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Periodic mean-field solutions and the spectra of discrete bosonic fields:
Trace formula for Bose-Hubbard models
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We consider the many-body spectra of interacting bosonic quantum fields on a lattice in the semiclassical limit
of large particle number N . We show that the many-body density of states can be expressed as a coherent sum over
oscillating long-wavelength contributions given by periodic, nonperturbative solutions of the, typically nonlinear,
wave equation of the classical (mean-field) limit. To this end, we construct the semiclassical approximation for
both the smooth and oscillatory parts of the many-body density of states in terms of a trace formula starting from
the exact path integral form of the propagator between many-body quadrature states. We therefore avoid the use
of a complexified classical limit characteristic of the coherent state representation. While quantum effects such as
vacuum fluctuations and gauge invariance are exactly accounted for, our semiclassical approach captures quantum
interference and therefore is valid well beyond the Ehrenfest time where naive quantum-classical correspondence
breaks down. Remarkably, due to a special feature of harmonic systems with incommensurable frequencies, our
formulas are generically valid also in the free-field case of noninteracting bosons.
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I. INTRODUCTION

The full quantum mechanical solution of the problem
of interacting particles gets exceedingly complicated with
increasing particle number, and even for a generic single-
particle problem in the limit of large excitations. Hence, there
has been the quest for devising versions of the quantum
formalism where classical input can be used to predict the
outcomes of observations keeping intact concepts such as
superposition of states and summing amplitudes instead of
probabilities as embodied in the kinematical structure of
quantum mechanics. A natural benchmark for the use of
classical objects in quantum mechanics is the ubiquitous and
defining presence of interference phenomena in the quantum
world.

One attempt to search for quantum effects using only
classical information consists of following the time evolution
of quasiclassical, coherent quantum states with the sharpest
distribution of momentum and position allowed by quantum
mechanics. The time evolution of minimal wave packets is
then approximated for short times by a rigid motion along
the unique classical trajectory fixed by the initial expectation
values of position and momentum 〈q̂(0)〉,〈p̂(0)〉. For times
shorter than a usually short characteristic quantum scale, the
Ehrenfest time, expectation values are given simply by the
classical values q(t),p(t) determined by the unique solution of
the classical equations of motion. This approach breaks down
when the time evolved expectation values of 〈q̂(t)〉,〈p̂(t)〉 are
insufficient to recover even approximately the time evolved
wave packet. This happens when different sectors of the
originally well localized wave packet start superimposing with
each other and produce interference patterns.

The failure of this approach lies in its direct use of classical
concepts, as there is no simple way to modify classical
mechanics in order to account for interference phenomena,
particularly if the approach is fixing a unique classical
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trajectory. The early realization that quantum phenomena can
indeed be explained in terms of interfering amplitudes between
classical paths instead of the classical trajectories themselves
marks the beginning of the semiclassical program (see [1] for
a historical review). It took, however, almost 50 years until
Gutzwiller provided a complete and rigorous derivation of the
semiclassical approximation to the quantum mechanical prop-
agator, the starting point of modern semiclassical methods [2].

For first-quantized, single-particle systems, Gutzwiller’s
result for the quantum mechanical density of states (DOS) [3]

ρ(E) =
∑

n

δ(E − En), (1)

where En are the eigenvalues of the Hamiltonian, has the
generic form

ρ(E) � ρ̄(E) + ρ̃(E) (2)

in the formal limit � → 0. Here, the smooth part ρ̄(E) is
purely classical, in that it is related with the phase space
volume of the classical energy shell, also known as the
Weyl term. Remarkably, quantum fluctuations responsible
for the oscillatory part ρ̃(E) are also given in terms of
classical quantities, though encoded in a subtle way in the
periodic solutions of the classical equations of motion of the
corresponding classical system. A key distinction between
these two contributions to the semiclassical density of states is
that while ρ̄(E) is analytical in � and therefore admits a power
expansion around � = 0, this is not the case for the oscillatory
contribution, namely, ρ̃(E) cannot be approximated by any
finite-order expansion in �.

It is natural to ask which modifications, technical or
conceptual, are required to take the semiclassical program
into the realm of many-body systems where correlation effects
due to both interactions and indistinguishability additionally
appear. Here, we face a unique aspect of many-body systems,
namely, that one can choose between two equivalent but
conceptually quite different approaches. On the one hand,
one can generalize first-quantized techniques to many-body
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systems by extending the number of degrees of freedom
and using projector techniques to select the states with
the appropriate symmetry under permutation. The associated
semiclassical approach is then based on interfering classical
paths in a multidimensional space, supplemented by boundary
conditions and/or extra classical paths joining initial classical
configurations with the ones obtained under permutations of
the particle labels. This first-quantized approach has been
successfully applied to the helium atom, a prototype of a
strongly interacting few-particle problem [4], and has been
used so far to derive formal results for the symmetry-projected
trace formula [5,6]. Moreover, the simplifying assumption of
a unique mean-field potential fixing the classical dynamics
and making it essentially noninteracting has led to the notion
of shell effects and its semiclassical interpretation [7,8].
Furthermore, a complementary semiclassical approach to the
smooth part of the DOS in many-body systems has shown to
be surprisingly accurate [9] and allows for going beyond the
independent particle model.

The above mentioned approaches have in common that
the semiclassical limit of high energies (� → 0) is taken for
fixed, though possibly large, total particle number N . The
second option to describe quantum many-body systems of
interacting identical particles is the use of quantum fields.
In this approach, the quantum dynamics for N → ∞ has as
classical limit a, typically nonlinear, wave equation. This new
feature is, however, compensated by the fact that with the
notion of quantum fields, indistinguishability is included by
construction into the kinematics of the state space, instead
of by applying projectors as in the first-quantized approach.
The use of quantum fields to describe systems of interacting,
identical particles has another key consequence. It has been
shown (and it will be apparent from the calculations presented
here) that for systems with fixed, finite-dimensional Hilbert
space, the classical limit is actually equivalent to N → ∞.
It is then reassuring that, as shown in [10,11], the classical
limit of the second-quantized theory turns out to be the mean-
field description, which is expected to correctly represent the
dynamics in the thermodynamic limit.

In this paper, we follow Gutzwiller’s program and derive
rigorously a formula providing the DOS of a second-quantized
system for large N where the classical limit involves discrete
field equations, the mean-field equations of the associated
discrete quantum field. We construct both the smooth and
oscillatory contributions to the quantum many-body DOS
starting with the semiclassical approximation to the exact
Feynman propagator for the quantum field. We show that the
many-body DOS arises from interference of, in principle, in-
finitely many, periodic solutions of the corresponding classical
mean-field equations, in close analogy to the periodic orbit
contribution to the single-particle DOS. In the case where
interactions of strength g are present, our derivation relies on
the existence of chaotic behavior in the classical limit (the
ubiquitous presence of chaotic regions in the phase space of
discrete mean-field equations has been addressed in [12]). For
this, a suitable scaling of the interaction strength g ∼ N−1 is
usually assumed that keeps its contribution to the total energy
U ∼ gN2 proportional to N and therefore comparable with
the single-particle (hopping) term. In the noninteracting case,
our derivation is valid for systems where the single-particle

spectrum used to construct the many-body state space is such
that the energies are noncommensurable, as it is generically the
case. Our work for the free, noninteracting case opens a road to
study in a systematic way the combined limit N → ∞,� → 0
in infinite-dimensional systems where new kinds of classical
structures might become relevant [13].

A central aspect of Gutzwiller’s method [2] is a clever
choice of the representation where the semiclassical propaga-
tor, the key object representing quantum evolution in terms
of solutions of the classical equations of motion, appears
as a sum of oscillatory terms given by real actions. While
in the first-quantized scenario this choice is naturally given
by the position representation, this important aspect of the
semiclassical program has not been addressed in the context
of quantum fields, where the usual choice for constructing the
path integral is the coherent state representation for which the
actions entering the semiclassical propagator are complex [14].
Thus, here we use a different approach.

The paper is organized as follows. A key point in our
approach is to generalize the concept of position eigenstates
into the realm of quantum fields, and for this reason in
Sec. II we briefly introduce these objects, together with
basic definitions of Fock space and creation and annihilation
operators. The main technical part of the presentation, Sec. III,
is dedicated to the rigorous derivation of the many-body
DOS for Bose-Hubbard systems starting from its quantum
mechanical definition and the semiclassical approximation of
the quantum mechanical propagator. Specifically, the smooth
(Weyl) contribution to the DOS is derived in Sec. III A
with its final form given in Eq. (21), while the oscillatory,
Gutzwiller-type contribution is derived in Sec. III B and
summarized in Eqs. (51)–(54). The all important derivation
of the correct phases accounting for the existence of focal
points, the Maslov indices, is outlined in Sec. III C. We finish
this technical part with Sec. III D where we explain why the
extended phase-space approach used here to account for the
peculiar consequences of number-conserving Hamiltonians
has advantages over a reduced phase-space approach, although
the latter is more frequently used to deal with continuous
symmetries in first-quantized systems. As a first application of
our formalism, in Sec. IV we derive a semiclassical expression
in terms of interfering periodic mean-field solutions that gives
the exact form of the many-body DOS for a noninteracting
bosonic field with incommensurable single-particle energies.
The connection of our approach with some existing semiclas-
sically inspired ideas and methods in the context of interacting
bosonic systems is presented in Sec. V, together with possible
applications. Finally, in Sec. VI we conclude with a summary
of our findings and some of its consequences.

II. QUANTUM MECHANICAL BACKGROUND

We will restrict ourselves to quantum fields described
by a general Bose-Hubbard Hamiltonian with two-body
interactions

Ĥ =
L∑

l1,l2=1

Hl1l2 â
†
l1
âl2 + 1

2

L∑
l1,l2,l3,l4=1

Ul1l2l3l4 â
†
l1
â
†
l2
âl3 âl4 . (3)
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Here, H = (Hl1l2 )l1,l2=1,...,L is the Hermitian matrix describing
the single-particle motion and the fourfold sum describes
two-body interactions. Moreover, âl and â

†
l are the annihilation

and creation operators for the lth single-particle state (or
site) satisfying the usual bosonic commutation relations
[âl ,â

†
l′ ] = δll′ .

At intermediate steps, we will make use of Fock states |n〉
determined by the (integer) occupation numbers n1, . . . ,nL.
These states satisfy â

†
l âl |n〉 = nl |n〉 and

|n〉 = 1√∏L
l=1 nl!

(â†
L)nL . . . (â†

1)n1 |0〉 . (4)

More important for the derivation of the trace formula,
however, are so-called quadrature eigenstates |q〉 and |p〉
defined by the eigenvalue equations [15]

1

2
(âl + âl

†) |q〉 = ql |q〉 ,

(5)
− i

2
(âl − âl

†) |p〉 = pl |p〉 ,

which satisfy

〈q | n〉 =
L∏

l=1

e−q2
l√

2n−1n!
√

2π
Hnl

(
√

2ql) (6)

and

〈p | n〉 =
L∏

l=1

e−p2
l +in π

2√
2n−1n!

√
2π

Hnl
(
√

2pl), (7)

where Hn denotes the nth Hermite polynomial. We have also
the overlap

〈q | p〉 =
L∏

l=1

e2iplql

√
π

, (8)

and the closure relations

1̂ =
∫

dLq |q〉 〈q| =
∫

dLp |p〉 〈p| . (9)

For the derivation of the smooth part of the DOS, we
will later make use of the asymptotic formula of the Hermite
polynomials for large n [8]:

〈q|n〉

=
L∏

l=1

cos
{
ql

√(
nl + 1

2

)− q2
l − (nl + 1

2

)
arccos

(
ql√
nl+ 1

2

)}
√

π
2

4

√(
nl + 1

2

)− q2
l

.

(10)

III. DERIVATION OF THE MANY-BODY
DENSITY OF STATES

The DOS ρN (E) for fixed number of particles N is given
by the imaginary part of the trace of the Green function Ĝ(E)
over the subspace of the full Hilbert space obtained by fixing
N =∑L

l=1 nl . It is given by

ρN (E) = − 1

π
lim
η→0

ImgN (E + iη), (11)

with Im denoting the imaginary part and with the trace in terms
of a sum over Fock states

gN (E) = TrNĜ(E) =
∑

n

δ∑L
l=1 nl ,N

〈n|Ĝ(E)|n〉. (12)

Semiclassically, the single-particle DOS is typically split up
into a smooth part, which stems from short trajectories, and
an oscillatory part determined by periodic orbits [see Eq. (2)].
Correspondingly, for the many-body case we will now first
derive the smooth part ρ̄N (E).

A. Smooth part

To this end, we first rewrite the sum over all possible
occupations and the Kronecker delta in Eq. (12) by a sum
over those occupations, which have the correct total number
of particles and insert the definition of the Green function as a
Laplace transform of the propagator K̂(t) in Fock space:

gN (E) =
∑

n:
∑L

l=1 nl=N

〈n | Ĝ(E) | n〉

= 1

i�

∫ ∞

0
dt e

i
�

Et
∑

n:
∑L

l=1 nl=N

〈n | K̂(t) | n〉. (13)

The smooth part of the DOS stems from short paths, i.e., from
the short time contribution to the integral. In order to compute
this contribution, we will first evaluate the trace and then
perform the integration. To this end, we rewrite the diagonal
matrix elements as

〈n | K̂(t) | n〉
= TrK̂(t) |n〉 〈n|
=
∫

dLq

∫
dLp[K̂(t)]Weyl(q,p)[|n〉 〈n|]Weyl(q,p) (14)

with the Weyl symbols of an operator Ô being defined by [16]

[Ô]Weyl(q,p)

=
∫

dLQ

〈
q + Q

2

∣∣∣∣ Ô
∣∣∣∣q − Q

2

〉〈
q − Q

2

∣∣∣∣p
〉〈

p

∣∣∣∣ q + Q
2

〉
.

(15)

Next, we use the asymptotic formula (10) for the Hermite
polynomials for large n and rewrite the cosines as exponentials,
yielding four terms, where for two of them the exponents from
the cosines have the same sign, while for the remaining two
these signs are different. However, in Eq. (15) replacing Q by
−Q is the same as complex conjugation, which is only true
if the two signs of the exponential are opposite. Therefore,
the terms with both signs being the same have to cancel
when performing the integral. Thus, the resulting exponent
is antisymmetric in Ql . Expanding it up to second order in
Ql and neglecting the dependence of the prefactor on Ql
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yields

[|n〉 〈n|]Weyl(q,p) ≈
L∏

l=1

∑
sl=±1

2

∫∞
−∞ dQl exp

{−2iQl

[
pl + sl

√(
nl + 1

2

)− q2
l

]}
π2
√(

nl + 1
2

)− q2
l

=
L∏

l=1

∑
sl=±1

2

π

δ
[
pl + sl

√(
nl + 1

2

)− q2
l

]
√(

nl + 1
2

)− q2
l

=
L∏

l=1

4

π
δ

(
nl + 1

2
− q2

l − p2
l

)
. (16)

For the Weyl symbol of the propagator, one can use the usual short time asymptotic form

[K̂(t)]Weyl(q,p) ≈ exp

[
− i

�
H (MF)(p,q)t

]
. (17)

Here,

H (MF)(p,q) = 〈p | Ĥ | q〉
〈p | q〉

=
L∑

l1,l2=0

⎛
⎝hl1l2 − 1

2

L∑
l3=1

Ul1l3l3l2

⎞
⎠(ψ∗

l1
ψl2 − 1

2
δl1l2

)
+ 1

2

L∑
l1,l2,l3,l4=1

Ul1l2l3l4

(
ψ∗

l1
ψl3 − 1

2
δl1l3

)(
ψ∗

l2
ψl4 − 1

2
δl2l4

)
(18)

is the mean-field Hamiltonian H (MF) corresponding to the full quantum Hamiltonian (3). It can be obtained by the simple
replacement rule [10,11]

â
†
l âl′ → ψ∗

l ψl′ − 1
2δll′ , (19)

with ψl = ql + ipl .
Inserting Eqs. (16) and (17) into Eq. (14) as well as replacing the sum over occupations in Eq. (13) by an integral then yields

for the smooth part of the resolvent

ḡN (E) = 1

i�
(

π
4

)L
∫ ∞

0
dt

∫
dLq

∫
dLpδ

(
q2 + p2 − N − L

2

)
exp

{
i

�
[E − H (MF)(p,q)]t

}
, (20)

and thus for the smooth part of the many-body DOS

ρ̄N (E) =
(

4

π

)L ∫
dLq

∫
dLp δ[E − H (MF)(p,q)]δ

(
q2 + p2 − N − L

2

)
. (21)

As in the single-particle case, the smooth part is given by the phase-space volume of the N -particle energy shell.

B. Oscillatory part

To compute the oscillatory part g̃N (E), we start again from
Eq. (12) and rewrite the Kronecker delta, to get the resolvent
as

gN (E) = 1

2π

∫ 2π

0
dα
∑

n

〈n | e−iα(N−∑L
l=1 â

†
l âl )Ĝ(E) | n〉. (22)

The oscillatory part of the DOS, which we are interested in
here, can be obtained from a semiclassical approximation of
the Green function by computing the trace using a stationary
phase approximation. However, for Fock space, the stationary
phase approximation is not applicable since the trace in Fock
states is given by a sum rather than an integral. On the other
hand, in [10,11] a possible way to circumvent this problem has
been shown. This is by again using the quadrature eigenstates
|q〉 , |p〉. Inserting them to the left and to the right of the Green

function yields

gN (E) = 1

2π

∫ 2π

0
dα

∫ ∞

∞
dLq

∫ ∞

∞
dLp

×
∑

n

〈p | Ĝ(E) | q〉〈q | n〉〈n | e−iα(N−∑L
l=1 â

†
l âl ) | p〉.

(23)

Using the completeness relation of the Hermite polynomials
then yields

∑
n

〈q | n〉〈n | eiα
∑L

l=1 â
†
l âl | p〉

=
L∏

l=1

exp
{

i
cos α

[
2qlpl + (q2

l + p2
l

)
sin α
]− i α

2

}
√

π cos α
. (24)
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Next, one has to find an expression for the Green function,
which is related to the propagator by means of a Laplace
transform,

G(p,q; E) = 〈p | Ĝ(E) | q〉 = 1

i�

∫ ∞

0
dt e

i
�

EtK(p,q,t).

(25)

In [11], a semiclassical approximation for the propagator has
been found, which is given by

K(p,q,t) =
∑

γ

√∣∣∣∣ det
1

2π�

∂2Rγ

∂p∂q

∣∣∣∣e i
�

Rγ −iμ̃γ
π
2 , (26)

where the sum runs over all mean-field trajectories (nonlinear
waves) γ given by the solutions of the equations of motion

i�ψ̇(t) = ∂H (MF)(ψ∗(t),ψ(t))
∂ψ∗(t)

, (27)

and the boundary conditions

Reψ(0) = q,
(28)

Imψ(t) = p.

Moreover, the phase each trajectory contributes with is given
by its action

Rγ =
∫ t

0
dt ′[2� Imψ(t ′) · Reψ̇(t ′) − H (MF)(ψ∗(t ′),ψ(t ′))]

− 2p · Reψ(t) (29)

and the Morse index μ̃γ .
For later reference, we state the derivatives of the action

with respect to p, q, and t :

∂Rγ

∂p
= −2� Reψ(0),

∂Rγ

∂q
= −2� Imψ(t), (30)

∂Rγ

∂t
= −H (MF)(ψ∗(0),ψ(0)) = −Eγ .

In order to determine the oscillatory part of the many-body
DOS, the time integration in Eq. (25) can be evaluated using
a stationary phase approximation. The stationarity condition
then selects those trajectories which have energy E,

∂

∂t
[Rγ + Et] = E − Eγ = 0. (31)

In order to compute the semiclassical prefactor of the Green
function, one can use the standard trick for Jacobians, with Tγ

the period of γ [17]:

det
∂(Imψ(0),Tγ )

∂(p,E)
= det

[
∂(Imψ(0),Tγ )

∂(p,Tγ )

∂(p,Tγ )

∂(p,E)

]

= det

[
∂ Imψ(0)

∂p

]
∂Tγ

∂E
. (32)

With this, the semiclassical Green function (25) is given by

G(p,q; E)

= 1

i�

1
√

2π�
L−1

∑
γ

√√√√√
∣∣∣∣∣∣det

⎛
⎝ ∂2Wγ

∂q∂p
∂2Wγ

∂q∂E

∂2Wγ

∂E∂p
∂2Wγ

∂E2

⎞
⎠
∣∣∣∣∣∣e

i
�

Wγ −iμγ
π
2 ,

(33)

with μγ = μ̃γ + sgn(∂E/∂tγ )/2 and

Wγ = Rγ + ETγ

= 2�

∫ Tγ

0
Imψ(t) · Reψ̇(t)dt − 2�p · Reψ(Tγ ) (34)

satisfying

∂Wγ

∂p
= −2� Reψ(0),

∂Wγ

∂q
= −2� Imψ(Tγ ), (35)

∂Wγ

∂E
= Tγ .

Thus, in the semiclassical limit the oscillatory contribution of
the resolvent (23) is given by

g̃N (E) = 1

2πi�

∫ 2π

0
dα e−iαN

∫
dLq

∫
dLp

×
∑

γ

√√√√√
∣∣∣∣∣∣det

⎛
⎝ ∂2Wγ

∂q∂p
∂2Wγ

∂q∂E

∂2Wγ

∂E∂p
∂2Wγ

∂E2

⎞
⎠
∣∣∣∣∣∣

× e
i
�

Wγ −i L
2 α−iμγ

π
2 + i[2q·p+(q2+p2) sin α]

cos α

√
2π�

L−1√
π cos α

L
. (36)

The integrations over p and q as well as α will again be
performed in stationary phase approximation.

The corresponding stationary phase conditions for the
integrations over p and q read as

∂

∂q

{
Wγ + [2q · p + (q2 + p2) sin α]

cos α

}

= −2

[
Imψ(0) − q sin α

cos α
− p

cos α

]
= 0, (37)

∂

∂p

{
Wγ + [2q · p + (q2 + p2) sin α]

cos α

}

= −2

[
Reψ(Tγ ) − p sin α

cos α
− q

cos α

]
= 0, (38)

which can be combined into the more compact condition

ψ(Tγ ) = ψ(0)e−iα. (39)

Equation (39) implies that the resulting trace formula will be
given by a sum over pseudoperiodic orbits,1 for which the as-

1Note that the expression pseudo-orbit has been used in a related but
different context, there referring to the multilinear combinations of
orbits that appear in the semiclassical expression of the spectral zeta
function [32]. Here, we use pseudoperiodicity as defined in Eq. (39).
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sociated classical nonlinear waves after a certain pseudoperiod
Tγ differ from their initial values by a global phase α.

Representing the classical nonlinear wave solution in terms
of its amplitude and phase,

ψl(t) =
√

nl(t)e
iθl (t), (40)

the resulting stationary phase for the α integration in Eq. (36)
is given by

S̃γ = Wγ + [2q · p + (q2 + p2) sin α]

cos α

= �

∫ Tγ

0
θ (t) · ṅ(t)dt + �n(0) · [θ(0) − θ (Tγ )]. (41)

In the last term, which originates from a partial integration,
n(Tγ ) = n(0) has been used. Its dependence on α is determined
by

n(0) · [θ (0) − θ(Tγ )] = Nγ α + 2π

L∑
l=1

nl(0)kl, (42)

with

Nγ =
l∑

l=1

|ψl(0)|2 (43)

the (time-independent) number of particles defined by the tra-
jectory and k1, . . . ,kL being integers.

Taking a closer look, one recognizes that due to the conser-
vation of the total number of particles already 2L − 1 of the
stationary phase conditions, Eqs. (37) and (38) suffice to satisfy
all of them. Due to the Noether theorem, there is a continuous
symmetry for each conserved quantity. Here, this continuous
symmetry is given by the U (1) gauge symmetry, i.e., the
freedom to chose an arbitrary time-independent global phase θ .

Moreover, as in Gutzwiller’s original derivation [3] of
the single-particle trace formula, the starting point of the
pseudoperiodic orbit can be chosen at any point along the orbit.
Thus, there remain two integrations, which are the integrations
over all pseudoperiodic orbits belonging to the same continu-
ous family of trajectories, that have to be performed exactly.

For single-particle systems, the trace formula for chaotic
systems with additional continuous symmetries has been
studied in [18]. The evaluation of the semiclassical prefactor
of the trace formula presented there can, to a large extent,
be carried over straightforwardly with minor modifications in
order to correctly account for the fact that the orbits in the case
studied here are not strictly periodic. Therefore, here we will
only show the steps, which have to be altered and refer the
reader to Ref. [18] for more details.

After transforming in Eq. (36) the integration variables q,p
locally to q‖,q⊥,p‖,p⊥, where the (two-dimensional) parallel
components run along directions of the continuous families,
i.e., along the trajectory and the direction of the global phase θ ,
while the remaining ones are perpendicular to these, the inte-
grations over the perpendicular components as well as p‖ yield

g̃N (E) = 1

2π

∫ 2π

0
dα

∫
d2q‖

∑
γ

e−iα(N+ L
2 )+ i

�
S̃γ −i π

2 (μγ +νγ )

i
√

2π�
√

cos α
L

∣∣∣∣∣∣∣det
∂(Imψ(0),Tγ )

∂(p,E)
det

⎛
⎝ ∂ Imψ⊥(0)

∂q⊥
− sin α

cos α

∂ Imψ⊥(0)
∂p − 1

cos α

∂ Reψ⊥(Tγ )
∂q⊥

− 1
cos α

∂ Reψ⊥(Tγ )
∂p − sin α

cos α

⎞
⎠
∣∣∣∣∣∣∣

1
2

,

(44)

where νγ = (N+ − N−)/2 is the difference between
the number of positive and negative eigenvalues of the
(2L − 2) × (2L − 2) dimensional matrix appearing in
the semiclassical prefactor. Note that the sum runs over
pseudoperiodic orbits with the initial global phase and the
initial position within the orbit chosen by the integration
values. Alternatively, one can also refer to the sum over γ as a
sum over families of pseudoperiodic orbits, where one is free
to choose the initial global phase of the reference orbit, which
is used to compute its contribution.

Leaving the calculation of the determinant in Eq. (44) to
Appendix A, the trace of the semiclassical Greens function is
given by

g̃N (E) = 1

2π

∫ 2π

0
dα

∫
d2q‖

∑
γ

e−iα(N+ L
2 )

i�
√

2π

×e
i
�

S̃γ −i π
2 [μγ +νγ +Lη(α)]√∣∣ det(Mγ − 1) ∂θ

∂Nγ

∣∣
∣∣∣∣∂ Re[ψ‖(Tγ )eiα]

∂(Tγ ,θ )

∣∣∣∣
−1

. (45)

Here, θ is the initial phase of the trajectory,

η(α) =
{

1 if π
2 < α < 3π

2 ,

0 else
(46)

and

Mγ = ∂(Re[ψ⊥(Tγ )eiα],p⊥)
∂(q⊥,Im[ψ⊥(0)e−iα])

= ∂(Re[ψ⊥(Tγ )eiα],Im[ψ⊥(Tγ )eiα])
∂(Re[ψ⊥(0)], Im[ψ⊥(0)])

(47)

is the stability matrix for the pseudoperiodic orbit. In view of
Eqs. (28) and (39), for the pseudoperiodic orbit

Im[ψ(0)e−iα] = p,
(48)

Re[ψ(Tγ )eiα] = q

holds. Hence, the matrix in Eq. (47) is indeed the many-body,
field-theoretic analog to the monodromy matrix appearing in
the usual Gutzwiller trace formula [3].

Now, in Eq. (45), the last determinant can be used in order
to transform the integration over q‖ into integrations over
the propagation time and the global phase. Again, in view
of Gutzwiller’s derivation [3] one has to correctly account
for repetitions of each primitive pseudoperiodic orbit when
evaluating these integrals. These primitive pseudoperiodic
orbits are obtained by finding the largest possible, but
finite integer m � 1 for which ψ(Tγ /m) = ψ(0) exp(−iα/m).
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Then, ψ(t) obviously still satisfies Eq. (39). However, after the
pseudoperiod Tppo = Tγ /m the primitive orbit is repeated but
with a different global phase. Thus, when naively integrating
the global phase from 0 to 2π and the time from 0 to Tγ , one
and the same orbit is counted m times.

On the other hand, as discussed in Appendix B, for a given
pseudoperiodic orbit, the primitive phase difference α, i.e., the
phase difference after the primitive pseudoperiod, is unique.
That is that any time T ∗, for which ψ(T ∗) = ψ(0) exp(−iα∗),
has to satisfy T ∗ = mTppo with m ∈ N. Thus, obviously also
α∗ = mα.

Therefore,∫
d2q‖

∣∣∣∣∂ Re[ψ‖(tγ )eiα]

∂(Tγ ,θ )

∣∣∣∣
−1

= 2πTγ

m
= 2πTppo. (49)

The last remaining integration over α can straightforwardly be
computed in stationary phase approximation. The stationarity
condition selects those trajectories, for which the given number
of particles Nγ is related to the total number of particles,

Nγ = N + L

2
, (50)

however, when evaluating the integral, one should keep in
mind that α = θ − θ (Tγ ), where θ (Tγ ) is the global phase at
final time.

Finally, the oscillatory part of the many-body DOS for fixed
total number of particles reads as

ρ̃N (E) =
∑

po

Tppo

π�
√|Mpo − 1| cos

[
1

�
Spo(E) − σpo

π

2

]
.

(51)
Here, the sum runs over the families of pseudoperiodic orbits
satisfying

ψ(Tpo) = ψ(0)e−iαpo , (52)

where Tpo is the flying time of the orbit, which may be any
integer multiple of the primitive period Tppo, defined as the
smallest time, for which Eq. (52) is satisfied, and αpo is an
arbitrary global phase depending only on the trajectory.

The argument of the cosine is given by the classical action

Spo(E) = �

∫ Tpo

0
θ(t) · ṅ(t)dt + 2π�kpo (53)

and the (integer) Maslov index

σpo = μpo + νpo + Lη(αpo) − 1

2
sgn

∂Nγ

∂αpo
. (54)

We would like to give a final remark about the appearance
of the global phase difference αpo. When considering the orbits
in the reduced space, where not only the number of particles
is fixed but also the global phase is set constant, they would be
strictly periodic. However, as it was already remarked in [18],
a trajectory, which is periodic in reduced space, may not be
periodic in the full space.

On the other hand, one might have expected this behavior
already in advance since even if the nonlinear wave at final
time differs from the initial one by a global phase factor, the
following time evolution is again the same as the initial one.

C. Maslov index

While Eq. (54) in principle yields the correct Maslov
index, it is not very helpful when calculating it in practice.
A more useful formula can be obtained by not performing
both integrations over p and q in Eq. (36) together but one
after the other. For instance, if p is integrated out first, the
intermediate result for the resolvent is given by

gN(E) = 1

2πi�(−2πi�)
L−1

2

∫ 2π

0
dα e−iα(N+ L

2 )
∫

dLq

×
∑

γ

√√√√√det

⎛
⎝ ∂2W̃γ

∂q∂q′
∂2W̃γ

∂q∂E

∂2W̃γ

∂E∂q′
∂2W̃γ

∂E2

⎞
⎠
∣∣∣∣∣∣
q′=q

e
i
�

W̃γ , (55)

where now the trajectories satisfy the boundary conditions

Reψ(0) = q,
(56)

Reψ(Tγ )eiα = q,

and their actions are given by

W̃γ = Wγ + �

cos α
(Imψ(Tγ ) · q + {q2 + [Imψ(Tγ )]2} sin α).

(57)

Performing the remaining integrals in stationary phase ap-
proximation (except of those along the trajectory and along
the global phase) must finally again yield Eq. (51). However,
this way following [19], the Maslov index is given by a sum
of two terms

σpo = μ′
po + ν ′

po, (58)

where μpo is increased and decreased by one every time the
determinant of[

∂ Imψ⊥(t)eiα

∂ Imψ⊥(0)

∂ Imψ⊥(t)eiα

∂ Reψ⊥(0)

]−1

(59)

changes sign as a function of t . In fact, μ′
po is not an invariant

property of the pseudoperiodic orbit, but depends on the choice
of the initial point. ν ′

po also depends on this choice and is

determined by the zeros of the determinant of [ ∂ Imψ⊥(t)eiα

∂ Reψ⊥(0) ]
−1

.
This index can be determined as follows [19]: When shifting
the initial point along the orbit, a caustic, which is the point at

which [ ∂ Imψ⊥(t)eiα

∂ Reψ⊥(0) ]
−1

is zero, can appear or disappear. At such
a point, ν ′

po is incremented or decremented by one. This way,
σpo is independent of the choice of the initial point.

D. Reduced versus extended phase-space approaches

We conclude the presentation of the derivation of the
trace formula for second-quantized many-body systems with a
remark concerning the implementation of the gauge symmetry
responsible of the conservation of N . At first glance, one
may think that our choice of using the periodic orbits in the
extended phase space, thus rendering them pseudoperiodic,
leads to substantial technical complications compared with a
construction based on periodic orbits in the reduced phase
space fixed by the total number of particles. The classical
mean-field equations get, however, extremely involved when
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one explicitly uses the conservation of N to reduce the
dimensionality of the problem, as it can be easily seen from
Eqs. (43) and (18). Explicit use of N as an external parameter
leads then to equations of motion which are nonpolynomial
in the fields, thus rendering both analytical and numerical
calculations much more difficult already in the noninteracting
case while, with our choice, the simplicity of the mean-field
equations is preserved. This fact will be more evident and
crucial in the next section where we completely and exactly
solve the free-field case, something which is possible because
of the strict linearity of the problem when formulated in the
language of pseudoperiodic orbits.

IV. FREE FIELD

The trace formula (51) for Bose-Hubbard systems finds
its most natural application in the case where the mean-field
equations display (discrete) field chaos going along with
isolated unstable periodic solutions. Technically, this stems
from the essential step where the integrations involved in
the calculation of the trace are performed in stationary phase
approximation. Implicitly, we are assuming that periodic orbits
are isolated and do not come in continuous families. The
presence of continuous families of periodic orbits is a hallmark
of classical integrability [1], and therefore the trace formula
cannot usually be applied to integrable systems.

In order to study the possible application of the trace
formula (51) in the noninteracting limit of a discrete bosonic
field, we must check whether this limit corresponds to a
classical integrable system or not. In view of Eqs. (3) and (19),
the mean-field Hamiltonian corresponding to the quantum
mechanical free-field Hamiltonian

Ĥ =
∑
ij

Hij â
†
i âj (60)

is given by

H (MF,free)(ψ∗,ψ) =
∑
ij

Hij

(
ψ∗

i ψj − δij

2

)
, (61)

where the term 1
2 came from the Weyl ordering of operators

implicit in our derivation of the semiclassical propagator.
First, we will show that H (MF,free) admits a set of L

independent constants of motion, implying by definition
integrability. In exact analogy with the quantum case, we
consider a transformation

ψi =
∑
χ

uiχφχ (62)

which is canonical if and only if the matrix u with entries uiχ

is unitary. It is a simple exercise to show that if the matrix u
diagonalizes the matrix H, i.e.,∑

ij

u∗
iχHijujχ ′ = eχδχχ ′ , (63)

then the functions

nχ (ψ∗,ψ) :=
∑
ij

u∗
iχujχψ∗

i ψj , for χ = 1, . . . ,L (64)

constitute L independent constants of motion under the
Hamiltonian flow induced by H (MF,free). These classical phase-
space functions are the obvious classical analogs of the
quantum mechanical number operators counting excitations
in the eigenstates of the single-particle Hamiltonian.

Since the free mean-field Hamiltonian is integrable, the
trace formula should in principle be modified to account for
the continuous families of periodic orbits typical of integrable
systems. Remarkably, it turns out that the noninteracting limit
of a quantum field theory is not typical at all. The reason
is that, as it is obvious from the quadratic dependence of
H (MF,free)(ψ∗,ψ) on the canonical variables ψ∗ and ψ , the
free field is not only integrable but it is actually harmonic.
Harmonic systems are not generic integrable systems. In fact,
depending on the number-theoretical relation between the
energies eα of the single-particle orbitals, they share some
fundamental properties of the chaotic case. In particular, if the
single-particle energies are not commensurable (the generic
situation for a randomly chosen matrix H), the periodic orbits
of the system are actually isolated. To understand this we
focus on the solutions of the classical limit, which is just the
single-particle, linear Schrödinger equation

i�
d

dt
ψi(t) =

∑
j

Hijψj (t), (65)

with solution

ψ(t) = e− i
�

Htψ(0). (66)

Note that the eigenvector v(χ) of H

Hv(χ) = eχv(χ) (67)

with eigenvalue

eχ = �wχ (68)

defines a family of periodic orbits with fundamental frequency
wχ :

v(χ)(t) = e−iwχ tv(χ). (69)

To show that these are the only periodic orbits of the system
and that they are indeed isolated we note that, because of
linearity, Eq. (66) can be expressed as a linear combination

ψ(t) =
∑
χ

cχ [ψ(0)]e−iwχ tv(χ) (70)

for some constants cχ [ψ(0)] depending only on the initial
condition ψ(0). Assume now that for this initial condition
there is a pseudoperiodic solution with period T , namely, that

ψ(T ) = ψ(0) exp(−iα). (71)

Comparing the eigenvector expansions of both sides of this
equation we get the consistency condition

cχ (ψ)e−iα = cχ (ψ)e−iwχT for all χ (72)

which for incommensurable frequencies wχ can be only
satisfied if T satisfies

T = Tχ̃ := α

wχ̃

(73)
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for some χ̃ and simultaneously cχ (ψ) = δχχ̃ .2 This means that
for a generic matrix H, the only periodic orbits are the ones
emerging from the eigenstates of the single-particle problem.
For fixed energy they are obviously discrete, and therefore
isolated.

It is important to stress that, being simply the classical
limit of the theory, there is no physical reason whatsoever to
prefer a normalized solution of the equations of motion. In fact,
each eigenvector v(χ) defines a complete, continuous family of
periodic orbits with norms that vary continuously. As it will
be clear in the following, this continuous family corresponds
to the expected continuous dependence of the action with the
energy E. For fixed E in the trace formula, a specific value of
the norm |v(χ )|2 will be selected.

Note here that in this special case of zero interactions the
integration along the periodic orbit is actually the same as the
one along the initial global phase, due to Eq. (69), namely,
the time evolution for a periodic orbit is simply a change
in the global phase. Thus, contrary to Sec. III B, only one
integration, namely, the one along the trajectory, has to be
performed exactly. The evaluation of the integrals in Eq. (36)
is then strictly equivalent to the standard derivation of the trace
formula [3] and yields for the oscillatory part of the many-body
DOS for noninteracting systems

ρ̃N (E) = − 1

2π
Im
∫ 2π

0
dα e−iα(N+ L

2 )

×
∑

po

Tppo

iπ�
√|Mpo − 1| exp

(
i

�
S̃po − iσpo

π

2

)
.

(74)

Here, the pseudoperiodic orbits and their actions are still given
by Eqs. (39) and (41), while the stability matrix Mpo is given
by Eq. (47) but with the perpendicular coordinates increased
by one further dimension. Also, due to the coincidence of
the integration along the orbit and along the global phase, the
primitive period Tppo is now determined by a full cycle, i.e., the
smallest (nonzero) time for which ψ(t) = ψ(0). The Maslov
index σ can still be calculated according to Sec. III C.

Since the periodic orbits are isolated, our trace formula
can be applied directly. In the noninteracting case it is
instructive to perform the integration over α (responsible for
selecting orbits with fixed given total number of particles
N ) exactly. The pseudoperiodic orbits are organized in L

families corresponding to the L different eigenvectors of the
matrix H. Consider first the primitive pseudoperiodic orbit
associated with the eigenvector χ , whose time dependence
can be explicitly constructed as in Eq. (69) and therefore
has frequency wχ . As characteristic of harmonic systems, the
period is independent of the energy E of the trajectory, which

2In fact, for certain values of α, certain combinations of integers
k and k′ exist such that for a pair of families χ,χ ′ the condition

α = 2π
wχ ′ k′−wχ k

wχ −wχ ′ is satisfied. Then, the pseudoperiodic orbits are no

longer isolated. However, these values of α are discrete and therefore
have zero measure in the final integration.

is given by

E =
∑
ij

(
v

(χ)
i

)∗
Hijv

(χ)
j − 1

2
TrH

= eχ |v(χ)|2 − 1

2

∑
χ

eχ . (75)

Note that the energy E appearing in the trace formula and
as the argument of the many-body DOS has nothing to
do a priori with the eigenvalues eχ of the single-particle
problem, beyond the fact that the spectrum of H is part of
the parameters that define the many-body problem. From the
point of view of semiclassics in second-quantized systems, in
the noninteracting case the single-particle energies eχ simply
provide the frequencies wχ of the harmonic problem that
defines the classical limit.

Using Eqs. (41) and (43), the action of the kth repetition of
any member of the χ family is easily found to be

S̃(k)
χ = (α + 2πk)�|v(χ)|2, (76)

and therefore, using Eq. (75) we get the action

S̃(k)
χ (E) = α + 2πk

wχ

⎛
⎝E + �

2

∑
χ ′

wχ ′

⎞
⎠ (77)

and the period

T (k)
χ (E) = α + 2πk

wχ

(78)

of the pseudoperiodic orbits in terms of the energy. Following
the discussion below Eq. (74), the period of the primitive
pseudo-orbits is then given simply by 2π/wχ .

The next step is the calculation of the stability matrices
and Maslov indices entering the trace formula (74). This is
a standard exercise for harmonic systems, and we present
it here only to illustrate the conceptual relation between
eigenstates of single-particle problems in first quantization and
the semiclassical approach to second-quantized many-body
systems of indistinguishable particles.

The stability matrix is given by the local properties of
the classical evolution around a specific pseudoperiodic orbit
[Eq. (66)] as the linear transformation relating small initial
δv(χ)(0) and final δv(χ)(T (k)

χ ) deviations from the reference
orbit. Using the linearity of the classical dynamics, we easily
get

δv(χ)(T (k)
χ

) = e− i
�

HT (k)
χ δv(χ)(0)

=
∑
χ ′

v(χ ′) · δv(χ)(0)e−i(α+2πk)
e
χ ′
eχ v(χ ′). (79)

In view of Eq. (47), we then obtain for the components of the
deviations along the directions χ ′ = χ⊥ perpendicular to the
χ orbit

δv
(χ)
χ ′
(
T (k)

χ

)
eiα = e

−i(α+2πk)
e
χ ′
eχ

+iα
δv

(χ)
χ ′ (0). (80)

This equation indicates that the stability matrix is obviously
block diagonal, with the block corresponding to χ ′ being
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simply a rotation matrix with angle

θ
χ,(k)
χ ′ = (α + 2πk)

eχ ′

eχ

− α, (81)

and therefore

∣∣M (k)
χ − 1

∣∣ = ∏
χ ′ �=χ

∣∣∣∣∣det

(
cos θ

χ,(k)
χ ′ − 1 sin θ

χ,(k)
χ ′

− sin θ
χ,(k)
χ ′ cos θ

χ,(k)
χ ′ − 1

)∣∣∣∣∣.
(82)

This yields eventually√∣∣M (k)
χ − 1

∣∣ = ∏
χ ′ �=χ

2

∣∣∣∣ sin

(
α + 2πk

2

eχ ′

eχ

− α

2

)∣∣∣∣. (83)

Moreover, the Maslov index for the kth repetition of the χ

family is given by [20]

σ (k)
χ = 2k + 2

∑
χ ′ �=χ

⌊(
k + α

2π

)
eχ ′

eχ

− α

2π

⌋
+ 1, (84)

where �x� denotes the integer part of x.
Substitution of the actions, stabilities, and Maslov indices

in Eq. (74) leads to the semiclassical trace formula for the free
bosonic field with fixed total number of particles N as a sum
over pseudoperiodic orbits and their repetitions:

ρ̃N (E) = − Re

2π

∫ 2π

0
dα e−iαN

L∑
χ=1

1

eχ

×
∞∑

k=1

e
i[ α+2πk

eχ
(E+ 1

2

∑
χ ′ eχ ′ )−σ (k)

χ
π
2 ]∏

χ ′ �=χ 2
∣∣ sin
(

α+2πk
2

eχ ′
eχ

− α
2

)∣∣ . (85)

If necessary, the last integration over α can be performed by
taking α = 0 in all smooth terms, and calculating exactly the
integral involving the highly oscillatory ones, and this may be
indeed the way to proceed for specific calculations based on
the pseudoperiodic orbits.

For the smooth (Weyl) contribution we left out again the α

integration and easily get

ρ̄N (E) = Re

2π

∫ 2π

0
dα e−iαN

(
4

π

)L ∫
dLq

∫
dLp

× δ[E − H (MF)(p,q) − α(q2 + p2)]. (86)

For completeness, we show in the following the consistency of
the trace formula (85), with the semiclassical quantization pro-
cedure for direct quantization of invariant manifolds in phase
space, so-called Einstein-Brillouin-Keller (EBK) quantization,
valid only for integrable systems. In the following, we apply
it to the case of interest here.

Within EBK quantization, the classical Hamiltonian is first
written in terms of a new set of canonical variables (φ,J)
where J = J(n) are combinations of the classical constants of
motion, such that H (φ,J) = H (J). In our case, these functions
are simply given by J = �n(ψ) with nχ (ψ) defined in Eq. (64).
In the new variables, the Hamiltonian is given by

H (J) =
∑
χ

(
Jχ − �

2

)
wχ. (87)

In a second step, EBK quantization selects the values of the
classical actions J such that

Jχ = �

(
nχ + βχ

4

)
(88)

with nχ = 0,1,2, . . . and with indices βχ given by the number
of turning points of any classical trajectory evolving in the
phase-space manifold defined by the set of quantized constants
of motion, so in our case βχ = 2 for all χ . The EBK-quantized
energies are then obtained by

En = H

[
J = �

(
nχ + 1

2

)]
, (89)

giving for our case

En =
∑
χ

nχeχ , (90)

providing a proper and physical interpretation of the EBK
quantization condition in the context of the free bosonic
field: quantization of the many-body energy levels is due
to quantization of the occupation numbers. As it is well
known [8], the EBK quantization of linear (harmonic) systems
is exact, and indeed this is the exact quantum mechanical
spectrum of this system.

So far, we used a well-known quantization method to
derive a well-known result in the framework of first-quantized
systems. What makes the second-quantized approach rather
special is the status of the phase-space observable representing
the total number of particles N . The key point is that the
conserved quantity

N (ψ) =
∑

i

|ψi(t)|2 (91)

plays a distinctive role in the field theoretic scenario, namely,
it labels subspaces of given total number of particles. Note
that such a condition is never encountered in the description of
particle (instead of field) systems. There, the function N (ψ) is
simply the sum of actions, and there does not exist a physical
interpretation as an observable.

This detail makes the semiclassical approach for fields with
conserved number of particles conceptually different from its
interpretation as a set of first-quantized harmonic oscillators.
In particular, if one wants to study the many-body spectrum
with a given, fixed N , one must project the EBK DOS. This is
again accomplished by introducing a variable α, playing the
role of an imaginary chemical potential

ρN (E) = 1

2π

∫ 2π

0
dα e−iαN

∑
n

δ

(
E −

∑
χ

nχeχ

)
eiα
∑

χ nχ .

(92)

In order to transform this sum over quantum numbers corre-
sponding to quantized occupations into a trace formula where
periodic (or pseudoperiodic) orbits appear, we proceed in a
similar way as in the semiclassical quantization of harmonic
systems and introduce

Z(β,α) =
∫ ∞

0
dE e−βE

∑
n

δ

(
E −

∑
χ

nχeχ

)
eiα
∑

χ nχ

=
∑

n

e−β
∑

χ nχ eχ eiα
∑

χ nχ . (93)
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Performing the sums given as geometric series, we get

Z(β,α) =
∏
χ ′

[1 − e−(βeχ ′ −iα)]−1 (94)

which is suitable to compute the inverse Laplace transform
required in Eq. (92):

∑
n

δ

(
E −

∑
χ

nχeχ

)
eiα
∑

χ nχ

= 1

2πi

∫ ε−i∞

ε−i∞
dβ eβEZ(β,α), (95)

by means of the Bromwich formula where ε is real and positive
and chosen such that it is larger than the real part of all the
poles of Z(β,α). These poles are easily found to be located at

β(k)
χ = i

(
α + 2πk

eχ

)
, k = 0,±1,±2, . . . (96)

and are naturally labeled by the index χ of the single-particle
energy that, as we know, also denotes periodic orbits. The
second index k labeling the positions of the poles is naturally
interpreted within the trace formula as the repetition of the
pseudoperiodic orbits as well.

Having at hand our trace formula (85), we are ready to
identify and give physical interpretation to the different factors
appearing in the “exact” trace formula obtained by evaluating
the contributions from the residua of Eq. (95) at the poles given
by Eq. (96). Consider first

eβE |
β=β

(k)
χ

= e
i α+2πk

eχ
E (97)

giving the energy-dependent term in the action of Eq. (85).
Now,

(1 − e−(βeχ ′ −iα))−1|
β=β

(k)
χ

= [1 − e
−i[(α+2πk)

e
χ ′
eχ

−α]]−1

= e
i( α+2πk

2

e
χ ′
eχ

− α
2 )

2i sin
(

α+2πk
2

eχ ′
eχ

− α
2

) (98)

give the stability factors in Eq. (85). Putting all together, we
finally get

∑
n

δ

(
E −

∑
χ

nχeχ

)
eiα
∑

χ nχ

=
∑
χ

1

eχ

∞∑
k=−∞

e
i[ α+2πk

eχ
(E+ 1

2

∑
χ ′ eχ ′ )− Lα

2 −kπ]∏
χ ′ �=χ 2i sin

(
α+2πk

2
eχ ′
eχ

− α
2

) , (99)

in full agreement with our trace formula (85). Note, however,
that the terms with k = 0 must be computed independently,
and in the limit α = 0, appropriate for the asymptotic regime
N → ∞, they precisely provide the Weyl term (86).

V. EXTENSIONS AND RELATION
WITH PREVIOUS APPROACHES

The semiclassical trace formula provides a fundamental
and rigorous connection between the spectrum of a quantum
system and the features and properties of its classical limit. As
such, it should be able to cover less general approximations that

rely on classical information to explain features of the quantum
mechanical DOS. Note, however, that the trace formula does
not associate directly dynamical properties of the classical
system with individual energy levels of the quantum spectrum.
The correct association is between periodic solutions of the
classical mean-field equations and Fourier components of the
full many-body quantum DOS as a function of the energy.
Semiclassically, the emergence of discrete energies is an
interference phenomenon due to the coherent superposition
of all these harmonics.

In this paper, we have addressed the situation where the
classical mean-field dynamics, understood as a dynamical
system, is such that all the periodic solutions are isolated.
Remarkably, while this is usually the case that only for fully
chaotic dynamics, the important case of a noninteracting
bosonic field falls into this category as well. This is because the
periodic solutions of the corresponding classical limit, which
is harmonic, are again isolated.

As it is well known [1,21], a generic dynamical system is
actually neither integrable nor chaotic, and the trace formula
and, more generally, semiclassical quantization methods for
first-quantized systems were correspondingly generalized in
order to describe also the integrable-to-chaotic transition [16].
Also, extensions and generalizations of the trace formula
can be used to quantize selected, specific locally integrable
dynamics of the classical phase space. In the following, we
present a brief discussion of the connections between the
approach presented here and other semiclassical methods
aiming to associate features of the many-body quantum
spectrum with special classical structures.

The first, nongeneric, situation appears if the classical
mean-field equations admit a static solution ψ (fix) defined by

i�ψ̇(t)|ψ=ψ (fix) = ∂H (MF)(ψ∗(t),ψ(t))
∂ψ∗(t)

∣∣∣∣
ψ=ψ (fix)

= 0 (100)

such that the classical mean-field motion is strictly stable in all
directions around ψ (fix). In this case, the spectrum of the system
contains energy levels associated with the quantization of the
normal modes describing small oscillations around the stable
fixed point. Long-wavelength oscillations of the DOS due to
this sequence of energy levels will be described by our trace
formula for the harmonic system obtained by the quadratic
expansion of H (MF)(ψ∗(t),ψ(t)) around ψ(t) = ψ (fix). In the
context of Bose-Hubbard models, this result corresponds to
the well-known Bogoliubov approximation [22], and by its
very construction it is valid only for energies E such that
H (MF)(ψfix,∗,ψfix) � E.

Generic dynamical systems display a mixed phase space
with a mixture of regular (locally integrable) and chaotic
motion, often with complicated fractal structures along their
borders [21]. None of the versions of the trace formula
presented here are strictly valid for this situation. However,
the whole machinery developed to incorporate bifurcation
effects characteristic of the mixed dynamics scenario in the
trace formulas for first-quantized systems [8] can be directly
imported into the many-body context. The semiclassical
quantization of regular islands in phase space can be performed
equivalently by constructing local constants of motion and
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applying the EBK quantization locally [16]. These approaches
may be very important in the field theoretical context, as
numerical investigations consistently indicate that the phase
space of the dynamics induced by the mean-field Hamiltonian
has a very complicated structure, where hard chaos might be
very difficult to observe [12,23].

A special situation arises for the case L = 2 where
interactions are present, rendering the classical dynamics
nonlinear, but the system is still integrable. Here exist two
constants of motion (the total energy and number of particles),
hence as many as degrees of freedom. This two-site Bose-
Hubbard model has been extensively studied both quantum
mechanically and classically, and can be exactly mapped into
the Josephson Hamiltonian describing bosonic excitations in
superconducting devices [24]. Semiclassically, this system has
been extensively studied by means of the EBK quantization
method appropriate for classically integrable systems. The
construction of the classical actions and the quantization con-
ditions is, however, substantially more complicated [25–27].
In order to apply the methods presented here to this situation,
it is convenient to work directly in the reduced phase space
obtained by fixing the total number of particles. The dynamics
is now essentially one dimensional, and our trace formula can
be used, as energy-conserving one-dimensional systems pos-
sess both integrable dynamics and isolated periodic orbits. The
result of this calculation is just the WKB approximation to the
energy levels, which can be improved in several ways [26,28].
This equivalence between trace formulas, EBK quantization,
and WKB methods for conservative one-dimensional systems
is well known in the context of first-quantized semiclassics [8].

Furthermore, our trace formula allows one to calculate
the contribution to the DOS from periodic orbits with both
stable and unstable local classical dynamics, a generic case for
multidimensional systems [4]. Note that for the noninteracting
limit of the Bose-Hubbard model, we encountered already the
situation where the local classical flow around the isolated
periodic orbits is stable. The difference between the character
of the different degrees of freedom is fully encoded in the
properties of the stability matrices around the classical periodic
orbits, and therefore the application of the trace formula
requires their explicit calculation. The spirit of this approach
is not the complete enumeration of all periodic orbits, but the
study of the contribution of particular solutions to the DOS.
The study of such effects has been successfully carried out
in the first-quantized approach to the helium atom [29] and
to the semiclassical quantization of solitons in the context of
continuous quantum field theory [30].

VI. CONCLUSIONS

We have presented a rigorous derivation of the semiclassical
approximation for the quantum mechanical DOS of many-
body quantum systems described by bosonic quantum fields
on finite lattices, starting from the exact path integral form of
the many-body propagator. We showed explicitly how to derive
both the smooth (Weyl) and oscillatory (Gutzwiller) contribu-
tions to the DOS, and provide a trace formula for the latter.
Our approach follows and generalizes the original pioneering
methods introduced by Gutzwiller for chaotic single-particle
systems. We avoided the coherent state representation, with

its characteristic need to complexify the classical limit of the
theory, by using quadrature states of the field. As a special
feature of the field scenario, the classical limit is a discrete
classical field and its isolated (mean-field) periodic solutions
are the input of the trace formula.

Another special property is the existence of a continuous
symmetry related to the conservation of the total number
of particles in closed systems. We applied the methods of
symmetry-projected semiclassical densities of states to get an
expression for the many-body DOS within each sector with
fixed total number of particles. Interestingly, due to the fact
that the quantum problem in the noninteracting case reduces
to a harmonic system, our trace formula is applicable since the
periodic orbits can be shown to be isolated in the generic case
where the single-particle energies are not commensurable, as
in the chaotic case.

As for the single-particle case, our trace formula shows how
the existence of discrete many-body energy levels emerging
from the continuous, smooth background given by the Weyl
law, is an interference phenomenon. The correct density of
states and its characteristic profile made up from Dirac-delta
peaks is built by the coherent effect of oscillatory contributions,
one for each periodic orbit, i.e, periodic mean-field solutions.

The study of the quantum manifestations of classical
solitons (particular solutions of the nonlinear equations) is
a matter of recent interest in the cold-atoms community.
We expect that the application of our methods may help
to understand and quantify interference between different
solitonic contributions to the many-body DOS in terms of
harmonics building up the trace formula, a pure quantum effect
not to be confused with the possibility of having remnants
of wave interference at the mean-field level. Specifically, if
the classical nonlinear field equations admit two solitonic
solutions with actions S1 and S2 which are stable or only
mildly unstable, we can approximate (up to higher repetitions)
Eq. (51) as

ρ̃N (E) � A1 cos

[
1

�
S1(E)

]
+ A2 cos

[
1

�
S2(E)

]
(101)

and the DOS will display a characteristic beating pattern due
to the interference between the two oscillatory functions,
reminiscent of (super)shell effects in the nuclear physics
context [7,8]. We see that this kind of analysis will provide
a deeper, semiclassical understanding of long-range structures
in the energy spectrum of many-body systems.

Our work paves the way to a systematic study of the role
of classical field solutions in the many-body DOS for discrete
quantum fields. The close formal analogy of the many-body
trace formula (51) with the Gutzwiller trace formula implies,
once the conservation of total number of particles is taken
care of, that the methods routinely used in the context of
single-particle semiclassics can be straightforwardly gener-
alized to show that the spectral fluctuations have universal
correlations on the scale of the mean level spacing if the
classical field equations are chaotic. The universal spectral
correlations are linked to interference between periodic orbits
with quasidegenerate actions and periods beyond the Ehrenfest
time, given by ∼λ−1 ln �

−1 for single-particle systems with a
classical limit with Lyapunov exponent λ. In the many-body
case, correspondingly, quantum interference is additionally
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governed by another log-time scale, the Eherenfest time
�−1 ln N . Here, � denotes the average Lyapunov exponent of
the assumed nonlinear mean-field dynamics of the classical
field limit. Many-body interference evolves at time scales
beyond this Ehrenfest time and therefore is not accounted for
in usual so-called truncated Wigner approaches.3

Interfering quasidegenerate periodic mean-field solutions
are expected to lead to the emergence of universal many-body
spectral fluctuations. While the close formal similarity to the
chaotic single-particle case directly implies corresponding
Random Matrix Theory (RMT) type expressions for the
spectral many-body correlator or form factor, interesting
new parametric correlation functions, involving (changes in)
particle number and interaction strength, appear for the many-
body case.

The noninteracting case has, however, nongeneric spectral
fluctuations that do not correspond to the expected Poissonian
spectra of integrable systems, a peculiar consequence of the
field theoretical scenario where the free field is actually a
linear, not only integrable, system. Remarkably, although for
noninteracting systems the linearity of the classical limit
makes it highly nongeneric from the point of view of
dynamical systems, this is the generic case for free fields
from the field theoretical side. Exploring the application of
semiclassical techniques for the quasi-integrable case where a
small interaction is treated within semiclassical perturbation
theory demands then techniques adequate to this nongeneric
situation.4

With our work we hope to contribute to the qualitative
and quantitative analysis of both universal and system-specific
features in the energy spectra of many-body systems by means
of periodic orbit theory.

Note added. Recently, a derivation of a related trace
formula has been performed independently by Dubertrand
and Müller [31] using a periodic orbit theory approach in
the reduced phase space (see Sec. V).
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APPENDIX A: DERIVATION OF THE SEMICLASSICAL
PREFACTOR OF THE TRACE FORMULA

The simplification of the product of the two determinants
appearing in Eq. (44) to the form in which they appear in
Eq. (45) can, to a large extent, be performed by following
Ref. [18] [see Eqs. (2.14)–(3.12) there]. Therefore, here only
the main steps will be presented, in order to show how to
correctly account for the phase difference α. For notational
simplicity, in the following we will use t instead of Tγ to
represent the period of the pseudoperiodic orbit γ .

First, guided by the Gutzwiller trace formula, where the
semiclassical prefactor is determined by the monodromy

3See [33] for a derivation of the truncated Wigner method along the
lines of this work.

4J. D. Urbina et al. (unpublished).

matrix, we try to bring the second matrix in Eq. (44) into a
form, where ψ appears in such a form that without derivatives
it could be replaced by p and q. This is achieved by

det

( ∂ Imψ⊥(0)
∂q⊥

+ sin α
cos α

∂ Imψ⊥(0)
∂p − 1

cos α

∂ Reψ(t)
∂q⊥

− 1
cos α

∂ Reψ(t)
∂p + sin α

cos α

)

= det
1

cos α

∂(Imψ⊥(0)eiα − p⊥,Reψ(t)e−iα − q)
∂(q⊥,p)

. (A1)

With this, the steps in Ref. [18] can be carried over one to one
in order to obtain [compare with Eq. (3.4) therein]

det

( ∂ Imψ⊥(0)
∂q⊥

+ sin α
cos α

∂ Imψ⊥(0)
∂p − 1

cos α

∂ Reψ(t)
∂q⊥

− 1
cos α

∂ Reψ(t)
∂p + sin α

cos α

)

det ∂(Imψ(0),t)
∂(p,E)

= (cos α)−(2L−2) det

{
∂(Reψ‖(t)e−iα,E,Nγ )

∂(Imψ‖(0),t,θ )

}

× det

{
∂(Imψ⊥(0)eiα − p⊥,Reψ⊥(t)e−iα − q⊥,θ )

∂(q⊥,Imψ⊥(0),Nγ )

}
,

(A2)

where θ is the initial global phase of the nonlinear wave and
Nγ is the number of particles determined by the nonlinear
wave.

Next, in the first of these two matrices, we again replace
the derivative with respect to Imψ⊥(0) by one with respect to
Im[ψ⊥(0) exp (iα)],

det
∂(Imψ⊥(0)eiα − p⊥,Reψ⊥(t)e−iα − q⊥,θ )

∂(q⊥,Imψ⊥(0),Nγ )

= det
∂(Imψ⊥(0)eiα − p⊥,Reψ⊥(t)e−iα − q⊥,θ )

∂(q⊥,Im[ψ⊥(0)eiα],Nγ )

×(cos α)L−2. (A3)

Thus,

det

( ∂ Imψ⊥(0)
∂q⊥

+ sin α
cos α

∂ Imψ⊥(0)
∂p − 1

cos α

∂ Reψ(t)
∂q⊥

− 1
cos α

∂ Reψ(t)
∂p + sin α

cos α

)

det ∂(Imψ(0),t)
∂(p,E)

= (cos α)−L

(
∂θ

∂Nγ

)
det

{
∂ Re[ψ‖(t)e−iα]

∂(t,θ )

∂(E,Nγ )

∂ Imψ‖(0)

}

× det

[
∂(Reψ⊥(t)e−iα − q⊥,p⊥ − Imψ⊥(0)eiα)

∂(q⊥,Imψ⊥(0)eiα)

]

= −(cos α)−L 4b4

�

(
∂θ

∂Nγ

)
det

{
∂ Re[ψ‖(t)e−iα]

∂(t,θ )

}2

× det

[
∂(Reψ⊥(t)e−iα − q⊥,p⊥ − Imψ⊥(0)eiα)

∂(q⊥,Imψ⊥(0)eiα)

]
.

(A4)
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The additional minus sign in the last step results from the fact
that

∂ Re[ψ‖(t)e−iα]

∂θ
= −Imψ‖(0) = −1

2

[
∂Nγ

∂ Imψ‖(0)

]T

. (A5)

The remaining prefactors stem from the special form of the
equations of motion [Eq. (27)] together with the relation
between ψ and q,p [Eq. (48)].

APPENDIX B: UNIQUENESS OF THE PHASE
DIFFERENCE OF PSEUDOPERIODIC ORBITS

In this Appendix, we show that if γ is quasiperiodic with
phase difference α, i.e.,

ψ(Tγ ) = ψ(0) exp(−iα), (B1)

with pseudoperiod

Tppo = Tγ /m, m ∈ N, (B2)

then there is no β, which is not an integer multiple of α/m,
such that for some time t∗ the trajectory satisfies

ψ(T ∗) = ψ(0) exp(−iβ). (B3)

To see this, assume there would be such a phase β and time
T ∗ < Tγ . Since β is not an integer multiple of α/m, T ∗ also is
not an integer multiple of Tppo. Then, there is also an integer

m∗T ∗ < tγ < (m∗ + 1)T ∗ (B4)

and the trajectory would have to satisfy

ψ(Tγ ) = ψ(m∗T ∗) exp[−i(α − m∗β)], (B5)

i.e., the trajectory would be pseudoperiodic with phase
difference α − m∗β and primitive period Tγ − m∗T ∗ < T ∗,
which is not an integer multiple of Tppo. Now, we can replace
β by α − m∗β and repeat the argumentation again yielding an
even smaller primitive period Tγ − m∗T ∗. Since m is supposed
to be the largest possible number such that

ψ(Tγ /m) = ψ(0) exp(−iα/m), (B6)

this procedure can be repeated infinitely often yielding finally
T ∗ = 0. However, having a pseudoperiod T ∗ = 0 means that
ψ(t) is an eigenstate of the mean-field Hamiltonian, and
therefore an orbit of zero length, which are not included in the
oscillatory part. In the same way, one can show that the case
T ∗ > Tγ leads to the same contradiction by simply replacing
the roles of α and β. Thus, Eq. (49) is indeed the correct result.
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