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We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different
parametric domains giving rise to different physical situations by constructing a more general form of three-
component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine
free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons
by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique
reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular
the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector
two-soliton solution of the Manakov model during collision. In addition the interactions between bound state
dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was
also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested
not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects
in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution
is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and
complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector
one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.
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I. INTRODUCTION

The interactions between solitons are fascinating because
they interact like particles. Specifically vector solitons (tem-
poral or spatial) have richer interaction dynamics than their
scalar counter parts due to their multicomponent nature [1].
They form when their components jointly induce a waveguide
and populate its guided modes self-consistently. The induced
index change does not include the interference terms between
different modes in many cases, and as a result the system
is governed by a Manakov-like model [2–4]. By solving the
Manakov model bright-bright (BB) [5], dark-dark (DD) [6],
and dark-bright (DB) [7] vector multisoliton solutions with
more free parameters were recently derived to investigate the
collision dynamics of such vector solitons.

Although certain spatial vector solitons were experimen-
tally observed in the semiconductor quantum well wave guides
[2] and the photo-refractives [3], the interactions between
vector solitons were intensively studied only theoretically.
However, a bound state between two DB solitons was exper-
imentally demonstrated in Ref. [8]. Moreover, Anastassiou
et al. [4] have demonstrated experimentally the collisions
between two BB spatial vector one-solitons of the Manakov
model in the photorefractive crystal that involve energy-
exchange at large collision angles, for which scalar solitons
simply pass through one another (i.e., practically unaffected).
In addition, recently Rand et al. [9] have experimentally
observed the energy-exchange collision dynamics of BB tem-
poral vector one-solitons in a linearly birefringent optical fiber
[9]. These experiments [4,9] confirm the energy-exchange
collision property of BB vector two-soliton solution of the
Manakov model [10]. The applications of such collisions
were also studied in the Bose-Einstein condensates (BECs)
[11], artificial meta-materials [12], and multiport devices

[13]. Moreover the experimentally observed energy-exchange
collision property of the BB vector solitons of the Manakov
model [4] lays the foundation for optical computation [14,15].
Because Steiglitz [15] showed that such vector solitons have
more than one distinct stable set of polarization states, and
therefore these distinct equilibria can, in theory, be used to
store and process information.

In this connection, in this paper we have theoretically pre-
dicted that a dark component guides the practically interesting
BB vector one-soliton (supporting a specific physical situation)
to two different parametric domains giving rise to different
physical situations by constructing a more general form of a
three-component DBB vector one-soliton solution (with nine
real free parameters) of the generalized Manakov model
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Here um are the components of vector soliton, variables z and
t are the normalized distance and time, respectively, and μ

is the coefficient of nonlinearity. Here we retain the scaling
parameter μ to define the physical situations of two distinct
parametric regions of the DBB one-soliton. In the next section
we have characterized the free parameters of this solution to
define polarization vector, envelope speed, envelope width,
envelope amplitude, grayness, and complex modulation of the
solution. This solution actually couples two scalar bright soli-
tons with μ > 0 (positive nonlinearity coefficient) and a scalar
dark soliton with μ < 0 (negative nonlinearity coefficient)
by using three complex free parameters α1, α

(1)
2 , and α

(1)
3 in

their amplitude and complex modulation in z terms. Therefore
we want to name these three complex free parameters as
coupling parameters. It is well-known fact that if the minimum
intensity of a scalar dark soliton is zero, then it is called a
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fundamental-dark (FD) soliton. Therefore in our studies we
have referred to our general DBB vector one-soliton as a
fundamental dark-bright-bright (FDBB) vector one-soliton if
the minimum intensity of its dark component is zero. It is
interesting to note that our general solution admits its dark
component to take a minimum intensity value only under a
parametric condition. Consequently our FDBB soliton has
eight free real parameters. However, it supports a polarization
vector while our general solution needs some other essential
parametric condition to define its polarization vector. In the
FDBB case the polarization vector evolves in hyperboloid,
while in the general case (with a parametric condition) the
polarization vector evolves in a sphere as explained in Sec. II
(see Fig. 2). In addition it is interesting to note the role of
a singularity in the general DBB vector soliton with nine
free parameters and in the FDBB soliton with eight free real
parameters as explained below.

In general if we look a sufficiently general form of a mixed
vector soliton solution to the Manakov type of equations
(which couple the components of equations with the same
sign of nonlinearity coefficient), the resulting solution supports
two different parametric domains ( separated by a movable
singularity) [7] giving rise to different physical situations. But
if we look at a similar type of mixed solution to the modified
Manakov type of equations (which couple the components
of equations with different signs of nonlinearity coefficient)
[16] then the resulting solution is simple and free from
the singularity. Here our mixed DBB soliton solution with
nine free real parameters is derived from the generalized
Manakov model (1) by using the systematic procedure of
Hirota technique as shown in Refs. [7,16]. Therefore it
supports singularity as for as a dark soliton mixes its role with
a bright component (DB case [7]) or two bright components
(DBB case). This singularity separates two distinct parametric
domains. Each domain has the same set of nine free real
parameters of the general solution. Consequently our general
DBB solution with nine free real parameters is valid in one
parametric domain with μ < 0 and in another parametric
domain with μ > 0. Hence we claim that our general solution
admits its dark component to guide the BB pair of the Manakov
model [5] to two different physical situations. Further the DBB
one-solitons with distinct parametric domains for two different
physical situations preserve the energy-exchange collision
property of the BB vector soliton [10]. That is, during the
collision between two DBB one-solitons, the energy-exchange
occurs among the bright components of each colliding soliton
without disturbing the energy of its dark component as shown
in Sec. III. Therefore we trust that our investigations may
promote the applications of BB vector solitons to composite
nonlinear media [17–19], because they are composed of
positive and negative index materials giving rise to different
types of nonlinear coupling among the co-propagating fields.

In Sec. III we have derived a DBB multisoliton solu-
tion by using the Hirota method [20]. This Hirota method
unfortunately restricts us to select a common background
field for the dark component while deriving the multisoliton
solution. This multisoliton solution explains the dynamics of
two DBB one-solitons appearing at its asymptotic limits. Each
asymptotic DBB one-soliton has a different set of nine free real
parameters. However, among these nine free real parameters,

each asymptotic soliton has two common free parameters
due to the common field restriction. Consequently our resul-
tant DBB two-soliton solution has 15 free real parameters.
Moreover due to this common background field restriction,
the speeds of its all interacting one-solitons become equal
provided the minimum intensity of dark component of each
interacting one-soliton (realized from our DBB two-soliton at
its asymptotic limit) is zero. Our multisoliton solution with
such nature has freedom to study (1) the collision between two
DBB one solitons with nine free parameters, (2) the collision
between a DBB one-soliton and a FDBB one-soliton, and (3)
the interaction between two closely packed (a) DBB bound
state solitons moving with a common velocity, (b) stationary
DBB solitons, and (c) FDBB solitons. It is interesting to
note that two bound state DBB one-solitons or two stationary
solitons realized from our multisoliton solution set oscillations
in their amplitudes if they are closely packed. This effect has
the possibility to occur among the components of interacting
solitons provided a dark component occurs in each interacting
soliton. In the absence of any one of the bright components
(i.e, in the resulting DB case [7,16]) although there is a chance
to realize this effect, one can suppress or enhance it by adding
a bright component using a coupling parameter (α(1)

2 or α
(1)
3 )

with an appropriate value as shown in Sec. III with the help
of our multisoliton solution. A similar kind of breathing effect
was observed experimentally in the BECs [21–23]. Moreover
as mentioned before the energy-exchange collision dynamics
of BB vector solitons is also practically interesting. If we
mix a dark component in the two colliding BB solitons, our
investigation reveals that the dark component preserves the
energy-exchange collision property of BB vector solitons.
Moreover our colliding DBB solitons attain an ability not
only to manage different physical situations by tuning their
initial parametric values but also to suggest some possible ways
(by using their coupling parameters without disturbing other
soliton parameters) to manage beating, bouncing, jumping,
and attraction effects in their colliding region. All our inves-
tigations are made by plotting our complicated multisoliton
solution. Therefore we believe by following the work in the
BB case [24,25] that the numerical technique as explained in
Sec. III is more convenient to infer more about the collision
dynamics of DBB vector solitons with different background
fields in different parametric domains with μ > 0 and μ < 0.
Work is in progress along this direction. Finally Sec. IV is used
to give our overall conclusion.

II. DARK-BRIGHT-BRIGHT ONE-SOLITON SOLUTION
AND ITS CHARACTERIZATION

By following the algorithmic steps of the Hirota method
[7,16,20] (see the Appendix), we have obtained a sufficiently
general form of three-component dark-bright-bright (DBB)
mixed vector one-soliton solution as

u1 = cos(�)e−iδze2iA2zA[i sin β

+ cos β tanh(η1R + �/2)]ei(ψ ′+β+φ1),

u2 = sin(�) cos(θ )e−iδze2iA2zA[sech(η1R + �/2)]ei(η′
1I +φ2),

u3 = sin(�) sin(θ )e−iδze2iA2zA[sech(η1R + �/2)]ei(η′
1I +φ3),

(2)
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where cos(�) = 2|α1|/D�, sin(�) = N�/D�, cos(θ )
= |α(1)

2 |/N�, sin(θ ) = |α(1)
3 |/N�, δ = (2k

(1)2
R /μ�)[sin2 (�) −

cos2 (�)(μ − 1)], A = k
(1)
R (μ�)−1/2, β = arctan[(k(1)

I − l)/
k

(1)
R ], φ1 = arctan(α1I /α1R) + π , φm = arctan(α(1)

mI/α
(1)
mR),

ψ ′ = lt − l2z + ψ (0), η′
1I = k

(1)
I t + (k(1)2

R − k
(1)2
I )z + η

(0)
1I ,

η1R = k
(1)
R (t − 2k

(1)
I z) + η

(0)
1R , and � = ln(R). Here R =

μ�D2
�/(4k

(1)2
R ) in which � = [sin2 (�) − cos2 (�) cos2 β],

N� = (|α(1)
2 |2 + |α(1)

3 |2)
1/2

, and D� = (4|α1|2 + N2
�)1/2. The

expression for � in the above equation is valid if R > 0 or in
other words if μ� > 0.

The solution (2) with nine arbitrary real parameters k
(1)
R ,

k
(1)
I , l, α1R , α1I , α

(1)
2R , α

(1)
2I , α

(1)
3R , and α

(1)
3I couples two bright

scalar solitons with μ > 0 [read one scalar bright from (2) if
α1 = α

(1)
2 = 0 and other if α1 = α

(1)
3 = 0] and a scalar dark

soliton with μ < 0 [which one can read from (2) if α(1)
m = 0]

by using three complex free parameters α1, α
(1)
2 , and α

(1)
3 in

their amplitude and complex modulation in z terms as dictated
by Eq. (1) (which decouples into a nonlinear Schrödinger
equation with same sign of nonlinearity coefficient). That is,
Eq. (1) couples its components u1, u2, and u3 with same sign
of μ, but its solution (2) couples scalar solitons with different
possible signs of μ. Therefore we are referring here to the
free parameters α1, α

(1)
2 and α

(1)
3 , as coupling parameters of

the DBB mixed vector one-soliton solution. Here the suffixes
R and I represent the real and imaginary parts of arbitrary
complex parameters. In addition the solution (2) is composed
of coupling three components with same envelope width
(k(1)

R ), envelope speed (k(1)
I ), and envelope trough location

(η1R + �/2 = 0). Further the term β (k(1)
R ,k

(1)
I and l) in (2)

is useful to define the grayness. Particularly if β = 0 (i.e.,
k

(1)
I = l) then the u1 component of Eq. (2) is fundamental

dark (FD) (that is, the minimum intensity of u1 is zero).
Otherwise (if k

(1)
I �= l or β �= 0) the u1 component supports

gray dark (GD). Therefore in the former case the general
solution (2) defines a fundamental dark-bright-bright (FDBB)
one-soliton with eight free real parameters, while in the later
case it governs a gray dark-bright-bright (GDBB) one-soliton
with nine real free parameters. Moreover one can read the
BB one-soliton solution [5] and the DB one-soliton solution
[7] of the Manakov model from (2) by setting α1 = 0 (i.e.,
� = π/2) and α

(1)
2 = 0 (i.e., θ = π/2) or α

(1)
3 = 0 (i.e., θ = 0),

respectively. Next it is important to characterize the role of �,
because it sets the singularity in (2) and depends on the initial
parametric choices of all the nine free real parameters of the
solution (2) as explained below.

We have already mentioned that the DBB soliton (2) is
valid if μ� > 0. It implies that μ follows the sign of the
singularity term �. Therefore if � > 0/� < 0 [i.e., sin2(�)
is greater or less than cos2(�) cos2 β in �], then only our
DBB solution (2) is valid with μ > 0/μ < 0 (positive or
negative nonlinearity coefficient). These two DBB cases with
nine free real parameters (each case has distinct parametric
domain and different physical situations) are separated by
a movable singularity as shown in Fig. 1. One can easily
define this singularity by solving the equation � (�,β) = 0 as
�c = arctan{k(1)2

R /[k(1)2
R + (k(1)

I − l)2]}1/2. Therefore the DBB
soliton (2) is valid if � > �c/� < �c (i.e., μ� > 0/μ� < 0)

FIG. 1. The contour plot is obtained by plotting � in Eq. (2).
(Note μ follows the sign of � and indicates the corresponding
physical situation and its parametric domain for given �.)

and becomes extinct at � = �c. When α1 = 0, this singularity
disappears by leaving the BB case of the Manakov model with
μ > 0. But if α

(1)
2 = 0 or α

(1)
3 = 0 in (2), then the resultant also

couples two scalar solitons (one with a positive and other with
a negative nonlinearity coefficient) by admitting two different
parametric domains (separated by a singularity) giving rise to
different physical situations, because this is the mixed soliton
solution of the Manakov model [7]. Therefore our DBB mixed
vector one-soliton (2) of the generalized Manakov model (1)
supports two distinct parametric domains with μ > 0 and
μ < 0 until our three-component vector soliton has a dark
component. It implies that the dark component guides the BB
vector soliton to different physical situations and preserves
its experimentally demonstrated energy-exchange collision
property in the photorefractive crystals [4] (by using the spatial
BB vector solitons) and in the birefringent fiber (by using
the temporal BB vector solitons) based on the theoretical
investigations of Radhakrishnan et al. [10,24] as shown in the
next section. Therefore we believe that the DBB soliton (2) is
helpful to promote the applications of experimentally observed
BB vector soliton [4,9] to composite nonlinear media [17–19]

Although our solution generalizes earlier theoretical and
experimental investigations the presence of singularity in
A and δ through � sets an obscure structure for the
amplitude part and the complex modulation in z. Some
possible ways one can find to remove such complications
in the terms A and δ are if we characterize the vector
[cos(�), sin(�) cos(θ ), sin(�) sin(θ )]. It is interesting to note
that this vector is defined only in terms of the coupling
parameters α1, α

(1)
2 , and α

(1)
3 as in the BB case [10]. However,

it is not at all useful to vary the initial intensity distribution
among the components without affecting the given total
intensity by tuning θ and � with the help of coupling
parameters as in the BB case [10,24]. Because here the
amplitude term A depends on all the free coupling parameters.
Therefore the total peak power (the sum of the maximum
intensity of all the components) of (2) is not conserved against
� as shown in Fig. 2(a) for given θ . Consequently the above
vector is not able to play a polarization vector of (2) because the
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FIG. 2. The sum of the maximum intensity of all the components (a) is not conserved against � for given θ provided k
(1)
I �= l and μ� �= 1

and (b) is conserved against � for given θ provided μ� = 1. (c) The difference between the maximum intensity of a dark component and the
sum of the maximum intensity of two bright components is conserved against � for given θ under the parametric restriction k

(1)
I = l. For all

these three plots k
(1)
R = 1.0 and θ = 38.58◦.

role of A depends on the coupling parameters. To identify some
possible ways to change such a nature of our general A we
rewrite the general solution (2) under the parametric condition
μ� = 1 as case (1) and under the parametric condition k

(1)
I = l

(i.e., β = 0) as case (2).

A. Case (1): DBB soliton with polarization vector (μ� = 1)

In this case, Eq. (2) becomes as

u1 = cos(�)ei(2μk
(1)2
R cos2(�))zk

(1)
R [i sin β

+ cos β tanh(η1R + �′/2)]ei(ψ ′+β+φ1),

u2 = sin(�) cos(θ )ei(2μk
(1)2
R cos2(�))zk

(1)
R [sech(η1R + �′/2)]

× ei(η′
1I +φ2),

u3 = sin(�) sin(θ )ei(2μk
(1)2
R cos2(�))zk

(1)
R [sech(η1R + �′/2)]

× ei(η′
1I +φ3), (3)

where �′ = ln(D2
�/4k

(1)2
R ). It is interesting to note that the

above DBB soliton (3) realized from the general solution
(2) under the condition μ� = 1 is free from the singularity.
Further the amplitude is simply defined as k

(1)2
R as in the

BB case of the Manakov model [5]. Moreover the complex
modulation in z has a simple mathematical form without
singularity. Further Eq. (3) supports a fundamental dark com-
ponent if k

(1)
I = l without singularity. In addition from Eq. (3)

one can easily understand that by tuning � and θ one can
vary the initial intensity distribution among the components
without affecting the total intensity as shown in Fig. 2(b).
Therefore the vector [cos(�), sin(�) cos(θ ), sin(�) sin(θ )]
defines the polarization vector of (3) and evolves on a spher-
ical surface cos2(�) + sin2(�) cos2(θ ) + sin2(�) sin2(θ ) = 1.
It means that the sum of the maximum intensity of all the
components is the total peak power that is conserved against
� for given θ as shown in Fig. 2(b). If we set � = 90◦ in this
vector then it reduces to the BB case as (cos θ, sin θ ) [5] and
is independent of �. In this BB case the complex modulation
in z is independent of coupling parameters because cos(�) is
zero if � = 90◦. Instead if we set θ = 0◦ or θ = 90◦ then
the vector takes the form [cos(�), sin(�)] and defines the
polarization vector of DB [7] and is independent of θ . In

this DB case the complex modulation in z supports the cos(�)
term. Consequently it depends on the coupling parameters.

It is interesting to note from (3) that if we mix a scalar
dark soliton with μ < 0 in the BB case of the Manakov model
with μ > 0, then the resulting DBB mixed vector soliton has a
convenient mathematical form (with μ > 0 or μ < 0) without
a singularity and supports a polarization vector provided � =
1/μ. In this case by tuning the parameter α1 [which couples
a dark component with the BB case as shown in (3)] one
can change the initial intensity distribution among the bright
components without disturbing any other soliton parameters.
As mentioned before, our DBB multisoliton in the next section
preserves the energy-exchange collision dynamics of BB
vector solitons. Consequently by using this dark component
coupling parameter, one can control the energy-exchange
among the bright components during collision. Therefore
our investigation using (3) may give further insight into the
applications of BB vector solitons in the switching devices
[9,11,13,14,26].

B. Case (2): FDBB soliton with polarization vector (k(1)
I = l)

As mentioned before the minimum intensity of a dark
component of our general solution (2) becomes zero provided
k

(1)
I = l (i.e., β = 0). Therefore a FDBB soliton with eight free

real parameters directly appears from our general DBB soliton
(2) with nine free real parameters under a parametric condition
k

(1)
I = l as

u1 = cosh(�)e−i(2k
(1)2
R cosh2(�))z k

(1)
R√
μ

[tanh(η1R + �′′/2)]

× ei(ψ ′+φ1),

u2 = sinh(�) cos(θ )e−i(2k
(1)2
R cosh2(�))z k

(1)
R√
μ

[sech(η1R + �′′/2)]

× ei(η′
1I +φ2),

u3 = sinh(�) sin(θ )e−i(2k
(1)2
R cosh2(�))z k

(1)
R√
μ

[sech(η1R + �′′/2)]

× ei(η′
1I +φ3), (4)

where cosh(�)=2|α1|/D�F , sinh(�)=N�/D�F , and �′′

= ln(μD2
�F /4k

(1)2
R ) in which D�F =(4|α1|2−|α(1)

2 |2 −
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|α(1)
3 |2)1/2. It is interesting to note that the amplitude of (4) is

the same as in the previous case. However, the FDBB soliton
(4) with eight free real parameters supports a singularity at
4|α1|2 = |α(1)

2 |2 + |α(1)
3 |2 and differs from the FDBB case

of (3). [One can read the FDBB case of (3) from the DBB
soliton (3) without singularity under the condition k

(1)
I = l.]

The DBB soliton (3) has eight free real parameters if we
solve the parametric restriction μ� = 1 in the case (1) for
any one of the free parameters. Consequently the FDBB
realized from this resultant eight-parameter DBB (3) under
the condition k

(1)
I = l supports seven free real parameters but

without admitting any kind of singularities. Moreover the
vector [cosh(�), sinh(�) cos(θ ), sinh(�), sin(θ )] in (4) is
different from the corresponding vector in (3). Consequently it
evolves on a hyperboloid surface cosh2(�) − sinh2(�) cos2(θ )
− sinh2(�) sin2(θ ) = 1/μ (instead of sphere as in the previous
case) and defines the polarization vector of (4). Therefore
in this case the difference between the maximum intensity
of a dark component and the sum of the maximum intensity
of two bright components is conserved against � for given
θ as shown in Fig. 2(c). Hence the polarization vector of
(4) differs from that of (3) by supporting the singularity at
4|α1|2 = |α(1)

2 |2 + |α(1)
3 |2. Further the complex modulation in

z differs from the previous case by supporting this singularity.
One can also easily verify that if � = iπ/2 then the resulting
vector [cos(θ ), sin(θ )] defines the polarization vector of the
BB soliton of the Manakov model [5]. Suppose if θ = 0◦ or
θ = 90◦ then the resulting vector reduces to the FDB soliton
of the Manakov model [7]. It is interesting to note that the
cosh(�) term does not exist in the complex modulation in z

of BB case but that appears in the FDB case. Therefore as in
the previous case, the complex modulation in z is independent
of the polarization vector in the BB case but depends on it in
the mixed vector soliton cases. In addition the interactions
between two FDBB one-solitons (4) are investigated in the
next section by numerically plotting our two-soliton solution.
This study reveals some breathing effect by setting oscillations
in the amplitudes of interacting FDBB bound state solitons.

A similar kind of effect was experimentally observed in the
hyperfine states of 87Rb BECs [21] as mentioned before.

In the next section we have derived a DBB multisoliton
solution with a common background field for dark component.
This solution has freedom to study the GDBB-GDBB collision
dynamics (the collision between two GDBB one-solitons with
singularity) and the GDBB-FDBB collision dynamics (the
collision between a GDBB and a FDBB vector soliton with a
singularity). Further our multisoliton solution sets a common
speed for its asymptotic solitons under a condition at which
the minimum intensity of dark component of each asymptotic
soliton is zero. Therefore our multisoliton is able to let us
to investigate the interaction between the two closely packed
bound state FDBB vector solitons in addition to the above
two investigations. All such investigations help us to realize
the practically interesting energy-exchange collision property
of DBB one-solitons, the experimentally observed breathing
effect in the BECs [21–23], and some possible ways to control
certain interesting interaction effects as explained below.

III. DARK-BRIGHT-BRIGHT TWO-SOLITON SOLUTION
AND ITS COLLISION DYNAMICS

One can understand from the above discussions that if a dark
component couples with the practically interesting BB case of
the Manakov model, then the resulting solution (2) manages
different physical situations by tuning its initial parametric
values. Therefore next we want to investigate the collision
dynamics of DBB vector solitons with this property by deriving
the DBB two-soliton solution of (1) with the help of the Hirota
algorithm [7,16] as shown in the Appendix. The complicated
two-soliton solution (A.8) (see the Appendix) with seven
arbitrary complex parameters (α1, α

(j )
2 , α

(j )
3 , k(j ), j = 1,2)

and a real free parameter (l) numerically demonstrates the
collision dynamics of two DBB one-solitons. By using the
asymptotic analysis [5,16] one can define these two colliding
solitons appearing before [i.e., soliton (j )− from Eq. (A.8) at
the limit t → −∞] and after [i.e., soliton (j )+ from Eq. (A.8)
at the limit t → +∞] collision:

Before collision (t → −∞), soliton (j )−:

u
(j )−
1 = cos(�)(j )e−iδj ze2iA2

j zAj [i sin βj + cos βj tanh(ηjR + �(j )−/2)]ei(ψ ′+βj +φ−
1 ),

u
(j )−
2 = sin(�)(j ) cos(θ )(j )e−iδj ze2iA2

j zAj [sech(ηjR + �(j )−/2)]ei(η′
jI +φ

(j )−
2 ),

u
(j )−
3 = sin(�)(j ) sin(θ )(j )e−iδj ze2iA2

j zAj [sech(ηjR + �(j )−/2)]ei(η′
jI +φ

(j )−
3 ).

After collision (→ ∞), soliton (j )+:

u
(j )+
1 = cos(�)(j )e−iδj ze2iA2

j zAj [i sin βj + cos βj tanh(ηjR + �(j )+/2)]ei(ψ ′+βj +φ
(j )+
1 ),

u
(j )+
2 = sin(�)(j ) cos(θ )(j )

(
C

(j )
2 /B1/2

)
e−iδj ze2iA2

j zAj [sech(ηjR + �(j )+/2)]ei(η′
jI +φ

(j )+
2 ),

u
(j )+
3 = sin(�)(j ) sin(θ )(j )

(
C

(j )
3 /B1/2

)
e−iδj ze2iA2

j zAj [sech(ηjR + �(j )+/2)]ei(η′
jI +φ

(j )+
3 ), (5)

where cos(�)(j )=2|α1|e(ρjj −ρ)/2/D�c, sin(�)(j )=N�c/D�c,
cos(θ )(j )=|α(j )

2 |/N�c, sin(θ )(j )=|α(j )
3 |/N�c, δj = (2k

(j )2
R /

μ�j )(sin2 (�)(j ) − cos2 (�)(j )(μ − 1)), Aj = k
(j )
R /(μ�j )1/2,

βj = arctan[(k(j )
I − l)/k(j )

R ], η′
jI = k

(j )
I t + (k(j )2

R − k
(j )2
I )z +

η
(0)
jI , ηjR = k

(j )
R (t − 2k

(j )
I z) + η

(0)
jR , �(j )− = ln (Rjj ), �(j )+

= ln (R1212/Rj ′j ′ ), φ−
1 = arctan (α1I /α1R) + π , φ

(j )−
m = arctan

(α(j )
mI /α

(j )
mR), φ

(j )+
1 = φ−

1 + βj ′ − π , φ
(j )+
m = φ

(j )−
m + 2ζ (j ),

and e2iζ (j )=ξ (j )/ξ (j )∗ in which N�c = (|α(j )
2 |2 +
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|α(j )
3 |2)1/2, D�c = (4|α1|2e(ρjj −ρ) + N2

�c)1/2, C(j )
m = [α(j )

m (k(j ′)

+ k(j ′)∗)eρj ′j ′ − α
(j ′)
m (k(j ) + k(j ′)∗)eρjj ′ ][ (eρjj −e

ρ
j ′j ′ )/2

|α(j )
m | )( k(j )+k(j )∗

k(j ′)+k(j ′ )∗

]
1/2

, B = [(k(1) + k(1)∗)(k(2) + k(2)∗)eρ11+ρ22 − (k(1) + k(2)∗)

(k(2) + k(1)∗)eρ12+ρ21 ], �j = [sin2 (�)(j ) − cos2 (�)(j ) cos2

βje
(ρjj −ρ)], ξ (j ) = [(k(1) − k(2))(k(j ) + k(j ′)∗)]1/2, m = 2,3,

j = 1,2, and j ′ = j ± 1 if j = 1 or j = 2.
It is interesting to note that the asymptotic solitons (5)

realized from the two-soliton solution at the limits t → −∞
and t → +∞ have the mathematical form of the DBB vector
one-soliton (2) and admit the free parameters α1, α

(1)
2 , α

(1)
3 ,

k(1), and l to define one of the colliding solitons [i.e.,
soliton (1)∓ appearing before (−) and after (+) the collision at
the asymptotic limits] and α1, α(2)

2 , α(2)
3 , k(2), and l to define the

other colliding soliton [i.e., soliton (2)∓ appearing before (−)
and after (+) the collision at the asymptotic limits]. However,
each colliding soliton has common free parameters α1 and l,
because the Hirota method restricts us to select the common
background field for the dark components of two asymptotic
solitons as in our earlier investigations about the collision
dynamics of DB [7,16] and DD [6] vector solitons. Here
the parameter α1 is used to couple a dark component with
the two bright components of each DBB asymptotic soliton,
and l is used to define the grayness of such dark component.
Therefore our DBB vector two-soliton is not more general
and not able to govern the collision dynamics of DBB vector
solitons with different background fields. Further the terms
cos(θ )(j ), sin(θ )(j ), ηjR , η′

jI , ψ ′, βj , φ−
1 , and φ

(j )−
m in (5) have

the same mathematical expressions as the corresponding terms
cos(θ ), sin(θ ), η1R , η′

1I , ψ ′, β, φ1, and φm in (2), but with a
suitable superfix on the free parameters in their expressions to
distinguish their role in different solitons. However, the terms
cos(�)(j ), sin(�)(j ), δj , Aj , �(j )±, and φ

(j )+
m in (5) include the

additional terms like e(ρjj −ρ) and differ from the corresponding
terms cos(�), sin(�), δ, A, �, and φm in (2). Here the additional
terms like e(ρjj −ρ) in the asymptotic solitons appear from the
two-soliton solution used to govern their collision dynamics.
Therefore we refer to such terms as interaction terms in the
following discussion.

Due to the presence of interaction terms, the vectors
[cos(�)(j ), sin(�)(j ) cos(θ )(j ), sin(�)(j ) sin(θ )(j )] Aj of two
colliding solitons (5) appearing before (−) and after (+) the
collision and the phase-shift terms (�(j )+ − �(j )−, φ

(j )+
1 −

φ−
1 , φ

(j )+
m − φ

(j )−
m ) and the complex modulation in z (δj )

depend on all the free parameters of the two-soliton and
hence gain the mathematical complication. However, one
can easily verify that cos2(�)(j ) + sin2(�)(j ) cos2(θ )(j ) +
sin2(�)(j ) sin2(θ )(j ) = 1. Moreover the asymptotic solitons
(5) reduce to the BB case of the Manakov model [5] if
α1 = 0. But in this BB case, the resultant asymptotic solitons
[5] also have the complicated polarization vectors, because
they depend on all the free parameters of BB two-soliton
solution of the Manakov model [10] through some interaction
terms obtained while deriving the BB two-soliton solution.
However, the amplitude terms of BB asymptotic solitons are
proportional to the pulse-width parameter kjR and preserve
the relation cos2(θ ) + sin2(θ ) = 1. But in the Eq. (5) the
amplitude parts Aj support a singularity through the terms

�j even though we have cos2(�)(j ) + sin2(�)(j ) cos2(θ )(j ) +
sin2(�)(j ) sin2(θ )(j ) = 1. Unfortunately the interaction term
e(ρjj −ρ) also appears in the expression for �j . Consequently
Aj becomes the function of all the free parameters of the two-
soliton. It sets some mathematical complications while one
can try to identify the distinct parametric domains for different
physical situations by using the numerical plots describing the
collision dynamics of two-soliton solution described below.
In addition one can easily verify that our colliding solitons
reduce to the asymptotic forms of the DB vector two-soliton
solution of the Manakov model [7,16] if α

(j )
2 = 0 or α

(j )
3 = 0.

But this DB case of the Manakov model [7,16] does not support
the practically interesting energy-exchange collision while the
BB case of the Manakov model [10] does support it. One can
ask that when the DB and BB cases of the Manakov model
are coupled together as dictated by the multisoliton solution,
what does happen? Our investigations reveal that the resultant
asymptotic solitons of multisoliton solution (1) preserve the
energy-exchange collision property of the BB vector solitons,
(2) support two parametric domains corresponding to different
physical situations separated by a singularity, (3) exhibit some
practically examined interaction effects, and (4) are able
to control such interaction effects by tuning their coupling
parameters without affecting other soliton parameters as
numerically demonstrated in the following discussion.

By analyzing the colliding solitons which have the prop-
erties of (2) as mentioned before at t → ±∞, one can
find the following results: (1) The terms T

(j )
m = C

(j )
m /

√
B

in (5) define the changes in the amplitudes of two bright
components of each colliding soliton due to collision. Here
it is easy to verify that |T (j )

m | = 1 if α
(1)
2 : α

(1)
3 = α

(2)
2 : α

(2)
3 and

restricts the DBB multisoliton solution to support the energy-
preserving collision with a phase shift. Otherwise it supports
the energy-exchange collision with the well-defined phase shift
[namely, �(j )+ − �(j )− = ln (R1212/Rj ′j ′) − ln (Rjj ), φ

(j )+
1 −

φ−
1 = βj ′ − π , φ

(j )+
m − φ

(j )−
m = 2ζ (j )] as shown in Fig. 5. It

may provide a theoretical framework to observe such a kind
of phase shift due to collision [27]. (2) After a collision, the
amplitudes of two bright components of each colliding soliton
are transformed by the matrix (T (j )

2 , T
(j )

3 , j = 1,2) without
disturbing its dark component. Moreover the value of this
matrix depends on the values of the 15 free real parameters
of our two-soliton solution. Consequently depending upon
the parametric choices the initial energy distribution among
the bright components of each colliding soliton changes
without disturbing the initial energy of its dark component
during collision as shown in Fig. 5. One must remember
that all the components of each colliding soliton gain a
phase shift during the collision as defined in the previous
point. (3) Under the condition k

(1)
I = k

(2)
I = l (i.e., βj = 0)

as explained in the one-soliton case, our asymptotic solitons
are two FDBB vector one-solitons. It is obvious to note that
under this condition the speed parameters k

(1)
I and k

(2)
I of

these two asymptotic solitons take the value of a common
parameter l. Therefore if the dark components of two FDBB
one-solitons have a common background field, then they move
with a common speed l. Therefore our DBB multisoliton
solution with a common background field is not helpful to
investigate the collision dynamics of FDBB vector solitons.

062913-6



ENERGY-EXCHANGE COLLISIONS OF DARK-BRIGHT- . . . PHYSICAL REVIEW E 92, 062913 (2015)

FIG. 3. Breathing effect appears due to the interaction between two (a) bound state DBB one-solitons and (b) bound state DB one-solitons.
(c) Breathing effect in (b) is nullified by adding a bright component.

However, if we closely pack two such DBB bound state
vector solitons under the parametric choices α1 = 1.0167,
α

(1)
2 = 8.4 + 0.89i, α(2)

2 = 5 + 0.9i, α(1)
3 = 5 + 3i, α(2)

3 = 8 +
5i, k

(1)
R = 1, k

(2)
R = 1.2, and l = 0.1 they interact. Because

of this interaction in between the closely packed two FDBB
one-solitons (i.e., FDBB-FDBB interaction) the amplitudes of
interacting solitons oscillate and generate a breathing effect as
shown in Fig. 3(a). By setting α

(j )
2 = 0 or α

(j )
3 = 0 (j = 1,2)

[in order to eliminate any one of the bright component in each
interacting soliton in Fig. 3(a)] one can also see this breathing
effect in the resultant bound state DB vector solitons as shown
in Fig. 3(b). Suppose if the dark component is absent (i.e.,
α1 = 0), then a such breathing effect in Fig. 3(a) disappears
and never appears again. Hence our investigations reveal that
the role of the dark component is an essential one to realize
the breathing effect during the interaction between two bound
state DBB solitons. However, one can control this breathing
effect in Fig. 3(a) (FDBB-FDBB interaction) (a) by tuning
the coupling parameters α

(j )
2 (or) (b) by tuning α

(j )
3 (or) (c) by

adding a bright component in Fig. 3(b) with a suitable value for
α

(j )
3 (note that α

(j )
3 couples a bright component with the two-

component DB soliton). For example, in Fig. 3(c) by adding a
bright component with α

(1)
3 = 45 + 13i and α

(2)
3 = 0.2 + i the

breathing effect in Fig. 3(b) is eliminated. Similarly one can
also investigate such interaction effects under the conditions
(a) k

(1)
I = k

(2)
I = 0, l �= 0 (stationary GDBB-GDBB case) and

(b) k
(1)
I = k

(2)
I �= l (bound state GDBB-GDBB case). A similar

kind of interaction effect was also examined in the hyperfine
states of 87Rb BECs experimentally [21]. However, we have
analytically demonstrated some possible ways to control this
interaction by adding a bright component in the FDB case.
All such investigations reveal that the presence of a breathing
effect between the bound state DBB solitons depends on
the choice of coupling parameters (α1, α

(j )
2 , α

(j )
3 , j = 1,2)

even though they are closely packed by using their pulse-
width parameters (k(j )

R ). (4) In general under the conditions
k

(1)
I �= k

(2)
I �= 0 and α

(1)
2 : α

(1)
3 �= α

(2)
2 : α

(2)
3 , the two-soliton

solution governs the energy-exchange collision dynamics of
GDBB vector solitons as shown in Fig. 5(a) with the para-
metric choices α1 = 0.0807, α

(1)
2 = 0.86 + 0.5i, α

(2)
2 = 3.5 +

3.86i, α(1)
3 = 0.7 + 0.72i, α(2)

3 = 0.44 + 0.9i, k(1) = 1 + 0.1i,
k(2) = 1 − 0.1i, l = 1 and μ = 1. Moreover in this case if
k

(1)
I = l (say k

(1)
I = l = 0.1) but k

(2)
I �= l (i.e., k

(2)
I = −0.1)

then the energy-exchange collision occurs in between the
FDBB and GDBB vector one-solitons as shown in Fig. 5(b).
In the colliding region of Fig. 5(b), FDBB and GDBB solitons
beat each other. Such a beating effect occurs if we allow the
colliding solitons to overlap for a long duration by decreasing
the speed of colliding solitons (i.e., decreasing k

(j )
I values) and

also setting approximately equal values for the pulse-width
parameters of colliding solitons (k(j )

R ). Further the strength
of this beating effect depends on the choices of the coupling
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FIG. 4. Two DBB one-solitons repel each other without energy-exchange; (b) DBB solitons in (a) overcome the bouncing effect and make a
jump in the colliding region if we decrease the value of pulse-width parameter k

(2)
R to 0.7. (c) DBB solitons in (a) overcome the bouncing effect

and make the smooth collision if we take the value of coupling parameters α
(1)
3 = 15.7 + 10.72i and α

(2)
3 = 0.94 + 0.001i without disturbing

other parametric values of (a).

parameters. If we increase the beating effect by tuning the
value of coupling parameter α

(2)
2 then at one stage (i.e., at

α
(2)
2 = 0.5 + 0.86i) the colliding solitons start to repel each

other as shown in Fig. 4(a). Therefore in this bouncing case
asymptotic solitons never collide. However, one can induce
collision with energy-exchange as shown in Fig. 4(b) by tuning
the parametric value of pulse-width parameter k

(2)
R to 0.7.

Figure 4(b) reveals that one-soliton crosses the other by making
a jump in the colliding region. One can also set a smooth
energy-exchange collision without beating and jumping effects
in the colliding region as shown in Fig. 4(c) by tuning the
coupling parameters α

(j )
3 to the value α

(1)
3 = 15.7 + 10.72i

and α
(2)
3 = 0.94 + 0.001i without disturbing other parametric

values of Fig. 4(a). (5) All the solitons at t → ±∞ are
valid if Rjj > 0 or μ�j > 0. But here the singularity terms
�j (j = 1,2) are defined in terms of all 15 real free parameters
of two-soliton solution, because they support the complicated
term e(ρjj −ρ) as mentioned before. Further each colliding
soliton has nine free real parameters with a common field
restriction. Moreover our multisoliton solution permits us to
analyze the collision dynamics of DBB solitons by numerically
plotting it. Therefore it is difficult to systematically identify a
parametric domain for each colliding soliton in the numerical
plot of a mathematically complicated two-soliton solution with
a specific physical situation. However, if one can analyze

such collision dynamics numerically by taking the linear
combination of two general one-solitons as an initial condition
(by following the earlier work in the BB case [24,25]) then
one can set easily any one physical situation for all colliding
solitons by tuning the free parameters suitably. Moreover such
possible investigations may reveal the possibility for switching
the energy-exchange collision dynamics of DBB solitons in
one parametric domain with μ > 0 into another parametric
domain with μ < 0 by selecting suitable initial parametric
values, because our colliding solitons have the freedom to
manage different physical situations by tuning their values of
free parameters.

IV. CONCLUSION

In general if we look a fairly general form of mixed
vector one-soliton solution to the Manakov-like equation or
vector soliton solution (but not mixed type) to the modified
Manakov model, the resultant solution supports two parametric
domains (separated by a moveable singularity) giving rise to
different physical situations [7,16]. In this connection it is
interesting to note from our present investigation that if mix a
dark component with the practically interesting the BB vector
soliton by using the three-component Manakov model (1),
the resultant three-component DBB vector soliton solution
(2) with nine free real parameters gains the ability (a) to
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FIG. 5. Initial peak-power distributions in the two GDBB colliding one-solitons vary due to collision. (b) Head-on collision appears in
between FDBB and GDBB one-solitons. Note the beating effect in the colliding region and change in the initial peak-power distribution among
the bright components of each colliding soliton without disturbing its dark component.

manage the different physical situations by varying its initial
parametric choices as shown in Fig. 1, (b) to preserve the
experimentally observed energy-exchange collision dynamics
of BB vector solitons in the photorefractive crystal [3] and
also in the birefringent fiber [9] as shown in Fig. 5, (c) to
identify the initial parametric choices needed to suppress or
enhance the oscillations in the amplitudes of the closely packed
bound state mixed vector solitons (i.e., the breathing effect due
to the interaction between the closely packed stationary DBB
solitons) as shown in Fig. (3), and (d) to overcome the bouncing
effect by suppressing the beating effect in a colliding region
of two DBB one-solitons as shown in Figs. 4 and 5.

It is interesting to note that the amplitude of the DBB
soliton (2) with nine free real parameters is proportional to
the pulse-width parameter (k(1)

R ) and free from the other free
parameters as in the BB case [5] if the minimum intensity
of its dark component is zero or if � = 1/μ. In the former
case to define its polarization vector we need hyperbolic
functions [see Eq. (4)] with a singularity. Consequently in
this case the difference between the maximum intensity of a
dark component and the sum of the maximum intensity of two
bright components is conserved against � and θ as shown in
Fig. 2(c). But in the later case the polarization vector is free
from the singularity and admits only the circular functions to
define it. Consequently in this � = 1/μ case, the sum of the
intensity distribution among its all components is conserved
against � and θ as shown in Fig. 2(b). In these mixed vector
soliton cases the complex modulation in the z term depends on

the polarization vector (or) coupling parameters for it supports
a dark component whereas in the BB case it is free from the
polarization parameters.

In Sec. III we have numerically demonstrated the GDBBB-
GDBB collision dynamics in Fig. 5(a) and the GDBB-FDBB
collision dynamics in Fig. 5(b). Here each colliding soliton
(with a common background field for its dark component)
supports a singularity and the energy-switching properties
(which are robust phenomena which can survive even in
the presence of both loss and cross-phase perturbation terms
[25]) of BB vector solitons. Therefore our investigations may
promote the applications of BB vector solitons to composite
nonlinear media and the artificial metamaterials [12]. It is also
interesting to note from our multisoliton that the breathing
effect due to the interaction between bound state DBB solitons
has the possibility to occur because the interacting solitons
have a dark component. One such possibility as shown in
Fig. 3(b) by using the two DB one-solitons is eliminated
by adding a bright component in this interaction picture as
shown in Fig. 3(c). Although a similar kind of breathing effect
was experimentally observed in the hyperfine states of 87Rb
BECs [21], we are able to predict a mechanism to control
this kind of interaction effect by appropriately involving
more free coupling parameters (α1, α

(j )
2 , α

(j )
3 , j = 1,2) in

the polarization vector of our interacting solitons. We have
also defined each colliding soliton in our numerical plot
by using the asymptotic analysis. Such solitons (5) support
some complicated interaction terms. Such terms depend on
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all the free parameters of two colliding solitons as shown in
Eq. (5). It restricts us to identify different parametric domains
corresponding to different physical situations. However, work
is in progress to overcome this kind of difficulty in our
analytical solution by using the suitable numerical technique
as explained in Sec. III.

Recently the transformation equation connecting the Man-
akov model and the coupled equation with four-wave mixing
terms has been found [28]. By using our mixed solution in

this transformation and in the other transformation equation
used to include the effects of linear self- and cross-coupling
terms in the Manakov model [29] we have noted a breather
vector soliton solution. Such details will be focused elsewhere.
In addition we believe that the present study will also give
further insight into the mixed pair multicomponent solitons,
collision in boson-fermion mixtures, and nonlinear left-
handed materials and their applications in switching devices
[9,11,13,14].

APPENDIX

1. DBB One-soliton solution

By substituting u1 = g/f and um = hm/f , m = 2,3 in (1), it can be rewritten as a set of homogeneous equations
involving only quadratic terms (f 2, fg, g2) acted on by the Hirota bilinear operator D

p
z D

q
t (g · f ) = (∂z − ∂z′ )p(∂t −

∂t ′)q[g(z,t) f (z′,t ′)]|z=z′, t=t ′ as

f
[(

iDz + D2
t

)
g · f

] − g

[
D2

t f · f − 2

(
μ1gg∗ +

3∑
m=2

μmhmh∗
m

)]
= 0,

f
[(

iDz + D2
t

)
hm · f

] − hm

[
D2

t f · f − 2

(
μ1gg∗ +

3∑
m=2

μmhmh∗
m

)]
= 0. (A1)

The next step is to decouple (A1) into a set of bilinear equations of which there are many possibilities to decouple. To find the
mixed vector soliton solution, we decouple Eq. (A1) by introducing an unknown decoupling constant λ as

B1g · f = 0; B1hm · f = 0; B2f · f = 2

(
μ1gg∗ +

3∑
m=2

μmhmh∗
m

)
, (A2)

where B1 and B2 are defined as B1 = (iDz + D2
t − λ) and B2 = (D2

t − λ) in which λ is a constant to be determined. To find the
DBB one-soliton solution, we assume a formal power series for g, h, and f as

g = g0(1 + χ2g2), hm = (χh1m) and f = (1 + χ2f2). (A3)

One can collect a set of linear partial differential equations (PDEs) at various powers of χ by using (A3) in (A2) as

χ0 : B1(g0 · 1) = 0, B2(1 · 1) = 2μ(g0g
∗
0 ),

χ1 : B1(h12 · 1) = 0, B1(h13 · 1) = 0,

χ2 : B1 · g0(1 · f2 + g2 · 1) = 0, B2(1 · f2 + f2 · 1) = 2μ[g0g
∗
0 (g2 + g∗

2 ) + h12h
∗
12 + h13h

∗
13)],

χ3 : B1(h12 · f2) = 0, B1(h13 · f2) = 0,

χ4 : B1(g2 · f2) = 0, B2(f2 · f2) = 2μ[g0g
∗
0 (g2g

∗
2 )]. (A4)

To solve the above set of PDEs with χr,(r = 2,3,4) for g2 = Z.Reη1+η∗
1 and f2 = Ceη1+η∗

1 , we take g0 = α1R
−1/2e(iψ) and

h1m = α(1)
m eη1 , where ψ = lt − (l2 + λ)z + ψ (0) and η1 = k(1)t − i(k(1)2 − λ)z + η

(0)
1 as the plane wave solutions of equations

with χ (0) and χ (1). Here the real constants ω,R and C and the complex constants ω(1) and Z are fixed by the above set of linear
PDEs without disturbing the arbitrary nature of complex parameters α1, α(1)

m , and k(1) and a real parameter l. One can obtain the
exponential form of DBB one-soliton after using these solutions in the bilinear transformations as

u1 = τ√
R

[
1 + ZReη1+η∗

1

1 + Ceη1+η∗
1

]
ei(ψ), um =

[
α(1)

m eη1

1 + Ceη1+η∗
1

]
. (A5)

The above solution is rewritten in the trigonometric form [see Eq. (2)] in Sec. II.

2. DBB Two-soliton solution

The calculation of this state is a tedious but straightforward algebraic exercise. To find the DBB two-soliton solution we
assume the formal power series for g, hm, and f as

g = g0(1 + χ2g2 + χ4g4),hm = χh1m + χ3h3m and f = 1 + χ2f2 + χ4f4,m = 2,3 (A6)
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By using (A6) in (A2), we collect the set of linear PDEs at various powers of χ as

χ0 : B1(g0 · 1) = 0, B2(1 · 1) = 2μ(g0g
∗
0 ),

χ1 : B1(h12 · 1) = 0, B1(h13 · 1) = 0, χ2 : B1 · g0(1 · f2 + g2 · 1) = 0,

B2(1 · f2 + f2 · 1) = 2μ[g0g
∗
0 (g2 + g∗

2 ) + h12h
∗
12 + h13h

∗
13)],

χ3 : B1(h12 · f2 + h32 · 1) = 0, B1(h13 · f2 + h33 · 1) = 0,

χ4 : B1g0(1 · f4 + g2 · f2 + g4 · 1) = 0,

B2(1 · f4 + f2 · f2 + f4 · 1) = 2μ[g0g
∗
0 (g4 + g2g

∗
2 + g∗

4 ) + (h12h
∗
32 + h32h

∗
12) + (h13h

∗
33 + h33h

∗
13)], (A7)

χ5 : B1(h12 · f4 + h32 · f2) = 0, B1(h13 · f4 + h33 · f2) = 0,

χ6 : B1g0(g2 · f4 + g4 · f2) = 0,

B2(f2 · f4 + f4 · f2) = 2μ[g0g
∗
0 (g2g

∗
4 + g4g

∗
2 ) + (h32h

∗
32 + h33h

∗
33)],

χ7 : B1(h32 · f4) = 0, B1(h33 · f4) = 0,

χ8 : B1g0(g4 · f4) = 0, B2(f4 · f4) = 2μ(g0g
∗
0g4g

∗
4 ).

Now in order to find DBB two-soliton solution, we take g0 = α1R
−1/2e(iψ) and h1m = α(1)

m eη1 + α(2)
m eη2 as the solution of equations

with χ0 and χ1, respectively. After using these plane wave solutions for g0 and h1m in the PDEs with χr (r = 2,3, . . . ,8) we take

g2 = ∑2
j,n=1 eηj +η∗

n+ρjn+zjn+iπ , f2 = ∑2
j,n=1 eηj +η∗

n+ρjn , g4 = e(
∑2

j=1(ηj +η∗
j )+ρ1212+z1212), and f4 = e(

∑2
j=1(ηj +η∗

j )+ρ1212) as the solutions
of the resulting equations. Therefore we like to name g0 and h1m as the judicious input ansatz for the above manipulations and
have taken care to define them by considering their role in the required solution. It is important to note that the Hirota method
allows us to take the input functions h1m for two-soliton as the linear combination of two plane wave solutions while it restricts
g0 to take its form as in the one-soliton case. Consequently our dark component in the resultant two-soliton solution

u1 = (α1e
iψ+ρ/2)/D

⎡
⎣1 +

2∑
j,n=1

eηj +η∗
n+ρjn+zjn+iπ + e(

∑2
j=1(ηj +η∗

j )+ρ1212+z1212)

⎤
⎦,

um = (1/D)

⎡
⎣ 2∑

j=1

α(j )
m eηj +

2∑
j=1

eη1+η2+η∗
j +σmj

⎤
⎦, (A8)

where D = 1 + ∑2
j,n=1 eηj +η∗

n+ρjn + e(
∑2

j=1(ηj +η∗
j )+ρ1212). Here R = eρ = ∑2

j,n=1 eρjn , ρjn = ln (Rjn), ezjn = cgj

cg∗
n
, ez1212 =

cg1cg2

cg∗
1cg∗

2
eσmj = (k(1) − k(2))[ α

(1)
m e

ρ2j

(k(1)+k(j )∗) − α
(2)
m e

ρ1j

(k(2)+k(j )∗) ], eρ1212 = |k(1) − k(2)|2[ eρ11+ρ22

(k(1)+k(2)∗)(k(2)+k(1)∗) − eρ12+ρ21

(k(1)+k(1)∗)(k(2)+k(2)∗) ] in which Rjn =
[μ(α(j )

2 α
(n)∗
2 +α

(j )
3 α

(n)∗
3 )

(k(j )+k(n)∗)2 − μ|α1|2
cgj cg∗

ne
(ρ−ρjn ) ], ψ = lt − (l2 + λ)z + ψ (0), ηj = k(j )t − i(k(j )2 − λ)z + η

(0)
j , cgj = k(j ) − il, cg∗

n = k(n)∗ + il,

and λ = 2μ|α1|2/R has a common background field.
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K. Sengstock, Nat. Phys. 4, 496 (2008).

[22] S. Stellmer, C. Becker, P. Soltan-Panahi, E. M. Richter,
S. Dörscher, M. Baumert, J. Kronjäger, K. Bongs, and
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