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Synchronization and plateau splitting of coupled oscillators with long-range power-law interactions
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We investigate synchronization and plateau splitting of coupled oscillators on a one-dimensional lattice with
long-range interactions that decay over distance as a power law. We show that in the thermodynamic limit the
dynamics of systems of coupled oscillators with power-law exponent α � 1 is identical to that of the all-to-all
coupling case. For α > 1, oscillatory behavior of the phase coherence appears as a result of single plateau splitting
into multiple plateaus. A coarse-graining method is used to investigate the onset of plateau splitting. We analyze
a simple oscillatory state formed by two plateaus in detail and propose a systematic approach to predict the onset
of plateau splitting. The prediction of breaking points of plateau splitting is in quantitatively good agreement
with numerical simulations.
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I. INTRODUCTION

Synchronization is the phenomenon where two or more
distinct individuals come to behave in unison due to interac-
tions. The synchronization phenomena are commonly seen in a
wide range of physical, chemical, and biological systems, such
as oscillating chemical reactions [1–3], Josephson junction
arrays [4–7], audience clapping [8,9], pendulum and crowd
synchrony through a common medium [10–12], fireflies
flashing [13–15], human brain network, and neuronal systems
[16–21].

The first mathematical model on collective synchronization
dates back to the mid-1960s by Winfree [22]. He reduced the
complex dynamics of coupled limit-cycle oscillators to the
phase equations of oscillators under the assumptions of weakly
coupled oscillators and nearly identical oscillators. Kuramoto
refined Winfree’s concept and recast the phase model to be
mathematically tractable [2,23–25]. The Kuramoto model
describes the all-to-all, uniformly coupled oscillators with
purely sinusoidal interactions which can be solved analytically
and provides a basic understanding of the mechanism of
collective synchronization. Over the past few decades, the
Kuramoto model has been recast in various forms to explore
synchronization phenomena in different aspects, such as
the effects of complex network topology [26–28], short-
range interactions [29–32], time-delayed couplings [33–35],
repulsive coupling [36,37], the presence of noises [38–40],
various types of frequency distribution [41–45], etc. It is
important to note that many of the above-mentioned prob-
lems can be solved analytically using a recent theoretical
development by Ott and Antonsen; see Refs. [46,47] for more
details.

It is of interest to explore the synchronization phenomenon
of coupled oscillators with interactions decay over distance as
a power law (i.e., interaction is proportional to d−α where d is
the distance between oscillators), since the interaction between
biological oscillators diminishes as they are far apart. The
nearest-neighbor coupling is a special case of the power-law
coupling as α → ∞. Strogatz and Mirollo [30] and Daido
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[31] show independently that there is no long-range order in
the thermodynamic limit for a one-dimensional chain. And
in higher-dimensional lattices, spongelike clusters of synchro-
nized oscillators are expected. For oscillators with long-range
power-law interactions, Rogers and Wille [48] show through a
numerical investigation for a one-dimensional system that as
the range of interactions decreases a greater coupling strength
is needed in order to achieve a synchronized state. However,
synchronization cannot occur for finite coupling strength if
α > 2 [48]. Maródi et al. investigated a similar power-law
coupling system but considered the realistic coupling that
depends only on local phases and the distance between
oscillators [49]. Their numerical results show that even if the
coupling strength is arbitrarily weak, synchronization for large
populations is possible if the power-law exponent is less than
the dimensions of the lattice. Recently, Chowdhury and Cross
presented analytical calculations and numerical simulations
that demonstrate a transition from a synchronized state to
an unsynchronized state for a sufficiently large but finite
coupling strength when the power-law exponent is across 1.5
for oscillators on a one-dimensional lattice [50].

In this paper, we investigate the dynamical behavior
of oscillators with long-range power-law interactions. We
use a local order parameter that represents the degree of
synchronization of individual oscillators to derive an analytical
condition for synchronization. We show that if α � 1 a system
of locally coupled oscillators on a one-dimensional lattice is
equivalent to a uniform coupling (all-to-all) system in the
thermodynamic limit. For α > 1, the system of oscillators
could reach either a steady sync state or an oscillatory
state, with finite coupling strength depending on the spatial
distribution of the natural frequency. We use a coarse-graining
method to analyze the oscillatory state. In particular, we
analyze the two-plateau (two-cluster) system in detail and
derive an analytical expression to predict breaking points of
plateau splitting.

This paper is organized as follows: In Sec. II, we briefly
review the Kuramoto model of locally coupled oscillators
and introduce the local order parameter. With the local order
parameter, we derive an analytical expression that is used to
determine whether the locally coupled system would recover
the analytical result for the all-to-all coupling system. In
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Sec. III, numerical investigation of critical coupling strength
is discussed and a coarse-graining method is used to derive
the criterion of plateau splitting. In Sec. IV, we analyze the
characteristics of the oscillatory state in detail. In addition,
the prediction of the breaking points of plateau splitting
is made through the criterion of plateau splitting. Finally,
the prediction of plateau splitting is examined by numerical
simulations.

II. KURAMOTO MODEL OF LOCALLY
COUPLED OSCILLATORS

A. Governing equations

The set of governing equations for the Kuramoto model of
N locally coupled oscillators is (i = 1, . . . ,N)

θ̇i = ωi + K

η

N∑
j=1

f (dij ) sin (θj − θi), (1)

where θi,j is the phase of i, j th oscillator, ωi is the natural
angular frequency chosen randomly from a symmetric distri-
bution function g(ω), K is the coupling strength, f (dij ) is the
influence function that varies with the distance dij between
the ith and j th oscillator, and η is a normalization constant
defined as

η ≡
N∑

j=1

f (dij ). (2)

For a positive influence function, the sinusoidal function
ensures that the ith oscillator tends to catch up the phase of
the j th oscillator. In this paper, we consider the oscillators
are distributed in a one-dimensional chain and the periodic
boundary condition is used. The natural frequency distribution
function is chosen to have the form of the Lorentzian function
with zero mean,

g(ω) = γ

π (ω2 + γ 2)
, (3)

where γ is the half-width at half maximum. The influence
function is set to be a monotonically decaying power-law
function f (dij ) = d−α

ij , where the exponent α determines
the range of interaction ranging from the all-to-all coupling
(α = 0) to the nearest-neighbor coupling (α → ∞). For an
all-to-all coupling system, the governing equations become

θ̇i = ωi + K

N

N∑
j=1

sin (θj − θi), (4)

and the order parameter is defined as

Z = reiφ = 1

N

N∑
j=1

eiθj , (5)

where r is the amplitude of the order parameter Z representing
the degree of synchronization of the system, and φ is the
phase of the order parameter. The governing equation can be
rewritten in a form that the ith oscillator is coupled to the mean
field r and φ,

θ̇i = ωi + Krsin (φ − θi). (6)

The phase of the ith oscillator is coupled to the mean phase
φ and with an effective coupling strength Kr . The oscillators
can be divided into two groups: locked oscillators and drifting
oscillators. From Eq. (6), the locked oscillators are those with
the angular frequencies obeying |ω| � Kr , and the drifting
oscillators are those with the angular frequencies satisfying
|ω| > Kr . The system starts to synchronize as the coupling
strength exceeds the critical coupling strength Kc, and right
at the onset only oscillators with natural angular frequency
around 0 are locked. Thus it is expected that the critical
coupling strength depends on g(0) but not the shape of g(ω). It
is known that an all-to-all coupling system with the symmetric
unimodal distribution function g(ω) starts to synchronize as
the coupling strength K exceeds the critical coupling strength
Kc = 2/[πg(0)] and exhibits a supercritical bifurcation. For
a Lorentzian distribution, the critical coupling strength is
Kc = 2γ and the degree of synchronization changes with K

near the onset, r = √
1 − Kc/K .

B. Local order parameter

For a locally coupled system, a local order parameter is
defined in a similar way,

Zj = r̄j e
iφ̄j = 1

η

N∑
	=1

f (dj	)eiθ	 . (7)

Zj is a locally weighted order parameter, and r̄j and φ̄j

represent the local degree of synchronization and its phase.
Similarly, the governing equations of oscillators are coupled
to the local order parameters,

θ̇j = ωj + Kr̄j sin (φ̄j − θj ). (8)

The evolution of the phase for each oscillator depends on
the local order parameter r̄j and φ̄j . Thus the dynamics
of the locally coupled system is associated with the local
order parameters and the variation of local order parameters.
For simplicity, we assume N to be an odd number for the
following derivation without loss of generality, and define
M = (N − 1)/2. In addition, the oscillators are spaced evenly
and the distance between the adjacent oscillators is denoted by

d. The variation of the local order parameter between two
adjacent oscillators can be estimated by Eq. (7):

|Zj − Zj+1| = |r̄j eiφ̄j − r̄j+1 eiφ̄j+1 |

= 1

η

∣∣∣∣∣
M∑

k=1

f (k
d) eiθj+k + f (k
d) eiθj−k − f (k
d) eiθj+1+k − f (k
d) eiθj+1−k

∣∣∣∣∣
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≈ 1

η

∣∣∣∣∣
M−1∑
k=1

[f (k
d) − f ((k + 1)
d)] (eiθj−k − eiθj+k+1 ) + f (
d) (eiθj+1 − eiθj )

∣∣∣∣∣
� 2

η

(
M−1∑
k=1

[f (k
d) − f ((k + 1)
d)] + f (
d)

)
≈ 4f (
d)

η
≡ ξ. (9)

The maximum of the magnitude of the variation of the local
order parameter between two adjacent oscillators is denoted by
ξ , and it is proportional to the ratio of the influence function at
the shortest distance f (
d) and is inversely proportional to the
normalization constant η. In the case of ξ → 0, the local order
parameter is identical to the global order parameter, since Z =
(1/N )

∑
j Zj = (1/N)

∑
j r̄j e

iφ̄j = reiφ . For locally coupled
systems with ξ → 0, the interaction of oscillators is long range
so that the locally coupled systems behave the same way as
the all-to-all coupling case. For a power-law influence function
f (dij ) = d−α

ij , ξ can be expressed as a ζ function in the limit
N → ∞:

ξ = 4

(
2

∞∑
k=1

k−α

)−1

= 2

ζ (α)
. (10)

If one adopts the thermodynamic limit N → ∞ and
the long-range interaction 0 � α � 1, the local variation ξ

becomes zero, since ζ (α) diverges and the locally coupled
system is equivalent to the all-to-all coupling case. And the
value of the critical coupling strength starts to deviate from
that in the global case, as α is greater than unity. The critical
exponent αc = 1 agrees with earlier studies of power-law
coupling systems [48–50]. Figure 1 plots numerical results for
the degree of synchronization against the coupling strength for
α � 1 and α > 1. Numerically, the degree of synchronization
is the time-averaged value of r after the transient period. The
simulations are carried out using Eq. (1) with 1,024 oscillators
for α � 1 and 10,112 oscillators for α > 1, and the half-width
at half maximum of the Lorentzian distribution γ = 0.4.
Note that γ is set to be 0.4 for all numerical simulations
presented in this paper. The corresponding critical coupling
strength for the all-to-all coupling case in the thermodynamic
limit is Kc = 2γ = 0.8. The bifurcation curves for α � 1 are
in quantitative agreement with the bifurcation curve for the
all-to-all coupling case [see Fig. 1(a)], while the bifurcation
curves shift toward a higher coupling strength for α > 1 [see
Fig. 1(b)]. Thus one can determine whether the locally coupled
systems follow the prediction of the globally coupled systems
by testing the convergence of the variation of the local order
parameters.

III. STATIONARY SYNCHRONIZATION
AND OSCILLATORY STATES

A. Bistability

For coupled oscillators with a power-law interaction and
the power-law exponent α > 1, the outcome of the degree
of synchronization as t → ∞ is determined by the spatial
distribution of the natural angular frequency of oscillators.
The degree of synchronization of coupled oscillators r either
reaches a stationary value, which signals that all locked

oscillators are in sync, or becomes oscillatory over time, which
indicates that more than one locally synchronized cluster of
oscillators is formed. We define the probability P (K) as the
probability of locally coupled systems reaching the nonzero
stationary synchronization for a given coupling strength K . For
α � 1, in the thermodynamic limit, the probability function
P (K) is simply a step function that P (K) jumps from 0 to 1 as
the coupling strength exceeds Kc. Numerically, we investigate
the probability function P (K) for α > 1 using N = 10,112
and γ = 0.4. The probability function P (K) calculated from
100 independent simulations against α is plotted in Fig. 2. For
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FIG. 1. (Color online) The degree of synchronization r against
the coupling strength K is plotted in (a) and (b) for α � 1 and α > 1,
respectively. Results of numerical simulations are plotted in symbols
and are compared to the theoretical prediction of the uniform coupling
system (black line). Note that the K axis is plotted in linear and
logarithmic scale in (a) and (b), respectively. And the number of
oscillators used in simulations is 1,024 and 10,112 in (a) and (b),
respectively.
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FIG. 2. (Color online) Probability of locally coupled systems
from numerical simulations reaching a nonzero stationary sync state
as a function of power-law exponent α and coupling strength K . The
locally coupled systems could reach stationary sync states once the
coupling strength is greater than Kd . And the systems always reach
stationary sync states as K > Ks . Note that Ku

c denotes the theoretical
critical coupling strength for the uniform coupling system.

α > 1, the probability function is a smooth function remaining
at 0 if the coupling strength is less than Kd . Once the coupling
strength exceeds Kd , the probability function rises smoothly
and eventually reaches unity at Ks . The Ks and Kd curves
against α suggest that both values grow exponentially with α

for α > 1.5 (see Fig. 3).

B. Oscillatory state and plateau splitting

A plateau or a cluster is a domain of oscillators in which
locked oscillators have the same time-averaged angular fre-
quency. The time-averaged angular frequency of i oscillators

FIG. 3. (Color online) The phase diagram of stationary sync
states, oscillatory states, and the coexistence region is obtained from
numerical simulations (see Fig. 2). The oscillatory states appear
as K < Kd , and the probability of obtaining the oscillatory state
diminishes as K approaches Ks . For α > 1.5, both Ks and Kd curves
are best fitted by straight lines (dashed lines). Note that Ku

c denotes
the theoretical critical coupling strength for the uniform coupling
system.

is defined as

ω̃i(t) = θi(t + To) − θi(t − To)

2To

, (11)

where To is taken to be a period of time that is much larger
than 2π/ωi . The relative phase difference of locked oscillators
in a plateau must remain the same, since within a plateau
phases of oscillators are rotating with the same time-averaged
angular frequency. The stationary synchronization is a result of
coherent movement of all locked oscillators, which indicates
a single macroscopic plateau. Rogers and Wille have reported
that a macroscopic plateau splits into two or more plateaus as
K decreases or α increases [48]. As multiple plateaus form,
one starts to observe the oscillatory state of r due to incoherent
motion between plateaus. Therefore, it is of interest to predict
at which value of K and α the single plateau would split into
two plateaus, and at which oscillators the plateau splits. We
discuss the criterion of plateau splitting in this section and use
this criterion to predict the breaking points of the plateau in
Sec. IV. In the following, we investigate the onset of plateau
splitting: the two-plateau state.

We assume that two plateaus, namely, A and B, are
presented in a one-dimensional ring, and the number of
oscillators in plateau A and B is NA and NB , respectively.
The governing equations for oscillators in each plateau are

θ̇i = ωi + K

η

∑
j �=i

f (dij ) sin (θj − θi) i ∈ {A},
(12)

θ̇i = ωi + K

η

∑
j �=i

f (dij ) sin (θj − θi) i ∈ {B}.

The mean angular velocity of each plateau is obtained by
taking the average over all oscillators within the same plateau.
We obtain

〈θ̇A〉 = 〈ωA〉 + K

NA

∑
i∈A

∑
j∈B

f (dij )

η
sin (θj − θi),

(13)

〈θ̇B〉 = 〈ωB〉 + K

NB

∑
i∈B

∑
j∈A

f (dij )

η
sin (θj − θi),

where 〈· · · 〉 denotes averaging over oscillators within a
plateau. The interaction terms involved with oscillators within
the same plateau cancel out each other due to asymmetry of
the sinusoidal coupling function. By the above coarse-grained
approach, the locally coupled system can be seen as a two-
oscillator system. Each coarse-grained oscillator has a natural
angular frequency that is the average of the natural angular
frequencies of oscillators within the plateau. And the coupling
between these two coarse-grained oscillators is merely related
to the sum of all cross-plateau pair interactions. By defining
an effective coupling function,

χ ≡
∑
i∈A

∑
j∈B

f (dij )

η
sin (θj − θi), (14)

the difference between the mean angular velocity of plateau A

and B can be written as

〈θ̇A〉 − 〈θ̇B〉 = 〈ωA〉 − 〈ωB〉 + Kχ

(
1

NA

+ 1

NB

)
. (15)
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FIG. 4. (Color online) The criterion of plateau splitting is given
by Eq. (16), which is inversely proportional to χb/NR . We plot χb/NR

as a function of number fraction of oscillators in plateau A for α = 1.1
and N = 1,024.

The plateau splitting vanishes as the left-hand side of Eq. (15)
equals zero. For a power-law influence function, the value
of the effective coupling function is bounded, −χb < χ <

χb, where χb = ∑
i∈A

∑
j∈B f (dij )/η, since f (dij ) is always

greater than zero. Thus we define p to be the ratio of the
natural angular frequency difference and the effective coupling
strength between two plateaus,

p ≡ |〈ωA〉 − 〈ωB〉|
Kχb/NR

, (16)

where 1/NR ≡ 1/NA + 1/NB . For p � 1, the difference in
mean natural angular frequency between plateaus A and B

overcomes the attractive interaction so that the system forms
two plateaus. Equation (16) gives a quantitative relation of
the formation of two plateaus for a given set of parameters.
It is clear that as the coupling strength K decreases or α

increases the value of p increases. Furthermore, χb increases
as the fraction of plateau A increases and reaches its maximum
when two plateaus have an equal number of oscillators (i.e.,
NA/N = 0.5). In contrast, 1/NR is a monotonically decreasing
function as the fraction of plateau A increases from 0 to 0.5.
The product of χb and 1/NR as a function of the fraction of
plateau A is plotted in Fig. 4 for α = 1.1 and N = 1,024.
The value of χb/NR reaches its minimum at NA/N = 0.5,
which suggests that the maximum value of p occurs as two
plateaus have the same size. Nevertheless, the value of p also
depends on the difference between the mean natural angular
frequency of plateaus. Thus the spatial distribution of the
natural frequency of oscillators is the main determinant of
plateau splitting. Therefore, the locally coupled oscillators
could either reach a stationary sync state or an oscillatory state
that completely relies on the initial spatial distribution of the
natural frequency; see the coexistence region in Fig. 3. With a
given spatial distribution of the natural frequency, Eq. (16) can
be used to predict the breaking points of plateaus as discussed
in the following section.

IV. OSCILLATORY STATE ANALYSIS

The oscillatory behavior of the global order parameter r(t)
is a result of the dynamics of unsynchronized coarse-grained

FIG. 5. Examples from numerical simulations of oscillatory
states for power-law coupled systems with parameters α = 1.4,
N = 1,024, and K = 2.0 for the bottom two figures and K = 2.5 for
the top three figures. The time step used in simulations is dt = 1/8
and dt = 1/40 for K = 2.0 and K = 2.5, respectively.

oscillators as discussed in the previous section. The oscillatory
state becomes more complex as more plateaus are formed in
the system. Various oscillatory behaviors of r(t) are illustrated
in Fig. 5 for α = 1,4, N = 1,024, and various coupling
strengths K . The mechanism for the oscillatory behavior
is intuitive. When the mean phase of any two clusters of
oscillators approaches each other, the global order parameter
r(t) increases accordingly. On the contrary, r(t) decreases as
the mean phase of plateaus runs away from each other. Thus
the phase coherence r(t) rises and falls periodically.

A. Characteristics of the two-plateau state

The behavior of two-plateau oscillatory state can be
quantified by its amplitude and period. The amplitude of r(t)
is defined as the difference of its maximum and minimum
values. The maximum of r(t) occurs when two plateaus
reach the same mean phase, 〈θA〉 = 〈θB〉, while the minimum
occurs when two plateaus are out of phase, 〈θA〉 = −〈θB〉.
For simplicity, we take the smaller plateau to be plateau A in
the following discussion. The amplitude of r(t) is obtained
straightforwardly rmax − rmin = 2rANA/N , where rA is the
degree of synchronization of plateau A. The amplitude is
proportional to the size of the smaller plateau. Simulations of
locally coupled systems are carried out with different values
of α and K , and Fig. 6 shows a linear relation between the
amplitude and NA/N for 67 two-plateau states. On the other
hand, the frequency of the oscillatory state derived from the
two-plateau state is linearly proportional to the difference of
the mean angular velocity of two plateaus that is consistent
with results of numerical simulations.

B. Prediction of breaking points of plateau splitting

Equation (16) can be used to predict the breaking points of
the two-plateau state. For the above-mentioned locally coupled
system, the nearest-neighbor coupling is the strongest and
plays a crucial role in influencing the phases of oscillators
nearby. The nearest-neighbor coupling becomes effectively
weak around drifting oscillators, since the phase of drifting
oscillators drifts and the time average coupling is negligible.
Therefore, for a single plateau system, as the coupling strength

062918-5
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FIG. 6. (Color online) The amplitude of the oscillatory state r(t)
against the size fraction of a smaller plateau for a two-plateau state.
The numerical results (solid circles) are obtained from 67 oscillatory
states and can be fitted linearly as predicted by the theory (dashed
line).

K decreases one would expect the single plateau to split into
two plateaus around a certain pair of drifting oscillators. In
order to predict the breaking points, we first identify locations
of drifting oscillators by the relation |ωi | > Kr , where r

is the degree of synchronization of the single plateau state
right before plateau splitting. With the locations of drifting
oscillators, we calculate the value of p using Eq. (16) for
all possible pairs of breaking points. The value of p for
different pairs of breaking points is plotted in Fig. 7(a) for
1,024 oscillators, α = 1.4, K = 2.5; two pairs of breaking
points with large value of p are found around (6,311) and
(311,1012). The corresponding simulation results show that
breaking points occur at (6,311) [see Fig. 7(b)]. The value
of p calculated using Eq. (16) must be greater than unity
for plateau splitting. However, it is found numerically that
plateau splitting occurs when p is less than unity in some cases,
because previously we used the upper bound value of coupling
terms to estimate p. In order to give a more accurate prediction
of breaking points, we furthermore consider the details of
phase dispersion of locked oscillators in the following section.

C. Phase dispersion

For locked oscillators in a plateau, Eq. (8) gives the relation
between the phase of the oscillator and its natural frequency,

θi = φ̄i + arcsin

(
ωi

Kr̄i

)
. (17)

At the onset of plateau splitting, r̄i can be approximated by the
degree of synchronization r right before plateau splitting. The
simulation results are in quantitatively good agreement with
Eq. (17) (see Fig. 8). In addition, φ̄i can be well approximated
by the mean phase of the plateau. Therefore, in the two-plateau
system, the phase of a locked oscillator in plateau A or B is
approximately

θi = 〈θA〉 + arcsin

(
ωi

Kr

)
i ∈ A,

(18)

θi = 〈θB〉 + arcsin

(
ωi

Kr

)
i ∈ B.

FIG. 7. (Color online) (a) For a given frequency distribution, the
value of p calculated from Eq. (16) (circles) and the value of p∗

from Eq. (20) (squares) as functions of the position of the breaking
point. (The other breaking point is set to be located at i = 6.) The
maximum values of p and p∗ occur around the pair of breaking points
(6,311). (b) A snapshot of time-averaged angular frequency from the
simulation that illustrates the plateau splits around the oscillator pair
(6,311). Parameters used in simulations are α = 1.4,N = 1,024, and
K = 2.5.

The phases of locked oscillators with ω > 0 are ahead of
the mean phase of the plateau, while the phases of locked
oscillators with ω < 0 are behind of the mean phase of

FIG. 8. (Color online) The difference between the phase of the
oscillator and the phase of the local order parameter against its natural
angular frequency from numerical simulations (circles). The phase
dispersion distribution is in quantitative agreement with Eq. (17), θi −
φ̄i = arcsin [ωi/(Kr)], where K = 2.5 and r = 0.69 (dashed line).
The value of r employed here is the degree of synchronization just
right before the onset of plateau splitting. The simulation parameters
are α = 1.4 and N = 1,024.
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FIG. 9. (Color online) (a) For a given frequency distribution, the
value of p calculated from Eq. (16) (circles) and the value of p∗

from Eq. (20) (squares) as functions of the position of the breaking
point. (The other breaking point is set to be located at i = 293.)
The maximum values of p and p∗ occur around the pair of breaking
points (293,389). (b) A snapshot of time-averaged angular frequency
from the simulations that illustrates the plateau splits around the
oscillator pair (293,389). Parameters used in simulations are α =
1.4,N = 1,024, and K = 2.5.

the plateau. Since the coupling between two plateaus is the
strongest when the phase difference between two plateaus is
π/2, we consider the special case where 〈θA〉 − 〈θB〉 = π/2.
By taking into account the dispersion of phases, the effective
coupling term becomes a bit smaller,

χ =
∑
i∈A

∑
j∈B

f (dij )

η
sin (θj − θi)

=
∑
i∈A

∑
j∈B

f (dij )

η

[√
1−

(
ωj

Kr

)2
√

1 −
(

ωi

Kr

)2

+ ωj

Kr

ωi

Kr

]

≈
∑
i∈A

∑
j∈B

f (dij )

η

[
1 − 1

2

(
ωj − ωi

Kr

)2]
, (19)

which gives rise to a more accurate criterion for plateau
splitting,

p∗ = NRη

K
· |〈ωA〉 − 〈ωB〉|∑

i∈A

∑
j∈B f (dij )[1 − (ωj − ωi)2/(

√
2Kr)2]

.

(20)
Numerically, Eq. (20) gives a more accurate prediction of

the breaking points. One more example is shown in Fig. 9
where both Eqs. (16) and (20) predict that the pair of the
breaking points occurs around (293,389). Nevertheless, the
value of p calculated using Eq. (16) is less than unity, while it
is greater than unity calculated using Eq. (20).

V. CONCLUSION

We investigate the synchronization phenomena for locally
coupled oscillators located on a one-dimensional ring. In
particular, we employ oscillators with a power-law interaction,
d−α . One recovers a uniform coupling system as α → 0, and
a nearest-neighbor coupling system as α → ∞. We introduce
a local order parameter that represents the degree of local
synchronization, and the individual oscillator can be seen to
couple to the local order parameter. Using the local order
parameter, we define the maximum variation of the magnitude
of the local order parameter ξ . In the thermodynamic limit, ξ

is inversely proportional to the ζ function, which becomes
zero for α � 1. Thus in the limit of N → ∞, the locally
coupled systems with α � 1 are equivalent to the uniform
all-to-all system. Similarly, one can determine whether a
group of oscillators with an arbitrary form of interaction can
be reduced to an all-to-all coupling system by examining
if the parameter ξ vanishes or not. If ξ does not vanish,
the difference between the local order parameter propagates
through the one-dimensional chain, and the system could
reach either a stationary synchronized state or an oscillatory
state, depending on the initial spatial arrangement of the
natural angular frequency. For the oscillatory state, the phase
coherence changes periodically over time. The oscillatory
nature is due to the splitting of oscillators into multiple groups,
which can be analyzed by treating groups of oscillators as
coarse-grained oscillators.

We analyze the simplest oscillatory state, namely, the
two-plateau system. By considering the two-plateau system
as two coarse-grained oscillators, we derive an expression for
the criterion of plateau splitting [see Eq. (16)]. The value of
p is intuitively proportional to the difference of the natural
angular frequency of coarse-grained oscillators and is inversely
proportional to the coupling strength and the effective coupling
function. In addition, the value of p also depends on the ratio of
the size of two plateaus. With a given spatial distribution of the
natural angular frequency, one is able to predict breaking points
of plateau splitting accordingly. Furthermore, a more accurate
prediction of breaking points can be made by considering the
details of phase dispersion of individual oscillators. However,
as the number of oscillators increases, the assumption that
the local order parameter of oscillators in a single plateau is
approximately the same is no longer valid, since the local
order parameter could vary slowly over space. Furthermore,
numerical results show that the boundary between two plateaus
is rather fuzzy and not sharp. Thus a more refined approach
to predict the breaking points should take into account these
effects. Nevertheless, the expression of the criterion of plateau
splitting is still valid for a finite network of oscillators and
provides a qualitative way to estimate when and where the
plateau splits.
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