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Critical phenomena of dynamical delocalization in a quantum Anderson map
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Using a quantum map version of the one-dimensional Anderson model, the localization-delocalization
transition of quantum diffusion induced by coherent dynamical perturbation is investigated in comparison
with the quantum standard map. Existence of critical phenomena, which depends on the number of frequency
component M , is demonstrated. Diffusion exponents agree with theoretical prediction for the transition, but the
critical exponent of the localization length deviates from it with increase in the M . The critical power εc of the
normalized perturbation at the transition point remarkably decreases as εc ∼ (M − 1)−1.
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I. INTRODUCTION AND MODELS

The localization phenomena are persistent and robust
in one-dimensional disordered systems (1DDS) [1–3]. It
still remains even in two-dimensional disordered systems.
However, if the dimension d of the disordered system is
more than 2, the localization becomes unstable, and the
localization-delocalization transition (LDT) takes place, and
finally an irreversible diffusion sets in when we consider
quantum diffusion of an initially localized wave packet. The
critical phenomena of LDT have been extensively studied on
the basis of the one-parameter scaling theory (OPST) of the
localization by many authors [4–9]. The recent reviews and
developments for LDT have been given in a commemorative
book [10], and references therein.

On the other hand, similar localization phenomena were
discovered for the quantum kicked rotors (KR) typically
exemplified by the quantum standard map (SM), and it can
be interpreted as the localization phenomenon of a class of
1DDS in terms of Maryland transformation [11–15]. In this
context, the additional dimensionality (d − 1) corresponds
to the number of the dynamical degrees of freedom M

applied to the KR, and the LDT in 1DDS corresponds to the
ergodic transition when we consider the dynamically perturbed
standard maps. Based upon this correspondence, the critical
phenomenon of the LDT was observed for cesium atoms in
optical lattice settings [16,17].

On the analogy of the standard map’s case, we can expect
that the localization in the 1DDS is unstable against the
dynamical perturbations. We have proposed the delocalization
scenario that the dynamical perturbation to 1DDS in general
enhances the localization length and restores the diffusive
motion in a strong perturbation regime [18]. Considering
that electrons are interacting with lattice vibrations, the effect
of dynamical perturbation by phonon modes is essential. It
models the fundamental dynamical and deterministic process
of the quantum electronic motion turning into a diffusive one
which allows time-irreversible kinetic description.

Here, a basic question arises: whether the LDT happens
in the 1DDS under the interaction with dynamical degrees of
freedom, and if it happens, how the nature of LDT changes with
increase in the mode number M . To answer this we introduce
the 1D Anderson map (AM) described by the unitary time-

evolution operator,

Ûm = e−i�T (p)/2�e−i�(f (tm)V (q)/�)e−i�T (p)/2�, (1)

for the wave function defined on the discrete lattice
site q(=n), where T (p) = 2 cos(p/�) = e−d/dq + e+d/dq and
V (q)(= V (n)) is random on-site potential uniformly dis-
tributed over the range [−W,W ] [19,20]. The dynamical
perturbation is modeled by the sinusoidal periodic perturbation
superposed onto the on-site energy as

f (t) = 1 + ε√
M

M∑

k=1

cos(ωkt), (2)

where M and ε are the number of the frequency component and
the strength of the perturbation, respectively. The time evolu-
tion by the operator Ûm approximates the unitary evolution of
the dynamically perturbed Anderson model,

i�
∂u(n,t)

∂t
= u(n − 1,t) + u(n + 1,t) + f (t)V (n)u(n,t), (3)

for a short time interval � up to the correction of O(�3), and
the unperturbed Anderson map (ε = 0) retains the localization
properties of the Anderson model [19,20]. In addition, the
numerical verification of the presence of LDT is very hard
for the perturbed Anderson model, therefore we examine here
the perturbed Anderson map to explore the presence of LDT,
where we take � = 1, typically. Note that the strength of
the perturbation is divided by

√
M so as to make the total

power of the long-time average independent of M , and the fre-
quencies are taken as incommensurate numbers of O(1) [21].
Replacing by T (p) = p2/2 and V (q) = K cos(q), Eq. (1)
turns into the SM, which exhibits the LDT in the momentum
space [12].

In the perturbed AM, both localization and delocalization
have been observed [19,20]. However, the nature of the
transition from the former to the latter was not known, in
particular, the presence of critical phenomena in the transition
process is still unclear. In this paper, we numerically investigate
the critical nature of the LDT in the AM in comparison with the
LDT in the SM, which can be analyzed by the OPST [16,17].
In particular, we are interested in the mode number M depen-
dence of the transition, regarding the M with the additional
dimension (d − 1) according to the interpretation in the case
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of SM [12,16]. We increase the effective dimensionality
(M + 1) = d far beyond 3. It will provide a crucial test for the
mean-field theory of the Anderson transition, which regards
d = 3 as the lower bound above which the critical exponents
lose the d dependency.

II. SUBDIFFUSIVE PROPERTIES OF WAVE-PACKET
DYNAMICS AT THE LOCALIZATION-DELOCALIZATION

TRANSITION

For M = 1, the localization length increases exponentially
with the coupling strength ε, but we could not confirm the
presence of the delocalized state. However, if M � 2, we
can confirm the presence of the critical state, which evidently
borders the delocalizing behavior and the localizing one. This
will be described closely in the present section.

A. Numerical results

Let us introduce the on-site probability P (n,t) = |u(n,t)|2.
The main tool of our analysis, we use the time-dependent
mean-square displacement (MSD) m2(t) = 〈∑∞

n=−∞(n −
〈n〉)2P (n,t)〉� of the propagating wave packet starting from
the localized one, u(n,t = 0) = δn,n0 , where 〈. . . 〉� denotes
the ensemble average over a different random configuration
of V (n). With increase in the perturbation strength, the
time-evolution changes from the localized behavior to the
delocalized one passing through the critical behavior at a
certain critical strength ε = εc. [See Fig. 1(a) for the result
of AM with M = 2.) At the critical state the MSD exhibits a
power-law asymptotic (subdiffusive) dependence m2(t) ∼ tα

characterized by the diffusion exponent α, which is close to
the theoretical value 0.66 discussed later. Instead of the MSD,
we introduce the scaled MSD,

	(ε,t) ≡ m2(ε,t)

tα
, (4)

with respect to the critical behavior tα and show its temporal
evolution at various ε including εc in Fig. 1(b). The critical
curve indicated by the bold line separates the curves spreading
like a fan into the delocalization regime (ε > εc) increasing up
to the normal diffusion m2(t) → Dt(	 → t1−α) and localiza-
tion regime (ε < εc) decreasing down to the localization length
m2(t) → ξ (	 → t−α). Here, the diffusion constant D = D(ε)
and the localization length ξ = ξ (ε) approach to zero and
infinity, respectively, as ε → εc.

To clarify the shape of the distribution, in addition to the
MSD, we introduce the non-Gaussian parameter (NGP) NGP

defined by

NGP(t) = 1

3

m4(t)

m2(t)2
− 1, (5)

where m4(t) = ∑
(n − 〈n〉)4P (n,t). Figure 1(c) depicts the

time dependence of NGP for various ε. At the critical point
the NGP keeps the same nonzero value, implying that the shape
of the distribution function takes a similar non-Gaussian form
throughout the time evolution [22,23]. Figure 1(d) shows the
distribution function Ps(ns(t),t) = P (n,t)dn/dns(t) at several
t’s as a function of the scaled coordinate ns(t) by the spread
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FIG. 1. (Color online) The diffusive properties of the wave
packet in the perturbed AM with M = 2. The system and ensemble
sizes are N = 215 ∼ 217 and 10 ∼ 100, respectively, throughout
this paper, and we mainly take W = 0.5 as the disorder strength
and � = 0.125 as the Planck constant, respectively. (a) The double
logarithmic plot of m2(t) as a function of time for different values of
the perturbation strength ε, where the diffusion exponent α(= 0.66)
is determined by the least-square fit for m2(t) with the critical case.
(b) The scaled MSD 	(ε,t) as a function of time for different values
of the perturbation strength ε. Note that this is a log-log plot. (c) NGP

as a function of time for different values of the perturbation strength
ε. Note that the black thick lines in the panels (a)–(c) show the results
at the critical case εc = 0.075. The blue dashed curves show the
results for ε < εc in the panels (a)–(c). (d) Semilog plots of the scaled
probability density P (ns(t)) as a function of the ns = n/

√
m2(t) for

t = 4 × 104,12 × 104,20 × 104 at the critical case. The curves of all
cases are well overlapped.

of the wave packet for AM with M = 2 as

ns(t) = n√
m2(t)

∝ n

tα/2
. (6)

Evidently, the scaled representation Ps(ns,t) does not have
explicit t dependence as is expected. Thus we denote the scaled
distribution function simply by Ps(ns(t)).

We further investigate the invariant function form of the
wave packet at each critical point of various M’s, as seen in
Fig. 2(a) for AM with M = 2,3,4. It is suggested that the tail
of the scaled invariant shape of the distribution function takes
the stretched Gaussian distribution,

P (ns) ∼ exp(−|ns(t)|β), (7)

except for the range close to the origin of the critical state,
where β is the distribution exponent (stretched Gaussian
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FIG. 2. (Color online) (a) The scaled invariant distribution P (ns) of AM as the function of ns = n/
√

m2(t) for M = 2,3,4 at each critical
perturbation strength εc from the inside to the outside. (b) The plot of ln | − ln P (ns)| as a function of |ns | in the logarithmic scale. The slopes
correspond to the exponent β of the stretched Gaussian distribution.
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FIG. 3. (Color online) The diffusion exponent α and distribution
exponent β as a function of M for AM and SM. The broken lines
are theoretical predictions αM and βM , respectively. The inset shows
the plot of β as a function of α. The points (α = 0,β = 1) and (α =
2/3,β = 3/2) are denoted by filled circles which correspond to the
exponential localization and subdiffusion at d = 3, respectively. The
green solid curve is the theoretically expected universal relation.
The parameters are the same as the case of Fig. 1 for AM, and
N = 214 ∼ 216, K = 3.1, � = 2π×311

213 for SM.

exponent). The tails are shown in Fig. 2(b) in the plot of
ln | − ln P (ns)| as a function of ln |ns | for each case in Fig. 2(a).
The slopes of the plots correspond to the exponents β of
the stretched Gaussian distribution, which are decided by the
least-square fit except for the range close to the origin. The
M dependence of the estimated diffusion exponent α and the
stretched Gaussian exponent β are summarized in Fig. 3.

B. Comparison with theoretical prediction

According to the mean-field theory of the Anderson
transition in the d-dimensional disordered systems [24], the
subdiffusion m2(t) ∼ tα appears only at the critical point εc

and the exponent is represented by the formula αM = 2
d

=
2

M+1 for 2 � M � 10. On the other hand, the exponent β

has been supposed to be related with α. For example, a
phenomenological theory based upon the assumption that the
distribution function is described by a master equation with
memory kernel tells that the relation between α and β is a
universal relation,

β = 2

(2 − α)
, (8)

for 0 � α � 1, 1 � β � 2 [23]. This relation predicts βM =
(M + 1)/M if the mean-field result is applied. The results of
our numerical experiment are compared with the theoretical
prediction in Fig. 3, and the data almost agree with the relation
over a wide range 2 � M � 10. (The inset of Fig. 3 shows
the α-β relation.) We executed the same analysis for SM,
concluding the results for AM have a great deal in common
with those of SM for 2 � M � 10, as seen in Fig. 3.

It is found that the numerical results almost agree with
the theoretical predictions except for the stretched Gaussian
exponent β in the perturbed SM with the larger effective

062908-3



YAMADA, MATSUI, AND IKEDA PHYSICAL REVIEW E 92, 062908 (2015)

dimension (M + 1) � 8. It seems that the disagreement of
β between the theoretical prediction and numerical data is due
to the insufficiency of the ensemble and system size for the tail
of the invariant distribution functions.

III. FINITE-TIME SCALING ANALYSIS OF THE
LOCALIZATION-DELOCALIZATION TRANSITIONS

We next investigate the critical exponent ν related to
the localization (correlation) length ξ , which is supposed to
diverge ξ ∼ |ε − εc|−ν for the localized regime ε < εc (for the
diffusive regime ε > εc). The LDT can be in general observed
both for AM and SM. We exhibit here the finite-time scaling
analysis for AM taking the case of M = 5 as the example.
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FIG. 4. (Color online) The results of the critical scaling analysis
for the perturbed AM. (a) The scaled MSD 	(ε,t) as a function
of x = ξs(ε)tα/2ν for some values of ε in the AM of M = 5. The ε-
dependent localization length ξs(ε) is determined by a scaling relation
Eq. (9) by least-square fit in the inset of (a). (b) The same data as (a)
but plotted as a function of the perturbation strength ε. In the ideal
case, all lines have a common crossing point at εc = 0.0175. (c)The
localization length ξ (ε) as a function of (εc − ε) for M = 2,3,4.
The filled symbols denote the numerical data directly obtained by√

m2(t → ∞) in the long-time limit. The open symbols indicate the
localization length ξs(ε) obtained by OPST in the critical region. Note
that the axes are in the logarithmic scale.

First, we show in Fig. 4(b) the observed value of ln 	(ε,t) at
various different times tm as a function of ε. A remarkable
feature is that all the curves cross at a single point, which can
be regarded as εc. This fact allows us to follow the OPST which
is usually supposed for the LDT as follows:

	(ε,t) = F ((εc − ε)tα/2ν), (9)

where F (x) is a differentiable scaling function. We note that the
asymptotic function form of F (x) should be F (x) → |x|−2ν in
order to represent the localization 	(ε,t) → t

α

x(ε) ∼ t
−α |ε −

εc|−2ν . With the above hypothesis, the scaled MSD can be
expressed by ln 	(ε,t) − ln 	c(t) ∝ (εc − ε)tα/2ν around the
critical point ε = εc, where 	c = F (0). Applying this relation
to the curves in Fig. 4(b), we can plot tm and the corresponding
slope s(tm) = ln (	(ε,tm)/	c(tm))/(εc − ε), which should be
∝ tα/2ν , as shown in the inset of Fig. 4(a), which enables
one to decide the unknown exponent ν by using the known
diffusion exponent α. With this ν, we can explicitly construct
the localization length function ξs(ε) = ξ0(εc − ε)−ν and
further the scaling function F (ξs(ε)tα/2ν) as a function of
x = ξs(ε)tα/2ν . Figure 4(a) shows the scaling functions F (x)
constructed by the time-dependent data of MSD at various
different ε’s close to εc. All the time-dependent data obtained
at different ε form a unified function if the scaled variable x is
used, which proves numerically the validity of the OPST.

In Fig. 4(c), we compare the localization length function
ξs(ε) decided indirectly by OPST in the critical region ε ∼ εc

with ξn(ε) decided directly by the saturated MSD data which
are precisely calculable for ε’s much less than the critical re-
gion. The ε dependence of these two localization lengths, ξs(ε),
ξn(ε), seem to connect continuously, which implies unexpected
wideness of the critical region in which the OPST works.

IV. CRITICAL EXPONENT AND PERTURBATION
STRENGTH OF THE LOCALIZATION-DELOCALIZATION

TRANSITIONS

In Fig. 5(a), we compare the results of ν for AM and
SM at various M in comparison with theoretical predictions.
The critical exponent ν obtained from the self-consistent
mean-field theory of the localization (VW theory) is νVW =
1/(d − 2) for 2 < d < 4 and νVW = 1/2 for d � 4 [24]. The
semiclassical theory of Garcia predicts νG = 1/2 + 1/(d − 2)
which asymptotically approaches the value 1/2 of νVW for
d → ∞ [25]. On the other hand, the inequality ν � 2/d is
proposed at the critical point by Harris [26]. Our results tell
that for the larger value of M(�7) the critical exponents of the
AM and SM become significantly lower than the theoretical
lowest value 1/2 but satisfy the Harris’ inequality [26–28].

Finally, we show the M dependence of the critical strength
εc in Fig. 5(b). Note that in the definition of ε we normalized
the perturbation by

√
M in order to make the power strength

of perturbation independent of M for the fixed ε. In spite of
such a normalization, the critical perturbation strength depends
strongly upon M . As shown in Fig. 5(b), our data for AM and
SM indicate the inverse power law,

εc ∝ (M − 1)−δ, (10)

up to M = 10. The powers are estimated as δ ∼ 1.1, for the
AM (W = 0.5 and 0.8), and δ ∼ 1.0 for the SM (K = 3.1).
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FIG. 5. (Color online) (a) The dimensionality (M + 1) = d de-
pendence of the critical exponent ν which characterizes the critical
dynamics in the AM and SM. The red solid line and green dashed line
are the results of the analytical prediction by νVW and νG, respectively.
Thick line denotes the lower bound by the Harris’ critical inequality.
(b)The critical perturbation strength εc as a function of (M − 1) for
the AM and SM. Note that the axes are in the logarithmic scale. Here,
we used the SM with K = 3.1, � = 2π×311

213 .

Equation (10) means that the total power of the perturbation,
which is given by Mε2

c is asymptotically proportional to
∼1/M . Such a strong M dependence is highly nontrivial and
the theoretical derivation has not been given to the best of
our knowledge. It manifests that the LDT with large M is a
cooperative phenomenon among the degrees of freedom of
perturbation and the driven system.

It is quite interesting that the numerical data of Garcia
and Cuevas reporting the delocalization potential threshold of

a high-dimensional disordered tight-binding model suggests
(d − 2)−1, which seems to be closely related with our
results [9].

V. CONCLUSION

We investigated critical phenomena of LDT exhibited
by polychromatically perturbed AM, which models 1DDS
perturbed by coherent dynamical perturbations, in comparison
with the SM under the same perturbations. We confirmed the
presence of a critical phenomenon for the mode number M �
2. The diffusion exponent α and distribution exponent β agree
well with the theoretical prediction for M � 10. On the other
hand, the critical exponent ν is significantly lower than the
predictions of the mean-field theory for large M , but it does not
violate the critical inequality. The critical value of normalized
perturbation strength exhibits a remarkable M dependence as
εc ∼ (M − 1)−1. As a result, all the critical characteristics
of AM agree surprisingly well with SM in spite of their
fundamental difference. Our results open a new possibility of
controlling electronic localization and conduction by means
of externally applied stimulus implemented by optical and/or
acoustic devices [29].
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