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Excitable media can develop spiral chaos, in which the number of spirals changes chaotically with time.
Depending on parameter values in dynamical equations, spiral chaos may permanently persist or spontaneously
arrive at a steady state after a transient time, referred to as the lifetime. Previous numerical studies have
demonstrated that the lifetime of transient spiral chaos increases exponentially with system size to a good
approximation. In this study, using the fact that the number of spirals obeys a Gaussian distribution, we provide
a general expression for the system size dependence of the lifetime for large system sizes, which is indeed
exponential. We confirm that the expression is in good agreement with numerically obtained lifetimes for both
excitable and oscillatory media with parameter sets near the onset of transient chaos. The expression we develop
for the lifetime is expected to be useful for predicting lifetimes in large systems.
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I. INTRODUCTION

Excitable media play vital roles in various systems [1–3].
Excitable media in biological tissues support the propagation
of signals, such as concentration waves in the heart and
electrical impulses in nerve axons. Such waves are also
used for communication between certain microorganisms
(Dictyostelium discoideum).

Moreover, excitable media exhibit a particular type of
spatiotemporal chaotic dynamics, in which spiral waves
spontaneously generate or annihilate (spiral chaos) [1,4].
Spiral chaos is commonly observed in surface reaction systems
[5,6]. Similar chaotic dynamics are also observed in the heart,
causing fibrillation [7]. So far, several mathematical models for
excitable media that exhibit spiral chaos have been proposed
[6–8].

It is also known that spiral chaos may develop in oscillatory
media, e.g., those obeying the complex Ginzburg-Landau
equation (CGLE) [4,8–10]. In such mathematical models,
depending on the parameter values, spiral chaos permanently
persists or spontaneously terminates (Fig. 1). In the latter case,
the system eventually arrives at a steady state after a transient
time, which we refer to as a lifetime. The dependence of the
lifetime of spiral chaos on the system size has received much
attention in the context of the clinical treatment of cardiac
fibrillation ([7] and the references therein). In Ref. [7], it is
numerically demonstrated using both a variant of FitzHugh-
Nagumo model (referred to as the Bär model [6]) and a
more realistic model for cardiac electrical dynamics that
the lifetime increases exponentially with the system size.
Such an exponential dependence, as well as hyperexponential
dependences, had already been reported in other types of
transient chaos [11–14].

The main focus of the present study is an expression for
the dependence of the lifetime of spiral chaos in excitable
media on the system size. For this goal, we first investigate
statistical properties regarding the number of spiral cores
(namely, defects). There is a large body of studies on such
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statistical properties [15–19]. In particular, it is known that
as system size increases, the probability distribution of the
number of defects during transient spiral chaos approaches a
Gaussian distribution [20], as is naturally expected from the
central limit theorem. Using this fact, we derive an expression
for the system size dependence of the lifetime, which is indeed
exponential.

We extensively investigate the system size dependence
of the lifetime using two different models, the Bär model
and the CGLE, with several parameter sets and different
boundary conditions. We find that while the lifetime increases
exponentially with system size in all cases, our expression
fits well for parameter sets near the onset of transient chaos,
suggesting that some assumptions may be violated depending
on parameter values.

The present paper is organized as follows. In Sec. II we
describe the model and the numerical settings. In Sec. III
we show that the probability distribution of the number of
defects approaches a Gaussian distribution as the system
size increases. In Sec. IV we first numerically show that the
lifetime of transient spiral chaos increases exponentially with
system size; then we derive the expression for the system
size dependence of the lifetime, which fits well to numerical
data for some parameter sets. A summary and discussion are
provided in Sec. V.

II. MODEL AND NUMERICAL SETTINGS

For most of our numerical investigation, we employ the
Bär model [6], which is a modified FitzHugh-Nagumo model
representing an excitable medium. This model has also been
employed in Ref. [7]. The model gives

∂u

∂t
= −1

ε
u(u − 1)

(
u − v + b

a

)
+ D∇2u, (1a)
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FIG. 1. (Color online) Snapshots of u(x,y,t) in the Bär model. (a) Initial condition (t = 0) is constructed as follows. First, we create a flat
excitation wave, run a simulation for a while, and cut the wave into half. We then add random noise with a uniform probability distribution over
[−0.25,0.25]. (b) Transient spiral chaos (t = 136). (c) Uniform steady state (t = 160). The parameter values are a = 0.84,b = 0.07,ε = 0.08,
and N = 152.

where the parameters ε,a,b and the diffusion coefficient D are
positive. The system is two dimensional with an area L × L ≡
N . The variables u(x,y,t) and v(x,y,t) are interpreted in the
context of cell physiology as the membrane potential and the
recovery variable, respectively [2]. Numerical simulations are
performed using the fourth-order Runge-Kutta method with
space step h = 0.3 and time step s = 0.01.

We first note that in Eq. (1) the uniform steady state
u(x,y) = v(x,y) = 0 is linearly stable for any set of parameter
values. By inserting the ansatz u,v ∼ eλt−iq·r with r = (x,y)
and a wave vector q of perturbation, we obtain λ = −1,

− b
aε

− D|q|2, which is always negative. Hence, the system
should smoothly arrive at the uniform steady state if the initial
state is close to it.

However, for appropriate parameter values and initial
conditions, spatiotemporal chaotic dynamics arise (referred
to as spiral chaos) (Fig. 1). As reported in Ref. [6], for a
broad range of b (b < 0.18,a = 0.84), the following behavior
arises. For small ε values (0.01 < ε < 0.06), spiral waves
rigidly rotate. For ε > 0.06, spiral waves begin to meander.
For ε > 0.07, spiral chaos arises. In this region, spirals begin
to break up after some transient rotations, resulting in the
formation of two free ends of a wave. From these free ends,
a new pair of counterrotating spirals arise. There is also a
pair-annihilation process, in which the cores of a pair of
counterrotating spirals collide and annihilate. Moreover, in
the Neumann boundary condition, there is an additional case
in which a defect is absorbed by the boundary. These processes
are repeated chaotically.

As a convenient initial condition for realizing this chaotic
state, we employ a flat broken wave (Fig. 1), in which there

initially exists a defect for the Neumann boundary condition
or a pair of defects for the periodic boundary condition. To
obtain statistically independent results for each run of the
simulations, we add independent random noise obeying a
uniform probability distribution over [−η,η] with η = 0.25
to u and v at all discretized points at t = 0. Note that the
evolution is noise free for t > 0. In our preliminary numerical
simulations, we have checked that our statistical results do
no change quantitatively for η = 0.1 (results not shown). The
results presented assume the periodic boundary condition and
a = 0.84,b = 0.07,ε = 0.08,D = 1 unless otherwise noted.
Some results are obtained with the Neumann boundary
condition and/or other sets of b and ε values.

To check the generality of our argument, we also nu-
merically investigate the oscillatory media described by the
complex Ginzburg-Landau equation (CGLE), given by

∂W

∂t
= W + (1 + ic1)∇2W − (1 + ic2)|W |2W, (2)

where W (x,y,t) ∈ C is the state variable and c1,c2 ∈ R are
the parameters of this system [4].

III. TIME EVOLUTION AND PROBABILITY
DISTRIBUTION OF THE NUMBER OF DEFECTS

We first investigate the time evolution and probability
distribution of the number of defects. All the results in this
section are for the periodic boundary condition. We confirmed
that qualitatively the same results were obtained with the
Neumann boundary condition.

FIG. 2. (Color online) Time series of the number m(t) of defects with system size (a) N = 242 and (b) N = 302.
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FIG. 3. (Color online) Mean μ and variance σ 2 of the number of defects. (a, b) Results for the periodic boundary condition. The fitting lines
are μ = 0.00709N and σ 2 = 0.00437N . (c, d) Results for the Neumann boundary condition. The fitting lines are μ = 0.00660N − 1.3996
and σ 2 = 0.00452N . Fitting is performed for data with N > 2000.

The number m(t) of defects at time t in the system
was counted as follows. The phase φ(x,y) of the state is
defined by arg[(u(x,y) − u0) + i(v(x,y) − v0)] with (u0,v0) =
(0.5,0.3) and arg W for the Bär model and the CGLE,
respectively. The topological charge C(x,y,t) is defined by

1
2π

∮ ∇φ(r,t) · d l . The defects with C = 1 and −1 are the
cores of counterclockwise and clockwise spirals, respec-
tively. The topological charge is numerically obtained by
calculating C(x,y) = (φ1,2 + φ2,3 + φ3,4 + φ4,1)/2π , where
φi,j = φi − φj (−π � φi,j < π ), φ1 = φ(x,y), φ2 = φ(x +
h,y), φ3 = φ(x + h,y + h), φ4 = φ(x,y + h), and h is the
space step employed in our numerical simulations. We then
reset C = ±1 when a numerically obtained C value is
in [(±2π − 0.1)/2π,(±2π + 0.1)/2π ] and C = 0 otherwise.
The number m(t) of defects is the sum of |C| over the entire
system.

As seen in Fig. 2, m(t) fluctuates strongly with time,
and this chaotic process appears to be stationary. However,
defects completely vanish at a certain time without any
clear presage, and the system falls into the uniform steady
state. As is the case in Figs. 2(a) and 2(b), a larger system

typically has a larger number of defects and a longer transient
time.

Statistical properties are investigated with the time series of
m(t) during transient chaos after the initial transient process
(t > 100) (Figs. 3 and 4). Here for each system size, we employ
many different initial conditions and the number of defects
is counted at each time step until the system arrives at the
steady state. We find that both the mean μ and variance σ 2

of m(t) are approximately proportional to the system size N

(Fig. 3):

μ = αN, (3)

σ 2 = βN. (4)

The linear growth of μ has also been found in Ref. [21].
Next, we measure the probability distribution of the number
of defects, which is the probability that there are m defects
at each time in the system during transient chaos. As is
found in Ref. [5], we confirm that the probability distribution
approaches the following Gaussian distribution as the system

FIG. 4. (Color online) Distribution of the number of defects. (a) System size N = 272. (b) N = 602. The dashed lines are the Gaussian
distributions with average μ = αN and variance σ 2 = βN with α = 0.00709 and β = 0.00437.
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FIG. 5. (Color online) Numerical measurement of correlation length. We estimate the correlation length using two methods. (a, b) The
density of defects with (a) C = −1 and (b) C = 1 at (x,y) as a function of the distance ξ = √

(x − x0)2 + (y − y0)2 from a certain defect with

C = 1 at (x0,y0). (c) The Pearson product-moment correlation coefficient for the variable u, defined as r(ξ ) =
∫ T

0 (u∗−u)(u−u) dt√∫ T
0 (u∗−u)2 dt

√∫ T
0 (u−u)2 dt

, where

u∗ = u( L

2 , L

2 ,t), u = u( L

2 − ξ, L

2 ,t) and u is the average of u over the entire system. These results indicate that the correlation length is roughly
10 or less.

size increases (Fig. 4):

p(m) = δ√
2πσ 2

exp

[
− (m − μ)2

2σ 2

]
(5)

= δ√
2πβN

exp

[
− (m − αN )2

2βN

]
, (6)

where δ = 1 for the Neumann boundary condition and δ = 2
for the periodic boundary condition because m takes only even
number values in the latter case.

These results can be rationalized by the following argument.
Suppose that the system is virtually divided into n subsystems
of size L̃ × L̃ = Ñ . For the periodic boundary condition, all
the subsystems should share a certain probability distribution
of the number of defects with mean μ̃ and variance σ̃ 2. If
the linear length L̃ of each subsystem is sufficiently larger
than the correlation length of the system, these subsystems are
approximately independent. In our case, the correlation length
is roughly 10 or smaller (Fig. 5). The number of defects m in the
entire system is the sum of defects of independent subsystems.
The mean and variance of m are then proportional to the
system size. Moreover, as stated by the central limit theorem,
m will obey the Gaussian distribution with mean μ = nμ̃ and
variance σ 2 = nσ̃ 2 where n ≡ N

Ñ
when n is sufficiently large.

This is also approximately the case for the Neumann boundary
condition when L is sufficiently larger than the correlation
length.

Because this argument is very general, the Gaussian
distribution should be obtained for both the periodic and
Neumann boundary conditions and other models exhibiting
spiral chaos when N is sufficiently large. In fact, we confirmed
it for the Bär model and the CGLE with all the parameter sets
we chose and both boundary conditions (results not shown).

IV. SYSTEM SIZE DEPENDENCE OF LIFETIME

As already mentioned, a previous numerical study reported
that the lifetime of transient spiral chaos increases exponen-
tially with the system size. We also numerically confirm it in
the following manner.

In any boundary conditions, all the defects must completely
vanish before the system settles down to the steady state. Here

it should be noted that there is still a chance that a pair of
defects is generated even from the state with m = 0 because of
some remaining complex pattern [22]. Therefore, the transition
between the states with different numbers of defects m can be
illustrated as in Fig. 6, where the periodic boundary condition
is assumed for simplicity so that m takes only even numbers,
and the symbol S denotes the uniform steady state.

To define the lifetime, we regard the system state as
the steady state when the duration of the state with m = 0
continues for 100 simulation time, as defects hardly reemerge
if the state with m = 0 continues for 20 simulation times
(Fig. 7). Under such a numerical setup, we investigate the
dependence of the lifetime on the system size N (Fig. 8),
which is indeed exponential.

The expression for the system size dependence of life-
time T (N ) can be obtained as follows. We assume that
the process illustrated in Fig. 6 is Markovian. Starting
from some initial number m∗ of defects, we have a
series of defect number at each time, e.g., {m∗,m∗ +
2, . . . ,4,4,4,6,6,4,2,2,0,0,2,2,2,S}, where the symbol “S”
denotes the event at which 0 continues for 100 unit time (which
we regard as the steady state). The lifetime at each trial is the
length of this series. The expected value of lifetime T is the
inverse of the probability λ to obtain S. Because S is obtained
only when the previous number is 2, λ = Zp(2) where p(2) is
the probability to obtain 2 and Z is the transition rate from the
state with m = 2 to the steady state. Therefore, the expected

FIG. 6. Defect generation-annihilation process for periodic
boundary condition. The circle with the number m denotes the state
with m defects. The symbol S denotes the uniform steady state.
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FIG. 7. (Color online) Normalized histogram of the duration in
which the number m of defects continues to be zero until m becomes
two. Here the value at t = k ∈ N denotes the frequency of the
duration k − 1 < t � k. The Bär model with b = 0.07,ε = 0.09.
Defects seldom reemerge for t > 20.

lifetime for a given system size N is

T (N ) = 1

Zp(2)
. (7)

For large N , the probability distribution of the number of
defects is well approximated by Eq. (6) and the mean number
μ(= αN ) of defects is large. For m � μ, we approximately
have

p(m) ∼ exp

(
− α2

2β
N

)
. (8)

Plugging this into p(2) in Eq. (7) and further assuming that Z

is independent of N , we finally obtain

T (N ) ∼ exp

(
α2

2β
N

)
. (9)

This expression indicates that the lifetime depends exponen-
tially on the system size N and its exponent is associated
with the density α and the magnitude β of the fluctuation of
the number of defects. For the Neumann boundary condition,
the steady state can be reached not only from the states with
m = 2 by annihilation but also from the states with m = 1
through the absorption of a defect by the boundary. Therefore,
the probability λ to obtain S is λ = Z1p(1) + Z2p(2) with
transition rates Z1 and Z2. In this case as well, we obtain
Eq. (9) because both p(1) and p(2) can be well approximated
by Eq. (8) for large N .

Our expression (9) is numerically verified (Fig. 8). The
slope given by Eq. (9) (the dashed lines) is in good agree-
ment with that obtained numerically in both the Bär model
[Figs. 8(a)–8(c)] and the CGLE [Figs. 8(d) and 8(e)] for large
system sizes.

However, we find discrepancy for some parameter sets. In
the Bär model, there are considerable deviations for large ε

values [e.g., Fig. 8(f)]. In the CGLE, we also find such cases
for some parameter sets, e.g., c1 = 0.50, c2 = −1.50 with the
periodic boundary condition (result not shown). All together,
we find that the parameter sets for which our theory is valid are
typically in the region near the onset of transient chaos [6,9].
A possible reason why our theory fails when the system is far
from the onset of spiral chaos will be discussed in Sec. V.

V. CONCLUSIONS AND DISCUSSION

In the present paper, we have investigated the system size
dependence of the lifetime of spiral chaos. We derived an
expression for the lifetime, given as Eq. (9), utilizing the fact
that the probability distribution of the number of defects is
Gaussian for large system sizes. We confirmed that Eq. (9)
well fits numerically obtained T (N ) for two different models,
the Bär model and the CGLE, with several parameter sets and
different boundary conditions.

FIG. 8. (Color online) Lifetime T (N ) (log scale) vs N . The symbol and the error bar correspond to the average and the standard deviation
of T (N ) for each system size, respectively. (a) Bär model with periodic boundary condition, b = 0.070,ε = 0.080. (b) Bär model with
Neumann boundary condition, b = 0.070,ε = 0.080. (c) Bär model with periodic boundary condition, b = 0.030,ε = 0.075. (d) CGLE with
periodic boundary condition, c1 = 0.80,c2 = −1.00. (e) CGLE with periodic boundary condition, c1 = 0.50,c2 = −1.11. (f) Bär model with
periodic boundary condition, b = 0.070,ε = 0.090. Note that in the Bär model with the periodic boundary condition (a, c, f), the system size
dependence of lifetime is obviously not exponential for small system sizes (N � 242). For such small systems, we find that transient chaotic
states occasionally end up with various complex patterns including temporally periodic states with m 	= 0.
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FIG. 9. (Color online) System size dependence of numerically obtained T (symbol • with dashed line), C1/p(2) with numerically obtained
p(2) (symbol ×), and C2/p(2) with p(2) given by Eq. (8) (symbol �), where C1 and C2 are fitting parameters. Parameter values for (a) and (b)
are the same as those for Fig. 8(c) and Fig. 8(f), respectively.

We emphasize that Eq. (9) is useful for the prediction of
the lifetime of large systems. We can precisely estimate α

and β values from observations of the number of defects
in a large system. The observation of a relatively small
system for different initial conditions enables us to find the
average lifetime T (N ). Then, using T (N ) ∼ exp ( α2

2β
N ), we

can estimate the average lifetime for large system sizes.
We have also found that Eq. (9) fails to predict the system

size dependence for the parameter sets far from the onset of
chaos. Our theory is based on Eqs. (7) and (8). We can verify
these equations by comparing the system size dependences of
T and 1/p(2) obtained numerically and those predicted by
Eqs. (7) and (8). As shown in Fig. 9, whereas both Eqs. (7)
and (8) are valid near the onset, the discrepancy between
numerically obtained T and 1/p(2) is particularly large far
from the onset. Thus, the assumption in Eq. (7) seems to be
violated. Namely, the transition rate Z from the state with
m = 2 to the steady state seems to depend strongly on the
system size in such a parameter region.

The following observation may provide reasoning for it.
Even when defects completely vanish, some wave pattern may
persist for a while. Defect reemergence is attributed to such
a remaining pattern [22]. The complexity of wave patterns in
the absence of defects might be enhanced as the system size

increases, rendering the system more difficult to settle down
in the steady state. Indeed, for all parameter sets for which
our theory fails, the actual lifetime has stronger dependence
on the system size than that expected from our theory given
by Eq. (9) with constant Z. We also observe that meandering
of defects and fluctuation in the the number of defects seem
to be stronger. A previous numerical study of the Bär model
also indicates that the system becomes more strongly chaotic
for such parameter sets [21]. Therefore, it is indeed likely that
our system can not be fully characterized only by the number
of spirals when the system is far from the onset of transient
chaos.
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