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2Centro de Fı́sica Teórica e Computacional and Departamento de Fı́sica, Faculdade de Ciências da Universidade de Lisboa,

Campo Grande, Edifı́cio C8, Lisboa P-1749-016, Portugal
(Received 13 August 2015; revised manuscript received 9 October 2015; published 9 December 2015)

We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and
with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative
and parity-time (PT ) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced
gain and losses in the PT -symmetric case. We obtain families of soliton solutions and discuss their stability.
The latter study is performed using a linear stability analysis and checked with direct numerical simulations
of the evolutional system of equations. Stable solitons are found in the conservative and PT -symmetric cases.
Interactions and collisions between the conservative and PT -symmetric solitons are briefly investigated, as well.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is a canon-
ical model for weakly nonlinear waves in various physical
contexts [1]. In a one-dimensional setting, it provides a
universal framework for studying bright solitons [2] existing
due to the balance between the dispersion (or diffraction)
and the focusing nonlinearity. In two-dimensional (2D) and
three-dimensional settings, bright solitons are unstable and
undergo finite-time blowup which manifests itself in a singular
growth of the solution amplitude [1]. At the same time, the
growing intensity of the wave field makes it necessary to
account for nonlinearities of higher orders, and the collapse
can be arrested by the defocusing quintic nonlinearity. This
idea has motivated intensive studies of cubic-quintic (CQ)
generalizations of NLSE [3]. Additional relevance of inclusion
of CQ nonlinearity into the standard NLSE model is justified
by the possibility to establish similarities between propagating
light and a liquid for the 2D case [4]. Different characteristics
of this “liquid of light” were discussed [5], and its experimental
realization was recently reported [6].

Various complex phenomena in nonlinear optics related to
the multimode propagation can be simulated using models
of two coupled NLSEs. In particular, such coupled systems
allow one to account for polarization effects [7], describe
vector and mixed solitons (i.e., paired bright and dark
solitons) [8], simulate soliton switching [9], and describe the
symmetry breaking, the latter corresponding to a transition
from a symmetric state which bears identical fields in both
components to an asymmetric one [10,11]. In the meantime,
much less information is available about the wave dynamics
in more sophisticated systems of three coupled equations,
which, to the best of our knowledge, were mainly studied
in the context of the mean-field theory of spinor Bose-Einstein
condensates, where the main attention was focused on the
repulsive interactions (i.e., the defocusing nonlinearity in the
optical terminology) [12].

On the other hand, a natural generalization of coupled
NLSE-like systems resides in the possibility of inclusion of
the effects related to the gain and loss. One of particularly
interesting cases corresponds to the situation of parity-time-
(PT ) symmetric arrangement of gain and lossy cores [13]. The

simplest and experimentally feasible PT -symmetric configu-
ration can be implemented in the form of two coupled optical
waveguides, one of which experiences gain and another one
corresponds to the losses [14]. Dynamics of solitons in such a
PT -symmetric coupler has received considerable recent atten-
tion in 1D [15] and 2D [16] settings. However, to the best of our
knowledge, PT -symmetric solitons in triple-core waveguides
have not been reported so far. In the meantime, it is known
that such an important feature as PT -symmetry breaking (i.e.,
reality of the spectrum of the underlying linear system) is
very sensitive not only to the distribution and balance between
gain and losses but also to the geometry of the waveguides
(depending on whether they are assembled in an open or a
closed chain) and to the number of waveguides (either even or
odd) [17,18]. This significantly diversifies possible physical
scenarios as well as eventual applications of the system.

In the present paper, we address the conservative and
PT -symmetric systems of three 2D NLSEs coupled in a
circular (closed) chain. More specifically, we classify possible
types of vector bright solitons and reveal symmetry-breaking
bifurcations in the conservative chain. Next, we touch upon the
properties of underlying linear problem in the PT -symmetric
case where the system possesses a nonzero PT -symmetry
breaking threshold, provided that there exists a mismatch in
the couplings between the sites. As the main outcome of our
work, we numerically show that there exist two branches
of PT -symmetric solitons which are stable as long as the
strength of the gain-and-loss is small enough. Upon increase
of the gain-and-loss parameter the solitons become unstable;
however, the families of these unstable solutions can be
continued to the arbitrary strength of the gain-and-loss, even
to the domain of the broken PT symmetry.

Thus the present work is focused on the model governed by
the following equations:

i
∂ψ1

∂z
+ ∇2ψ1 + F (|ψ1|)ψ1 + αψ2 + βψ3 = iγψ1,

i
∂ψ2

∂z
+ ∇2ψ2 + F (|ψ2|)ψ2 + αψ1 + αψ3 = 0, (1)

i
∂ψ3

∂z
+ ∇2ψ3 + F (|ψ3|)ψ3 + αψ2 + βψ1 = −iγψ3,
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FIG. 1. A schematic illustration of three coupled equations
described by Eq. (1). A conservative waveguide carrying the field
ψ2 is coupled to a PT -symmetric (for γ > 0) dimer of a gain and
lossy waveguides carrying the fields ψ1 and ψ3, respectively. α and
β are the respective coupling coefficients.

where ψ1,2,3 are the dimensionless amplitudes of the electric
field in the three cores, z is the propagation distance, ∇2 =
∂2

∂x2 + ∂2

∂y2 is the 2D Laplace operator in the transverse plane

x and y, F (|ψj |) = |ψj |2 − |ψj |4 with j = 1,2,3 are the CQ
nonlinearities, α > 0 and β > 0 are the coupling coefficients,
and γ is the gain-and-loss parameter. For γ = 0 the system
is conservative, as no gain and losses are present. The case
γ > 0 preserves the PT symmetry, where the first equation
describes gain, the third equation describes a lossy waveguide,
and the second equation remains neutral. From the formal point
of view, PT symmetry manifests itself in the following prop-
erty: For any solution � = (ψ1(x,y,z),ψ2(x,y,z),ψ3(x,y,z))T

where T stands for the transpose of system (1), there also exists
another solution �PT = PT � where the parity P is given by

P =

⎛
⎜⎝

0 0 1

0 1 0

1 0 0

⎞
⎟⎠ (2)

and the antilinear operator T acts according to T �(x,y,z) =
�∗(x,y,−z) [hereafter the asterisk (∗) denotes the complex
conjugation]. Notice that PT symmetry requires not only the
balanced gain and loss (+iγ in the first waveguide and −iγ in
the third waveguide) but also the equal coupling α between the
waveguides with ψ1 and the waveguides with ψ2 and ψ2 and
ψ3. A schematic presentation of the model based on Eq. (1) is
provided in Fig. 1.

After omitting the Laplace operators, system (1) is reduced
to the PT -symmetric trimer [19] which has been studied be-
fore with the cubic nonlinearity [18,20]. On the other hand, the
introduced system (1) can be considered a generalization of the
CQ 2D coupler previously studied both in the conservative [11]
and in the PT -symmetric [16] cases.

The remainder of the paper is organized as follows. In
Sec. II, we explore solitons in the conservative setting, and in
Sec. III the analysis is extended on the PT -symmetric case.
In Sec. IV we examine interactions and collisions between the
solitons. Section V concludes the paper.

II. SOLITONS IN THE CONSERVATIVE MODEL

Before considering solitons in the PT -symmetric model, it
is of fundamental importance to understand the properties of
the underlying conservative model. To this end, in this section
we address the case γ = 0 in (1). We start looking for radial

stationary soliton solutions of the form:

ψ{1,2,3} = {U (r),V (r),W (r)}eikz, (3)

where U , V , and W are real functions of the radius r =√
x2 + y2 in the (x,y) plane and k is the propagation constant.
The stationary wave functions U , V , and W solve the

system

− kU + d2U

dr2
+ 1

r

dU

dr
+ F (|U |)U + αV + βW = 0,

−kV + d2V

dr2
+ 1

r

dV

dr
+ F (|V |)V + αU + αW = 0, (4)

−kW + d2W

dr2
+ 1

r

dW

dr
+ F (|W |)W + αV + βU = 0.

The requirement of the regularity of the fields ψ1,2,3(x,y,z) at
the origin x = y = 0 implies the following boundary condition
at r = 0: dU/dr|r=0 = dV/dr|r=0 = dW/dr|r=0 = 0. On the
other hand, looking for spatially localized solutions satisfying
ψ1,2,3(x,y,z) → 0 as x2 + y2 → ∞, we require functions U ,
V , and W to vanish at infinity: U,V,W → 0 as r → ∞.

A. Solutions in the limit α = 0

In order to classify possible solutions of the system (4), it
is convenient to start with the limit α → 0 in which system of
three equations (4) splits into two simpler subsystems whose
properties are fairly well understood. The first subsystem is
a single CQ-NLSE equation for the wave function V . It is
known that, besides the trivial zero solution, this equation
admits a well-studied solitonic solution [3–5]. The second
subsystem consists of two coupled equations for functions U

and W . Besides the zero solution, this system admits a branch
of symmetric solutions, for which U = W and an asymmetric
branch with U �= W [11]. Thus combining the solutions from
the two subsystems, we can predict the existence of five
different nontrivial branches of solutions for the whole system
of three equations (4) which can be continued to small but
nonzero α. The solutions of different types can be listed in the
following order:

(i) Solution 1 is a combination of the symmetric solution
for the U -W subsystem with the zero solution from the V

equation;
(ii) Solution 2 is a combination of the asymmetric solution

for the U -W subsystem with the zero solution from the V

equation;
(iii) Solution 3 bears trivial zero solution in the U -W

subsystem but the nontrivial solitonic one for the V equation;
(iv) Solution 4 is the combination of the symmetric

solution for the U -V coupler with the nonzero solution for
the V equation.

(v) Solution 5 is the combination of the asymmetric
solution for the U -V coupler with the nonzero solution for
the V equation.

These considerations are systematized in the Table I (see the
column α = 0). Examples of the listed solutions are displayed
in the left column of Figs. 2 and 3.
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TABLE I. Summary of the main features of the five branches of solutions of the conservative system.

Branch no. Symmetry α = 0 Arbitrary α Stability (for α > 0)

1 Sym U = W �= 0, V = 0 Does not exist for α > αcr, see Eq. (9) Unstable for small α,
but becomes stable after bifurcation with branch 2

2 Asym U �= W , V = 0 Does not exist after the pitchfork bifurcation Stable
3 Sym U = W = 0, V �= 0 Merges with branch 4 Stable
4 Sym U = W �= 0, V �= 0 Merges with branch 3 Unstable
5 Asym U �= W , V �= 0 Does not exist after the pitchfork bifurcation Unstable

B. Continuation over the coupling parameter α

We use the five solutions identified above in the limit
α → 0 as the initial guesses for the numerical continuation
over the coupling parameter α. Our numerical results are
obtained rewriting the system of equations (4) in a finite
differences scheme. We introduce a discrete spatial grid in the
finite interval r ∈ [0,R], where R � 1 is sufficiently large.
The zero boundary condition at r → ∞ is approximated by
the requirement U (R) = V (R) = W (R) = 0. Given the initial
ansatz, solutions are found by a standard Newton-Raphson
method (see Ref. [21] for details about the finite differences
and Newton-Raphson methods). Each of the five solutions can
be continued to nonzero α originating in this way a continuous
branch of solutions. The transformation of the soliton shapes
under growing α can be traced by comparing the spatial profiles
of the solitons in Fig. 2 (symmetric solutions) and Fig. 3
(asymmetric solutions). One observes that for α > 0 branches
1, 3, and 4 remain symmetric: i.e., for these branches U = W

in the whole range of their existence. Branches 2 and 5 are
asymmetric, i.e., they do not bear any particular symmetry

FIG. 2. (Color online) Examples of symmetric solutions
(U = W ) of the conservative system found for k = 0.15 and
β = 0.07. The left column presents the profiles for α = 0 and the
right column for α = 0.02. The solid blue line shows U and W , and
the dashed red one shows V . The number on the right upper side
indicates the label of the corresponding symmetric branch.

among the three wave functions. Switching on α leads to
growth of the second component in the solutions from the
branches 1 and 2 (recall that for the corresponding solutions in
the limit α = 0 the second component vanishes, V = 0). In a
similar way, branch 3 has U = W = 0 for α = 0, but nonzero
U and W (U = W ) for nonzero α.

The complete bifurcation diagram obtained numerically
after the continuation over the parameter α is visualized in
Fig. 4 in the plane (�,α), where the quantity � is defined as

� = EU + EV − EW

E
, (5)

where

E{U,V,W } = 2π

∫ ∞

0
|{U,V,W }|2rdr (6)

are the energies in the corresponding waveguides and

E = EU + EV + EW (7)

is the total energy in the system.
The choice of the parameter to characterize bifurcations

is not unique. We found � convenient as for the symmetric
dimer solutions (the field propagates only in the waveguides
U and V at α = 0) � = 0 and for the asymmetric solutions it
describes the energy imbalance in the dimer. On the other hand,
at α = 0, when energy propagates only along the conservative
waveguide, we have � = 1. Alternatively, a similar diagram
plotted in the plane E versus α might be thought to be more

FIG. 3. (Color online) Profiles of asymmetric solutions of the
conservative coupled waveguides. The values of the parameters are
the same that in Fig. 2 and each column shows again the solutions
for α = 0 and α = 0.02, respectively. The blue and cyan continuous
lines correspond to U and W and the dashed red line to V . The
number on the right upper side indicates the label of the corresponding
asymmetric branch.
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FIG. 4. (Color online) Branches of the solutions on the plane
(�,α) for k = 0.15 and β = 0.07. The red circles correspond to
solutions of type 1, blue squares to type 2, black diamonds to
type 3, cyan hexagons to type 4, and green crosses to type 5.
Dashed lines indicate unstable solutions, and solid lines show stable
solutions.

conventional, but it does not allow us to resolve easily the
important bifurcation features, since many of the solutions
have very close (or virtually equal) energies E. Notice also that
since the conservative system is invariant under the interchange
of U and W , any asymmetric solution from branches 2 and
5 exists in two “copies”: (U,V,W ) and (W,V,U ), which
obviously have different � characteristics. However, since
these two copies can be easily obtained one from another,
we show only one � dependence for each asymmetric branch,
which makes the bifurcation diagram somewhat simpler and
easier to read.

The most visible feature observable in Fig. 4 is that at
certain α the asymmetric branch 2 (blue squares) merges with
the symmetric branch 1 (red circles). This scenario can be
considered as the symmetry breaking through a pitchfork
bifurcation. After the bifurcation, symmetric branch 1 can
be continued until a certain critical value of α at which the
solutions lose the exponential localization. The critical value
of α can be computed if one looks at the asymptotic behavior
of the soliton tails. Assuming that the behavior of the solutions
for large r is given by the following law: U,V,W ∝ 1√

r
e−
r ,

one can compute


2 = k − 1
2

√
β2 + 8α2 − 1

2β. (8)

The requirement 
2 > 0 implies that α < αcr, where the
critical coupling equals

αcr = 1√
2

√
k(k − β). (9)

It also follows from (9) that the propagation constant k must
be larger than β: k > β. For the parameters in Fig. 4, we have
αcr ≈ 0.077.

The symmetry-breaking scenario in Fig. 4 can also be
observed when the asymmetric branch 5 (green crosses) meets
the symmetric branch 4 (cyan hexagons). After this, the
asymmetric branch disappears, and only the symmetric branch
4 exists. For larger α, the symmetric branch 4 merges with the
symmetric branch 3 (black diamonds) featuring a saddle-node
bifurcation.

FIG. 5. [(a) and (b)] The linear stability spectrum for the solution
from the symmetric branch 1 with k = 0.15, β = 0.07 and two
different α. [(c) and (d)] The linear stability spectrum for the solutions
from the symmetric branch 4 with k = 0.15, β = 0.07 and two
different α.

C. Stability analysis

We have also examined the linear stability of the found
solutions. Following the standard procedure, we considered
perturbed solutions:

ψ1 = eikz[U (r) + U+(r)einθ eσz + U ∗
−(r)e−inθ eσ ∗z],

ψ2 = eikz[V (r) + V+(r)einθ eσz + V ∗
−(r)e−inθ eσ ∗z], (10)

ψ3 = eikz[W (r) + W+(r)einθ eσz + W ∗
−(r)e−inθ eσ ∗z],

where U±(r), V±(r), and W±(r) describe radial behavior of
small perturbations, n = 0,1, . . . is the azimuthal index of the
perturbation, θ is the polar angle, and σ is the eigenvalue whose
real part characterizes the instability growth rate. We derived
the linear stability eigenvalue problem (see Appendix A) and
computed the instability increment max [Re(σ )]. We have
checked the lowest azimuthal indices with n = 0,1,2,3, and
found that the unstable eigenvalues (if any) are always gener-
ated by the perturbation with n = 0, while the perturbations
with n � 1 do not cause any instability (a similar observation
for the system of two equations has been reported in Ref. [11]).

Linear stability results (also indicated in Fig. 4) show that
in the limit α = 0 and for small α asymmetric branch 2 and
symmetric branch 3 are stable. The symmetric branch 1 is
unstable for small α due to a pair of purely real unstable
eigenvalues in the stability spectrum [Fig. 5(a)] but becomes
stable [Fig. 5(b)] after the symmetry breaking bifurcation
which connects branches 1 and 2 (thus the symmetry breaking
pitchfork bifurcation connecting branches 1 and 2 can be
characterized as supercritical with respect to the parameter
1/α). Symmetric branch 4 is unstable in the whole range of its
existence. The instability is caused by two pairs of real unstable
eigenvalues before the symmetry-breaking bifurcation with
asymmetric branch 5 [Fig. 5(c)]; after the bifurcation, branch
4 is unstable due to only one pair of real eigenvalues [Fig. 5(d)].
Branch 5 has a stable solution with α = 0 but becomes unstable
(with one pair of real eigenvalues) for any nonzero α.
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The stability of the solutions was also checked by means
of the direct propagation of the stationary solitons. The input
stationary profiles were slightly perturbed as

ψ1(x,y,0) = U (r) (1 − ε),

ψ2(x,y,0) = V (r) (1 + 0.2ε), (11)

ψ3(x,y,0) = W (r) (1 + 0.8ε),

where for numerical simulations we set ε = 0.03. The propa-
gation of the perturbed solutions was simulated by means of
a split-step pseudospectral method, specifically the so-called
beam propagation method [22] in a lattice of 512 × 512 points.
This explicit method is conditionally stable, so a sufficiently
small step �z must be considered [23]. Even though the
scheme is of the first order in �z, the evolution associated to the
nonderivative terms was computed with a fourth-order Runge-
Kutta method. The perturbed solutions were propagated to a
long distance (z � 600) to observe their evolution. The results
obtained from the simulation of the beam propagations agree
with the above conclusions on the linear stability analysis.

For stable solutions, amplitude of the perturbation does
not grow. For unstable solutions, the growing perturbation
destroys the solutions which eventually become nonlocalized
and lose completely their original shape. However, unstable
solutions from branches 1, 2, and 3 can preserve localization
for significantly long propagation distance. During this long
transient period, the instability manifests itself in almost
periodic power oscillations whose amplitude decreases slowly.
An example of such a behavior for an initially symmetric
unstable solution from branch 1 is illustrated in Fig. 6(a) and
Fig. 7. As shown in Fig. 7, the initially symmetric solution

FIG. 6. (Color online) (a) Plot of the energies in each waveguide
E1,2,3 = ∫

R2 |ψ1,2,3|2dxdy vs propagation distance z for the unstable
symmetric solution from branch 1 with k = 0.15, β = 0.07 and α =
0.02. (b) Plot of the energies E1,2,3 vs propagation distance z for
the unstable asymmetric solution from branch 2 with k = 0.174,
β = 0.07, and α = 0.02. While the z axis of panel (b) is limited to
z = 600, we have checked that the shown regular oscillations of the
energies persist until z = 3500. For larger propagation distances (not
shown in the figure), the solution loses spatial localization.

FIG. 7. (Color online) Snapshots of the unstable initially sym-
metric solution whose propagation is shown in Fig. 6(a). The plots of
the first file show the initial solution, and the plots of the second one
correspond to z = 200.

develops strong asymmetry. Figure 6(b) and Fig. 8 illustrate
the development of almost periodic oscillations for an unstable
asymmetric mode from branch 2.

D. Families of solutions: Continuation over
the propagation constant k

As the next step, we constructed families of the solutions
�(k) (continuing solutions of the stationary problem over the
propagation constant k with all other parameters fixed). The
obtained families are visualized in Fig. 9 on the plane (�,k).
Similarly to what has been observed in Ref. [11] for a coupler,
we obtain that the possible values of the propagation constant
belong to the range from kmin = β up to kmax = β + 3/16,
where k0 = 3/16 is the maximal value in the single 2D
CQ-NLSE model [24] in view of the divergence of the total
energy E.

FIG. 8. (Color online) Snapshots of the unstable solution whose
propagation is shown in Fig. 6(b). The plots of first file show the initial
solution, and the plots of the second one correspond to z = 300.
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FIG. 9. (Color online) Families of solutions on the plane (�,k)
for β = 0.07 and α = 0.02. The red circles correspond to solutions
of type 1, blue squares to type 2, black diamonds to type 3, cyan
hexagons to type 4, and green crosses to type 5. Dashed lines indicate
unstable solutions, and solid lines show stable solutions.

The bifurcation diagram in Fig. 9 also features the symme-
try breaking where the asymmetric family 2 (blue squares)
branches off from the symmetric family 1 via a pitchfork
bifurcation. The diagram also shows the exchange of stability
which takes place after the bifurcation.

III. PT -SYMMETRIC SOLITONS

A. PT -symmetry breaking in the linear model

Before proceeding to the solitonic solutions in the nonlinear
PT -symmetric model (1) with γ > 0, we recall the features
of PT -symmetry breaking in the underlying linear model.
Omitting for the time being the CQ nonlinear part, we
make the Fourier transform of the resulting linear model.
Introducing ψ̂j = ∫ ∞

−∞
∫ ∞
−∞ eikxx+ikyyψj (x,y,z)dxdy, and the

column vector ψ̂ = (ψ̂1,ψ̂2,ψ̂3)T , where T stands for the
transpose, we obtain

i
∂ψ̂

∂z
= (

k2
x + k2

y

)
ψ̂ − Hψ̂, (12)

where

H =

⎛
⎜⎝

−iγ α β

α 0 α

β α iγ

⎞
⎟⎠. (13)

The linear waves of the system are stable (and hence PT
symmetry is unbroken) if all the eigenvalues of the matrix H

are real. The spectrum of (13) can be easily found [18]. In
particular, the condition of the unbroken PT symmetry reads

γ 2 � γ 2
PT = 2α2 + β2 − 3 3

√
α4β2. (14)

Condition (14) implies that for any α and β there exists a PT -
symmetry breaking threshold γPT such that PT symmetry is
unbroken if 0 � γ � γPT but becomes broken otherwise. For
the case of the homogeneous coupling, i.e., for α = β one has
γPT = 0 [19], that is, PT symmetry is broken for any nonzero
gain-and-loss parameter γ > 0.

B. Solitons

The system (1) admits stationary PT -symmetric solitons
in the form (3) where for γ > 0 we assume that U (r) = W ∗(r)

FIG. 10. (Color online) Radial profiles of 2D PT -symmetric
solitons for the branch 1 with k = 0.18, β = 0.07, α = 0.02, and
different γ . For the chosen parameters, the PT -symmetry breaking
threshold equals γPT ≈ 0.054. The solid blue line shows |U | = |W |,
and the dashed red line shows |V |. In the insets, the real (solid green
line) and imaginary (dashed black line) parts of U are displayed.

is, generically speaking, a complex-valued function, and V (r)
is a real-valued function. Substituting (3) in (1) and separating
the wave function U into real and imaginary parts, U (r) =
UR(r) + iUI (r), we arrive at the following system:

d2UR

dr2
+ 1

r

dUR

dr
+ [

U 2
R + U 2

I − (
U 2

R + U 2
I

)2]
UR − kUR

+ αV + βUR + γUI = 0,

d2V

dr2
+ 1

r

dV

dr
+ (V 2 − V 4)V + 2αUR − kV = 0, (15)

d2UI

dr2
+ 1

r

dUI

dr
+ [

U 2
R + U 2

I − (
U 2

R + U 2
I

)2]
UI − kUI

− βUI − γUR = 0.

In order to obtain PT -symmetric solitons with γ > 0, we
use the numerical continuation from the conservative limit
γ = 0. As follows from the requirement U (r) = W ∗(r), we
can calculate PT -symmetric solitons starting only from the
symmetric conservative solutions, i.e., from the solutions of
branches 1, 3, and 4. We have also checked the stability of
all PT -symmetric solutions following the previous linear
stability analysis with the incorporation in the system of
equations (A1) the terms responsible for gain and loss.

As discussed above, all conservative solutions from branch
4 are unstable. We have observed thatPT -symmetric solutions
obtained from this branch by considering γ > 0 remain
unstable. Therefore, in what follows we focus on branches
1 and 3 which can generate stable PT -symmetric solitons.
Figures 10 and 11 display examples of numerically foundPT -
symmetric solutions obtained by means of the continuation
from branches 1 and 3. Notice a well-pronounced difference
between the two types of solitons: For the solitons in Fig. 10,
the amplitude of the cores with gain and losses is larger
than the amplitude of the neutral core, i.e., |U | = |W | > |V |;
while for the solitons in Fig. 11 we have |V | > |U | = |W |. In
Fig. 10, the increase of γ leads to the progressive increase of
|U | = |W |, whereas in Fig. 11 the opposite takes place: The
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FIG. 11. (Color online) Radial profiles of 2D PT -symmetric
solitons for the branch 3 with k = 0.15, β = 0.07, α = 0.03, and
different values of γ . For the chosen parameters, the PT -symmetry
breaking threshold equals γPT ≈ 0.044. The solid blue line shows
|U | = |W |, and the dashed red line shows |V |. The insets show the
profiles for the real (solid green line) and imaginary (dashed black
line) parts of U .

amplitudes |U | = |W | decrease as the gain-and-loss parameter
γ increases.

Our numerical results show that stable conservative solitons
(with γ = 0) give birth to PT -symmetric solitons (with
γ > 0) which remain stable, at least for sufficiently small
γ . Moreover, our results allow to conjecture that the PT -
symmetric solitons continued from a stable conservative
soliton remain stable for any γ below the PT -symmetry
breaking threshold (we, however, notice that an accurate
analytical treatment is required in order to substantiate this
conjecture; in the vicinity of the PT -symmetry breaking,
i.e., for 0 < γPT − γ � 1, hypothetical instability can be
present, but its increment is small (of order 10−3 or less),
and the associated eigenfunction is poorly localized, which
requires a nonpractically large spatial window in order to
perform an accurate computation). Stable solutions propagate
for indefinitely long distance without the growth of the
initially introduced perturbation. Figures 12 and 13 show
two representative examples, where the shape of a slightly

FIG. 12. (Color online) Long-distance evolution of a stable 2D
PT -symmetric soliton from the branch 1. The values of the
parameters are the same as in Fig. 10 except for γ = 0.025. The
slightly perturbed initial beam propagates undistorted at least until
z = 600. The profile of |ψ3| is almost identical to |ψ1| and therefore
is not shown.

FIG. 13. (Color online) Long-distance evolution of a stable 2D
PT -symmetric soliton from the branch 3. The values of the
parameters are the same as in Fig. 11 except for γ = 0.02. The
slightly perturbed initial beam propagates practically undistorted at
least until z = 600. The profile of |ψ3| is almost identical to |ψ1| and
therefore is not shown.

perturbed initial beam is practically indistinguishable from
the beam obtained after the long-distance propagation.

The families of PT -symmetric solitons can be numerically
continued to arbitrarily large values of the gain-and-loss
parameter γ and, in particular, to the domain of the brokenPT
symmetry, i.e., to γ > γPT , as typically occurs in the stationary
oligomer models [18–20]. However, all solitons with γ > γPT
are unstable. Examples of such unstable solitons are shown
in the two panels of Figs. 10 and 11 labeled as γ > γPT .
Finally, we point out a difference between our system and the
PT -symmetric system of two equations [16]: in the latter one
noPT -symmetric solitons (either stable or unstable) exists for
γ > γPT .

FIG. 14. (Color online) Example of interaction between asym-
metric solitons of the branch 2 with k = 0.16, β = 0.08, and α =
0.04. The initial distance between them is �x = 46 and the relative
phase �φ = 0. The first, the second and the third columns visualize
behavior of ψ1, ψ2, and ψ3, respectively. The first, second, and third
rows correspond to z = 0, z = 2300, and z = 2558, respectively.

062909-7



FEIJOO, ZEZYULIN, AND KONOTOP PHYSICAL REVIEW E 92, 062909 (2015)

IV. A NOTE ON INTERACTION BETWEEN SOLITONS

In this section, we present a brief study on the interactions
and collisions of the solitons described by (1). First, we
analyzed interaction of asymmetric solitons in the conservative
system. Initially quiescent solitons had a relative phase �φ

between them and were separated by a relatively small distance
�x. The respective initial distributions were prepared as
follows:

{U,V,W }in(x,y) = {U,V,W }st(x − �x,y)

+{U,V,W }st(x + �x,y)ei�φ. (16)

We have observed that in-phase solitons, �φ = 0, attract each
other and undergo inelastic collision after which they merge
in a single pulse, as shown in Fig. 14. Out-of-phase solitons,
�φ = π , repel each other, similarly to what happens in the
system of two equations [11].

We have also considered twoPT -symmetric solitons which
were launched towards each other with an initial velocity from
a certain distance. After the collision, the solitons combine one
more time in a single pulse.

However, initially out-of-phase solitons, i.e., having initial
relative phase �φ = π , do not recombine but move outwards
after the collision (see Fig. 15), and the distance between them
grows indefinitely. The repulsion between the out-of-phase

FIG. 15. (Color online) Collision between PT -symmetric soli-
tons of the branch 3 with k = 0.15, β = 0.07, α = 0.03, and γ =
0.02. The initial distance between them is �x = 46, the relative
phase �φ = π , and the velocity v = 0.02. The first column shows
|ψ1| = |ψ3|, and the second column visualizes the amplitude of the
second component ψ2. The first, second, and third rows correspond
to z = 0, z = 264, and z = 816, respectively.

0 150 300 450 600 750
−30

−20

−10

0

10

20

30

z

x so
lit

on
s

FIG. 16. Estimated positions in x of the PT -symmetric solitons
of Fig. 15 vs the propagation distance z. The continuous black lines
indicate the positions of the solitons’ peaks. It can be appreciated how
the repulsion prevents the cross of solitons at x = 0.

solitons is additionally illustrated in Fig. 16, which shows how
the solitons do not cross at x = 0.

V. CONCLUSIONS

We have studied a model of a triple-core wave guide
described by a system of three coupled two-dimensional non-
linear Schrödinger equations with the cubic-quintic (focusing-
defocusing) nonlinearity. In the first part of the work, we
have considered the conservative case and classified possible
families of bright solitons. The most interesting effect found
is the symmetry-breaking bifurcation, which occurs at varying
strengths of the coupling or at a growing propagation constant.
The stability of the found solitons was addressed in detail.

In the second part of the work, we have extended the
analysis onto the PT -symmetric system, where one of the
waveguides was lossy and another one active, with gain and
losses balancing each other. We have demonstrated that such a
three-waveguide structure supports solitons. Two branches of
solitons can be stable, at least for sufficiently weak gain-and-
losses. Unlike in the case of two coupled equations [15,16],
the branches of PT -symmetric solitons can be continued into
the domain of arbitrarily strong gain-and-losses parameter.
However, in this last limit the PT symmetry is broken, which
implies instability of the solitons. Finally, the interactions and
collisions between the solitons were briefly investigated. We
observed merging of two in-phase solitons into a stable one
and repelling of two out-of-phase solitons.
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APPENDIX A: LINEAR STABILITY
EIGENVALUE PROBLEM

The substitution of (10) in (1) and the subsequent lineariza-
tion with respect to U±, V±, and W± leads to the following
eigenvalue problem (we additionally assume γ = 0):

iσU+ + LU+ + 2|U |2U+ + U 2U− − 3|U |4U+
− 2U 3U ∗U− + αV+ + βW+ = 0;

−iσU− + LU− + 2|U |2U− + U 2∗U+
− 3|U |4U− − 2U 3∗UU+ + αV− + βW− = 0;

iσV+ + LV+ + 2|V |2V+ + V 2V− − 3|V |4V+
− 2V 3V ∗V− + αU+ + αW+ = 0;

−iσV− + LV− + 2|V |2V− + V 2∗V+

− 3|V |4V− − 2V 3∗V V+ + αU− + αW− = 0;

iσW+ + LW+ + 2|W |2W+ + W 2W− − 3|W |4W+
− 2W 3W ∗W− + αV+ + βU+ = 0;

−iσW− + LW− + 2|W |2W− + W 2∗W+
− 3|W |4W− − 2W 3∗WW+ + αV− + βU− = 0.

(A1)

Here the linear operator L is defined as

L = d2

dr2
+ 1

r

d

dr
− n2

r2
− k, (A2)

where σ is the eigenvalue which characterizes the instability
rate and n = 0,1,2, . . . is the azimuthal index of the perturba-
tion.
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