice that this theorem cannot be directly
applied to the second integral in Eq. (11)], Eq. (13) becomes

4J1(γ ) sin[x(t∗∗)]

− {sin [x(nT + T/2)] + sin [x(nT )]} sin (γ )

+ 2ω

∞∑
k=1

(−1)k(2k + 1)J2k+1(γ )

×
∫ nT +T/2

nT

sin (x) sin [(2k + 1)ωt]dt, (14)

with t∗∗ ∈ [nT ,nT + T/2] and where the relationship
sin (γ ) = 2

∑∞
k=0 (−1)kJ2k+1(γ ) has been used [13]. Given

the behavior of the Bessel functions J2k+1(γ ),k � 1, and the
rapidly oscillating integrands of the integrals in Eq. (14) as k is
increased from 1, one can neglect such integrals. Thus, putting
everything together, Eq. (11) can be recast into the form

E(nT + T/2) = E(nT ) − δ

∫ nT +T/2

nT

.
x

2
(t)dt

+ T

2
.
x(t∗) sin[x(t∗)][1 − J0(γ )]

+ 4J1(γ ) sin[x(t∗∗)]

−{sin[x(nT + T/2)] + sin[x(nT )]} sin(γ ).

(15)

In light of Eq. (15), the following observation is in order. Let us
assume that, for fixed values of T and δ, the dynamics is chaotic
for a certain value of the amplitude, γchaos, which implies
that E(nT + T/2) − E(nT ) � 0 for some values of n. This
particular amplitude determines the values of the amplitude
functions 1 − J0(γchaos), J1(γchaos), and sin (γchaos). Now the
possibility of suppressing or diminishing the chaos existing at
γ = γchaos appears when one changes the amplitude γ such
that at least one of the amplitude functions 1 − J0(γ ), J1(γ ),
sin (γ ) decreases with respect to its respective value of 1 −
J0(γchaos), J1(γchaos), and sin (γchaos). Clearly, the probability
of suppressing the chaos existing for γ = γchaos is maximal
at the zeros of J1(γ ) and sin (γ ) since the function 1 − J0(γ )
does not present zeros for γ > 0. It is worth mentioning that
this prediction is subject to the caveat that it is not expected
to be uniformly valid for all values of the vibrating potential
period because of its dependence on the integration domain
[cf. Eq. (15)]. Numerical simulations confirmed its accuracy
over significant ranges of the vibrating potential period, as
can be seen in the illustrative instance shown in Fig. 3. One
sees indeed that the widest regularization windows in the
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FIG. 3. (Color online) Top panel: Functions 1 − J0 (upper line),
J1, and sine (dotted line) vs γ with J0,1 being Bessel functions of
the first kind. Bottom panel: Bifurcation diagram of energy E as
a function of the excitation amplitude γ for δ = 0.1 and ω = 0.67.
Vertical arrows indicate the four first zeros, 3.83,7.02,10.17,13.32, of
the Bessel function J1(γ ). The quantities plotted are dimensionless.

bifurcation diagram of energy versus amplitude appear around
and only around (all) the zeros of the function J1(γ ) over the
range of amplitudes considered.

III. CHAOS-CONTROL SCENARIO

Let us study now the suppressory effectiveness of a resonant
external excitation F (t) ≡ ηγ cos (ωt + ϕ) on the chaotic
dynamics of Eq. (1):

..
x + sin [x − γ cos (ωt)] = −δ

.
x + ηγ cos (ωt + ϕ), (16)

which is equivalent to
..

θ + sin θ = −δ
.

θ + δγω sin (ωt)

+ γω2 cos (ωt) + ηγ cos (ωt + ϕ) (17)

in the vibrating potential frame, and where η is an amplitude
factor accounting for the relative amplitude of the two
excitations involved while ϕ is the phase difference between
them. After assuming that Eqs. (16) and (17) exhibit chaotic
dynamics in the absence of any CS excitation (η = 0) for a
fixed set of parameters {δ,γ,ω}, one wishes to obtain analytical
estimates of the regularization regions in the ϕ-η parameter
plane where the chaotic dynamics is suppressed.

A. Melnikov’s method predictions

The application of MM to Eq. (17) yields the MF

M±(t0) = − D ± A cos (ωt0) ± B sin (ωt0)

± C cos (ωt0 + ϕ),

C ≡ 2πηγ sech (πω/2), (18)

where the functions D,A,B are given by Eq. (6). In the
following, it is assumed that a homoclinic bifurcation occurs
in the absence of any CS excitation (η = 0) such that the

condition (9) is satisfied, while the effectiveness of the CS
excitation (η > 0) at frustrating such a homoclinic bifurcation
will be examined by considering for example the MF M+(t0)
[the analysis of M−(t0) is similar and leads to the same
conclusions]. To this end, it is convenient to use the normalized
MF M+

n (t0) ≡ M+(t0)/D to write

M+
n (t0) = −1 + (R + R′′ cos ϕ) cos(ωt0)

+ (R′ − R′′ sin ϕ) sin(ωt0)

� −1 +
√

(R + R′′ cos ϕ)2 + (R′ − R′′ sin ϕ)2,

(19)

where R ≡ A/D,R′ ≡ B/D,R′′ ≡ C/D. If one now lets the
CS excitation act on the system such that

(R + R′′ cos ϕ)2 + (R′ − R′′ sin ϕ)2 � 1, (20)

then this relationship represents a sufficient condition for
M+

n (t0) to be negative (or null) for all t0. The equals sign
in Eq. (20) yields the boundary of the region in the ϕ-η plane
where homoclinic chaos is suppressed:

η = ω2 cos ϕ − δω sin ϕ

±
√

γ 2
th

γ 2
(ω4 + ω2δ2) − (ω2 sin ϕ + δω cos ϕ)2, (21)

with γ > γth [cf. Eq. (9)], and where the two signs before
the square root correspond to the two branches of the
boundary. The following remarks may now be in order. First,
the boundary function (21) represents a loop encircling the
regularization region in the ϕ-η plane which is symmetric
with respect to the optimal suppressory values ϕopt, i.e.,
that value of the phase difference for which the range of
suitable suppressory values of η is maximum. Second, in
contrast to the chaos-control scenario for systems subjected
to steady potentials, where the optimal suppressory values
of the phase difference are constants which do not depend
upon the remaining parameters [8], in the present case one
straightforwardly obtains [cf. Eq. (21); see Fig. 4]

ϕopt = ϕopt(δ/ω) ≡ − arctan (δ/ω). (22)

Keeping ω fixed, one thus obtains the limiting values

lim
δ→0

ϕopt = π, lim
δ→∞

ϕopt = π/2. (23)

This dependence of ϕopt on the ratio δ/ω represents a genuine
feature of the chaos-control scenario associated with nonsteady
potentials, being ultimately a consequence of the fact that there
exist two reference frames involved in the description of the
dynamics. Third, the regularization areas shrink as the ratio
γth/γ diminishes, which means that the chaos-control scenario
is sensitive to the strength of the initial chaotic state in the sense
of its proximity to the threshold condition (9).

B. Energy-based analysis

By analyzing the variation in the system’s energy in the
vibrating potential frame, one can obtain additional theoretical
confirmation of the main authentic feature of the above chaos-
control scenario. Indeed, Eq. (17) has the associated energy
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FIG. 4. (Color online) Generic boundary function [cf. Eq. (21)]
encircling the region where homoclinic bifurcations are frustrated in
the suppressory ϕ-η parameter plane for three values of the damping
coefficient: δ = 0.05 (dashed line), δ = 0.2 (solid line), and δ = 0.45
(dotted line). Fixed parameters: γ = 1.75,ω = 0.67.

equation

.

EV = −δ
.

θ
2 + δγω

.

θ sin (ωt)

+ γω2
.

θ cos (ωt) + ηγ
.

θ cos (ωt + ϕ), (24)

where EV (t) ≡ (1/2)
.

θ
2
(t) + U [θ (t)] [U (θ ) ≡ 1 − cos θ ] is

the energy function in the vibrating potential frame. By
introducing a new parameter ψ by means of the definitions

sin ψ = − δ√
δ2 + ω2

, cos ψ = ω√
δ2 + ω2

, (25)

one can conveniently recast Eq. (24) into the form

.

EV = −δ
.

θ
2 + ηγ

.

θ cos (ωt + ϕ)

+ γω
√

δ2 + ω2
.

θ cos (ωt + ψ). (26)

Integration of Eq. (26) over any interval [nT ,nT + T/2],
n = 0,1,2, . . . , yields

EV (nT + T/2)=EV (nT ) − δ

∫ nT +T/2

nT

.

θ
2
(t)dt

+ γ η

∫ nT +T/2

nT

θ (t) cos (ωt + ϕ)dt

+ γω
√

δ2+ω2

∫ nT +T/2

nT

θ (t) cos(ωt+ψ)dt.

(27)

Next, one applies the first mean value theorem to the last
two integrals in Eq. (27) to finally obtain, after some simple

algebra,

EV (nT + T/2) = EV (nT ) − δ

∫ nT +T/2

nT

.

θ
2
(t)dt

− γ T

π

.

θ (t∗)(ω
√

δ2 + ω2 sin ψ + η sin ϕ)

+ 2γ θ (t∗∗)(ω
√

δ2 + ω2 cos ψ + η cos ϕ)

− γ [θ (nT + T/2) + θ (nT )]

× (ω
√

δ2 + ω2 cos ψ + η cos ϕ), (28)

with t∗,t∗∗ ∈ [nT ,nT + T/2]. Let us assume now that, in the
absence of any CS excitation (η = 0) and keeping fixed the
values of T and δ, the dynamics is chaotic for a certain value
of the amplitude, γchaos, which implies that EV (nT + T/2) −
EV (nT ) � 0 for some values of n. For η > 0, the possibility
of suppressing or diminishing the chaos existing at γ = γchaos

appears when the factors (ω
√

δ2 + ω2 sin ψ + η sin ϕ) and
(ω

√
δ2 + ω2 cos ψ + η cos ϕ) in Eq. (28) decrease with

respect to their respective values for η = 0. Clearly, the
probability of suppressing the chaos existing for γ = γchaos is
maximal when such factors vanish, thus providing the optimal
suppressory value of the phase difference:

sin ϕopt = ωδ/η � 0 ⇐⇒ ϕopt ∈ [0,π ],

cos ϕopt = −ω2/η < 0 ⇐⇒ ϕopt ∈ ]π/2,3π/2[,

ϕopt = − arctan (δ/ω). (29)

Thus, one again obtains the aforementioned authentic feature
predicted from MM, ϕopt = ϕopt(δ/ω), and hence the limiting
values limδ→0 ϕopt = π , limδ→∞ ϕopt = π/2 [cf. Eqs. (22)
and (23)].

C. Numerical results

One can compare the theoretical results obtained from
the MM (and energy analysis) and LE calculations of the
model system (16). We computed LEs by integrating Eq. (16)
typically up to 104 drive cycles for each fixed set of parameters.
The numerical results confirmed the effectiveness of the
estimate (21). In the absence of the CS excitation (η = 0), the
model system (16) with δ = 0.1,γ = 1.4,ω = 0.67 exhibits
a strange chaotic attractor with a maximal LE λ+(η = 0) =
0.114. The maximal LE was calculated for each point on a
100 × 100 grid with phase difference ϕ and amplitude factor
η along the horizontal and vertical axes. The results are
shown in Fig. 5 (top), where the diagram was constructed
by only plotting points on the grid according to a color
code when the respective LE was greater than 10−3 and with
a dashed black contour denoting the theoretical boundary
function [cf. Eq. (21)]. One sees that complete regularization
[λ+(η > 0) � 0] mainly appears inside the maximal island
which symmetrically contains the theoretically predicted area
where even the chaotic transients are eliminated. A second
instance is shown in Fig. 5 (bottom) for the fixed parameters
δ = 0.255,γ = 1.75,ω = 0.67 and the model system (16)
exhibiting a strange chaotic attractor with a maximal LE
λ+(η = 0) = 0.122. A comparison of Figs. 5 [(top) and
(bottom)] nicely confirms that the deviation of the optimal
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FIG. 5. (Color online) Maximal LE in the ϕ-η parameter plane
for (δ,γ ) = (0.1,1.4) (top panel) and (δ,γ ) = (0.255,1.75) (bottom
panel). The dashed black contours indicate the predicted boundary
functions [cf. Eq. (21)] which are symmetric with respect to the
optimal suppressory values of the phase difference. Fixed frequency:
ω = 0.67. The quantities plotted are dimensionless.

phase difference from its limiting value π [cf. Eq. (23)]
increases as the damping coefficient is increased from 0.

Regarding the regularization routes, one typically finds
frequency-locked behavior inside the main regularization
island. Figure 6 shows bifurcation diagrams (energy E versus
phase difference ϕ) constructed by means of a Poincaré map for
ω = 0.67,η = 0.4, and two sets of the remaining parameters.
Starting at ϕ = 0, and taking the transient time as 500T after
every increment of �ϕ = π/300, we sampled 20 excitation
periods by picking up the first E value of each excitation cycle.
The same initial conditions were set for every ϕ after �ϕ was
added. The theoretical suppressory ranges are indicated for
comparison with the respective numerically obtained ranges
of suppression of chaos. We found that steady responses
inside the theoretical suppressory ranges are systematically

FIG. 6. (Color online) Bifurcation diagrams of the energy E as a
function of the phase difference ϕ for ω = 0.67,η = 0.4, and two sets
of the remaining parameters: (δ,γ ) = (0.1,1.4) (top panel), (δ,γ ) =
(0.255,1.75) (bottom panel). Vertical dashed lines delimit the ranges
corresponding to the predicted boundary functions [cf. Eq. (21)]. The
quantities plotted are dimensionless.

period-1 attractors which are reached as ϕ → ϕopt through a
fairly rich route including crises and inverse period-doubling
bifurcations. A comparison of Figs. 6 [(top) and (bottom)]
shows again how the deviation of the optimal phase difference
from its limiting value π [cf. Eq. (23)] increases as the damping
coefficient is increased.

Next, we assume a subharmonic resonance condi-
tion  = nω,n = 1,2,3, . . . , in the CS excitation F (t) ≡
ηγ cos (t + ϕ) [cf. Eq. (1) with f (t) = γ cos (ωt)] to study
the relative suppressory effectiveness of the main resonance
(n = 1) with respect to higher-order subharmonic resonances
(n > 1). One typically finds that the main resonance is the
most effective resonance in the sense that it provides the
widest phase difference intervals where chaos is suppressed
for a fixed choice of the remaining parameters. Figure 7
shows an illustrative example for the subharmonic resonances
n = {2,3,4} while a comparison of Figs. 6 (top) and 7 clearly
confirms the superior effectiveness of the main resonance.

1. Robustness against additive Gaussian noise

Since noise is unavoidable and significant in many physical
contexts, including many nanoscale devices, it is pertinent and
relevant to study the robustness of the present chaos-control
scenario against the presence of additive noise:
..
x + sin[x − γ cos(ωt)] = −δ

.
x + ηγ cos(ωt + ϕ) + √

σξ (t),

(30)

where ξ (t) is a Gaussian white noise with zero mean and
〈ξ (t)ξ (t + s)〉 = δD(s), with δD(s) being the Dirac δ, while
σ = 2δkbT with kb and T being the Boltzmann constant
and temperature, respectively. To study numerically the effect
of noise on the purely deterministic chaos-control scenario,
we calculated the maximal LE on averaging over different
realizations of noise, 〈λ+〉, and compare it with that of the
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FIG. 7. (Color online) Bifurcation diagrams of the energy E as a
function of the phase difference ϕ for δ = 0.1,γ = 1.4,ω = 0.67,η =
0.4, and three different values of the CS frequency (see the text):
 = 2ω (a),  = 3ω (b), and  = 4ω (c). The quantities plotted are
dimensionless.

purely deterministic case. In the absence of any CS excitation
(η = 0) the strength of the purely deterministic chaotic behav-
ior monotonously decreases as the noise intensity is increased
from 0, as is shown in the example of Fig. 8. In the presence
of CS excitations (η > 0) one typically obtains a shrinkage
of the regularization regions in parameter space with respect
to the purely deterministic case. Figure 9 shows the averaged
maximal LE in the ϕ-η parameter plane for two values of the
noise intensity: σ = 0.00459 [Fig. 9 (top)] and σ = 0.0153
[Fig. 9 (bottom)], and the same remaining parameters as in
the purely deterministic case shown in Fig. 5 (bottom). A
comparison of Figs. 9 and 5 (bottom) clearly confirms the

FIG. 8. Maximal LE (see the text) versus noise intensity for the
noisy system [cf. Eq. (30)] with δ = 0.255,γ = 1.75,ω = 0.67, and
η = 0. The quantities plotted are dimensionless.

FIG. 9. (Color online) Maximal LE (see the text) in the ϕ-η
parameter plane for δ = 0.255,γ = 1.75,ω = 0.67, and two values of
the noise intensity: σ = 0.00459 (top panel) and σ = 0.0153 (bottom
panel). The dashed black contour indicate the predicted boundary
function for the purely deterministic case [σ = 0, cf. Eq. (21)]. The
quantities plotted are dimensionless.
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robustness of the CS excitation in suppressing chaos against
noise. In particular, one sees that the maximum suppression
of chaos is achieved for the same optimal suppressory value
of ϕ than that corresponding to the purely deterministic
case (σ = 0). Remarkably, the most robust region in the
suppressory ϕ-η parameter plane is precisely that encircled by
the theoretical boundary function corresponding to the purely
deterministic case [cf. Eq. (21), see Fig. 9 (bottom)].

2. Robustness against reshaping of CS excitations

Next, we briefly study the robustness of the chaos-control
scenario against reshaping of the CS excitation by considering
the generalized systems:

..
x + sin [x − γ cos (ωt)] = −δ

.
x + ηγ sn (t + �; m),

(31)
..
x + sin [x − γ cos (ωt)] = −δ

.
x + ηγ cn (t + �; m),

(32)

where all variables and parameters are dimensionless. Here,
cn (·; m), sn (·; m) are Jacobian elliptic functions of parameter
m ∈ [0,1],  = (m,T ) ≡ 4K(m)/T , and � = �(m,T ) ≡
2K(m)ϕ/π,ϕ ∈ [0,2π ], where K(m) is the complete elliptic
integral of the first kind (see, e.g., Refs. [13,14]). When m = 0,
one has

sn (t + �; m = 0) = cos (ωt + ϕ − π/2),

cn (t + �; m = 0) = cos (ωt + ϕ), (33)

i.e., one recovers the case of a harmonic CS excitation. In the
other limit,

sn(t + �; m = 1) = 4

π

∞∑
n=1

sin[(2n − 1)(ωt + ϕ)]

2n − 1
,

(34)

which is the square-wave function of period T . The effect of
renormalization of the elliptic sine-cosine argument is clear:
With T constant, solely the excitation shape is varied by in-
creasing the shape parameter m from 0 to 1 (see Fig. 10). There
is thus a smooth transition from a sine function to a square wave
for the elliptic sine sn (t + �; m). Since the elliptic cosine
cn (t + �; m) represents a periodic string of symmetric
pulses, whose effective width decreases as m increases from
m = 0, in the limiting value m = 1 the string vanishes, i.e., one
recovers Eq. (3) (absence of any CS excitation). This allows
one to study the genuine effect on the chaos-control scenario
of reshaping the CS excitation [cf. Eqs. (16), (31), and (32)].
Some illustrative examples for the case of an elliptic sine
(cosine) excitation are given in Fig. 11 (12) where we show
bifurcation diagrams (energy E versus phase difference ϕ) for
the same four values of the shape parameter as in Fig. 10:
m = 0, 0.99, 1–10−8, 1–10−14. In the case of the elliptic sine
excitation [see Fig. 10 (top)], we obtain that the regularization
scenario remains the same as the excitation shape is varied
from a sine function [Fig. 11(a)] to a square wave [Fig. 11(d)].
Notice that the widest regularization window is symmetric
with respect to the optimal value ϕopt � π/2 + π = 3π/2, as
expected from Eqs. (23) and (33). In the case of the elliptic
cosine excitation [see Fig. 10 (bottom)], we obtain that the

FIG. 10. (Color online) Plots of the functions sn[4K(m)t/T ; m]
(elliptic sine, top panel) and cn[4K(m)t/T ; m] (elliptic cosine,
bottom panel) for m = 0 (dotted line), 0.99 (dashed line), 1−10−8

(thin line), and 1−10−14 (thick line).

regularization scenario remains the same for sufficiently wide
pulses, as for m = 0 [Fig. 12(a)] and m = 0.99 [Fig. 12(b)],
for which the widest regularization window is symmetric
with respect to the optimal value ϕopt � π , as expected
from Eqs. (23) and (33). This main regularization window
is no longer maintained for sufficiently narrow pulses, as for
m = 1 − 10−8 [Fig. 12(c)], for which one sees the appearance

FIG. 11. (Color online) Bifurcation diagrams of the energy E as
a function of the phase difference ϕ for a CS excitation given by
an elliptic sine [Eq. (31)] with δ = 0.1,γ = 1.4,ω = 0.67,η = 0.4,
and four values of the shape parameter: m = 0 (a), m = 0.99, (c)
m = 1 − 10−8, and (d) m = 1 − 10−14. The quantities plotted are
dimensionless.
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FIG. 12. (Color online) Bifurcation diagrams of the energy E as
a function of the phase difference ϕ for a CS excitation given by an
elliptic cosine [Eq. (32)] with δ = 0.1,γ = 1.4,ω = 0.67,η = 0.4,
and four values of the shape parameter: m = 0 (a), m = 0.99, (c)
m = 1 − 10−8, and (d) m = 1 − 10−14. The quantities plotted are
dimensionless.

of new noticeable regularization windows. For even narrower
pulses, as for m = 1 − 10−14 [Fig. 12(d)], the regularization
windows are ever narrower as m → 1, as expected from
the behavior of the elliptic cosine as m → 1 [see Fig. 10
(bottom)]. An exhaustive study of the suppressory effect of
general (nonharmonic) CS excitations is beyond the scope of
the present work and further analysis will be given elsewhere.

IV. CONCLUSION

In this paper we have studied both theoretically and numeri-
cally the dissipative chaotic dynamics of a paradigmatic model
in which a damped particle is subjected to a horizontally and
harmonically vibrating periodic potential. The effectiveness of
an added harmonic external excitation which is in resonance
with the vibrating potential at suppressing the chaos existing
in its absence was predicted theoretically and then confirmed
numerically. The phase difference between the two harmonic
excitations involved was shown to play a crucial role in the

chaos-control scenario, with the special feature that its optimal
value depends upon the ratio between the damping coefficient
and the excitation frequency. This represents an authentic
feature of the chaos-control scenario associated with nonsteady
potentials which is in contrast to the steady potential case, in
which the optimal suppressory values of the phase difference
are constants which do not depend upon the remaining
parameters [8,15–17]. Also, we found that the present chaos-
control scenario is robust against the presence of low-intensity
Gaussian noise, thus allowing its potential application to small
systems where the presence of thermal noise is unavoidable.
Additionally, we provided numerical evidence of the robust-
ness of the chaos-control scenario against the reshaping of
chaos-suppressing excitations. Remarkably, the application of
mean value theorems to analyzing the system’s energy revealed
how powerful these tools are at extracting useful information
regarding the order-chaos threshold in parameter space regions
in which Melnikov’s method is inapplicable.

The present results may be directly applied to diverse
physical contexts where the paradigmatic model described by
Eq. (1) appears naturally while the chaotic dynamics is clearly
undesirable, including, for example, setups of a noncontact
rack-and-pinion type coupled by the lateral Casimir force
[3] or the chaotic phase oscillations of a proton beam in
a cooler synchrotron [1]. Some interesting open problems
remain. Among them, the authors are presently considering
the structural stability of the chaos-control scenario when the
vibrating potential is subjected to generic (nonharmonic) peri-
odic excitations and the chaos-suppressing external excitations
are generic periodic functions, too. The effectiveness of the
chaos-control scenario in the contexts of linear chains and
scale-free networks points to additional interesting problems
for future research.
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