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Cycles of self-pulsations in a photonic integrated circuit
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We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic
integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the
self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental
observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate
equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between
successive pairs of external cavity modes and antimodes.
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I. INTRODUCTION

Semiconductor lasers subjected to optical feedback from an
external cavity are well-known examples of nonlinear systems
showing rich dynamics [1,2]. A common effect of the feedback
is the route to chaos, which begins with the appearance of
fluctuations at the relaxation oscillation frequency followed
by a succession of bifurcations to diverse nonlinear dynamics
and eventually chaos [3–7]. We focus in this paper on the onset
of one kind of such nonlinear dynamics, self-pulsation. The
term self-pulsation refers to a dynamical state in which the
laser exhibits regular pulses repeating at a precise frequency.
It corresponds to stable harmonic oscillations of the emitted
intensity versus time, also referred to as period 1 [8–12]. In
this case the laser radio-frequency (RF) spectrum displays a
sharp peak corresponding to the pulsing frequency, followed
by smaller peaks repeating at its multiples.

The bifurcation of a laser diode output to self-pulsation
owing to time-delayed feedback has been already addressed in
the early stage of laser development [13]. Since then several
mechanisms have been identified for self-pulsation in various
configurations. In a laser diode with optical feedback, phase
locking between external cavity modes results in the emission
of pulses at a frequency equal to the external cavity frequency
(fcav) [14,15]. Fundamental and superharmonic self-pulsations
(where the pulsing frequency corresponds to multiples of the
external cavity frequency: f = nfcav) have been reported in the
particular configuration of a laser diode with phase-conjugate
feedback [16].

The bifurcation to self-pulsation in a laser diode with
short external cavity has been reported theoretically, in which
self-pulsation is generated from a beating between an external
cavity mode and an external cavity antimode. External cavity
modes and antimodes are respectively stable and unstable
solutions of steady intensity of the laser rate equations and
are generated by pairs [17]. As the feedback strength is
increased, the gains of the various modes and antimodes vary

and eventually two of them can reach close values. At that
point, a bridge connecting two Hopf bifurcations, one located
on a mode and the other on an antimode of a different pair of
mode/antimode, can be built. Along this bridge, a self-pulsing
dynamics emerges at the frequency of the beating between
the connected mode and antimode [11,15,18–21]. Since the
frequency distribution of the external cavity modes and the
antimodes depends on fcav, the frequency of the beating
dynamics, i.e., the self-pulsation, also scales with the change
of external cavity time delay. In this paper we present an
experimental observation of the bifurcation scenario showing
this phenomenon of self-pulsation originated by a beating
between successive pairs of modes and antimodes, and we
discuss the evolution of the pulsing frequency as the feedback
strength increases.

Although numerous theoretical contributions have
discussed self-pulsation from mode-antimode beating, exper-
imental observations still remain scarce. Even though mode
beating is predicted as a stable solution of the commonly used
Lang-Kobayashi model, the likelihood to see this phenomenon
is strongly dependent on the external cavity length. A dis-
tinction between long and short cavity regimes is done on the
basis of a difference of time scale between the laser relaxation
oscillation frequency fRO and the external cavity frequency
fcav. A laser operates in a short cavity regime when fcav > fRO

and in a long cavity regime when fcav < fRO [22,23].
It is difficult to observe self-pulsation based on mode-

antimode beating in long external cavity configurations since
the external cavity modes are distributed very closely one
to another in the phase space. As a result, a beginning of
beating between two of them would quickly give way to a
chaotic itinerancy involving many other modes, thus leading
the laser to a dynamics of a complex frequency content or
chaos. Therefore, mode beating between two external cavity
modes is more likely to be seen in configurations of short
external cavities in which the frequency spacing is large and
the dynamics involves few modes.
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Recently the interest for nonlinear dynamics in short cavity
laser systems and monolithic photonic integrated circuits
(PICs) has considerably grown. Due to their compactness and
their high phase stability, many contributions have discussed
the suitability of PICs for chaos generation or laser coupling
in applications in the fields of fast random bit generation or
telecommunications [24–29]. Initially reported theoretically
in 1994 [15], self-pulsation later has been analyzed experi-
mentally in lasers with ultrashort external cavity (hundreds
of micrometers) [11,21]. Experiments revealed self-pulsations
reaching several tens of GHz. Discussions of the influence
of active or passive feedback, the phase modulation, and a
proposition of an enhanced system of equation taking into
account the nonlinear dynamics of the active external cavity,
namely the traveling wave equations (TWEs) [30,31] allowed
researchers to predict the pulsing frequencies with better
compliance with the experiment.

In spite of these works reporting on self-pulsation in
laser diode with ultrashort time delay, several issues remain
regarding, e.g., a detailed experimental bifurcation analysis of
self-pulsing dynamics and the evolution of the corresponding
frequency versus the laser parameters. Although experiments
that have been carried out in a laser with ultrashort cavity
[11,21] mention that self-pulsations originate from a beating
between modes and antimodes, the sequence of bifurcation
between successive pulsing states is not detailed. Although
both the short cavity regime (where the external cavity length
reaches some millimeters) and the ultrashort cavity regime
(where the external cavity length is limited to hundreds of
micrometers) comply with the fcav > fRO condition, one can
expect that such a discrepancy in the cavity length induces
different dynamical evolutions.

There have been reports addressing the question of how
the waveforms corresponding to quasiperiodic or chaotic
dynamics evolve in the transition from long to short external
cavity has been addressed, e.g., very recently in a four-section
integrated laser diode [32]. Dynamics corresponding to the
so-called regular pulse package of the short cavity regime [33]
evolve to strongly irregular chaotic pulsing when sweeping
the relaxation oscillation frequency across the external cavity
frequency. The way these dynamics bifurcate from self-
pulsation has been studied in detail in short-cavity laser diodes
in free space [34] but not in the case of PIC.

Understanding the bifurcations to self-pulsation is therefore
necessary to control the dynamics and take better advantage of
PICs’ rich capabilities for signal applications. An interesting
application of pulsing states that has been drawing interest
recently is microwave photonic technology, which aims at gen-
erating optical signals at several tens of GHz to perform data
transmission [35–38]. The commonly used technology mostly
relies on laser coupling by optical injection or optoelectronic
feedback [39–41]. Making use of the advantages of a PIC to
generate a source of microwave optical signals is a challenge
that will certainly be faced in the near future.

In this paper we bring a contribution composed of a
detailed experimental scenario showing how a laser diode
can switch from successive steady states to self-pulsation
and back to steady state. We study the case of a laser diode
in a short external cavity regime and integrated on a PIC.
We show that the dynamics is obtained from a cascade of

FIG. 1. (Color online) Photonic integrated circuit. PD: photodi-
ode, DFB laser: distributed feedback laser, SOA: semiconductor
optical amplifier.

bifurcations leading to steady states, self-pulsing states, and
quasiperiodicity as the feedback strength varies. For theoretical
insight, we provide simulated results which enable us to
confirm that the underlying phenomenon at the origin of
self-pulsation is indeed a beating between external cavity
modes and antimodes. Moreover, we illustrate the relationship
between the mode distribution and the self-pulsing frequency.
The cascade of bifurcations associated with the qualitative
change of dynamics is unveiled as well as the respective
influences of the feedback strength and the laser injection
current on the pulsing frequencies.

II. EXPERIMENTAL SETUP

Our PIC is schematically described in Fig. 1. It consists
of a distributed feedback semiconductor laser (wavelength
of 1537 nm) bounded by a photodiode (PD) and a 2.3-
mm-long active external cavity. This cavity is composed of
two independent semiconductor optical amplifiers (SOA1 and
SOA2) and a passive waveguide ended by a reflector on which
a high-reflectivity coating has been applied. The amplified
feedback strength is adjusted by the injection currents of
the SOAs. We keep the injection current of SOA2 constant
(JSOA2 = 5.0 mA) and therefore change the feedback strength
by means of JSOA1 only. The whole experimental setup is
presented in Fig. 2. We estimate that fcav is close to 17 GHz
from measurements on an RF spectrum analyzer. We also
measured the relaxation oscillation frequency of our laser,
which ranges from 2.3 to 7.4 GHz according to its injection
current. This confirms the fact that we work in a short external
cavity configuration, since fcav > fRO .

III. EXPERIMENTAL EVIDENCE
OF SELF-PULSATION IN PIC

Figure 3 displays temporal and spectral illustration of the
experimental transition from a steady state to self-pulsing

Digital
oscilloscope

RF spectrum 
analyzer

Bias Tee
Amplifier

Divider

Terminator

P
IC

FIG. 2. (Color online) Experimental setup. The electrical output
signal provided by the photodiode embedded in the PIC is amplified
and directed to a digital oscilloscope (Tektronik DPO73304D, 33 GHz
bandwidth, 50 GS/s) and a RF spectrum analyzer (Agilent N9010A,
44 GHz bandwidth).
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FIG. 3. Experimental observation of self-pulsing dynamics when
the injection current J/Jth is equal to 1.0. Each line corresponds to
a different value of the feedback strength JSOA1. The two columns
display the related temporal waveforms and RF spectra, in which the
electrical noise of the spectrum analyzer has been subtracted. The
values reported above the peaks correspond to their positions in GHz.

state as the feedback strength, adjusted by the injection
current in SOA1 (JSOA1), is increased. The laser injection
current is indicated by its normalized value with respect to
threshold J/Jth, where Jth = 13.0 mA. The experimental
results presented in Fig. 3 were obtained for J/Jth = 1.0. The
scenario unfolds as follows.

First, the laser is in a steady state, thus exhibiting constant
optical output power [Fig. 3(a.1)]. For a certain value of the
feedback strength, this steady state gives way to self-pulsation;
i.e., the temporal waveform shows harmonic oscillations
[Fig. 3(b.1)] at the frequency of 14.1 GHz. If the feedback
strength is further increased, a new frequency rises upon the
harmonic background, inducing a transition to quasiperiodicity
[Fig. 3(c.1)]. In the corresponding RF spectrum, several new
frequencies appear [Fig. 3(c.2)]. The main one at 14.3 GHz
is the reminiscence of the frequency of the self-pulsation.
It has been shifted a little bit compared to its position at

FIG. 4. (Color online) Experimental bifurcation diagram show-
ing three dynamical cycles of self-pulsations seen when increasing
the feedback strength JSOA1 for a value of the laser injection current
J/Jth fixed to 1.0. The colors and letters correspond to different
dynamics: yellow (S) is steady state, dark red (P) is self-pulsation,
brown (Q) is quasiperiodicity. Orange (C) and red (I) represent chaotic
and intermittent regimes, which are not discussed here. The region
labeled cycle 1 corresponds to the scenario presented in Fig. 3.

14.1 GHz in Fig. 3(b.2) due to the feedback increase. It
constitutes the fast dynamics in the time trace, remnant
from the previous self-pulsing state. A second peak (along
with its multiples) stands in the region of low frequencies
(1.36 GHz) and corresponds to the newly emerged slowly
varying envelope shaping the time trace in Fig. 3(c.1). Then
one can also see peaks at 13.0 GHz and 15.7 GHz, representing
the beating between the fast dynamics at 14.3 GHz and the
slow one at 1.36 GHz. Quasiperiodicity as seen in Fig. 3(c.1)
resembles at first sight the so-called regular pulse packages
(RPPs) observed for similar external cavity lengths in free
space optical feedback configurations [33,34]. However, as
will be discussed in Sec. IV, simulations suggest that this
quasiperiodic dynamics involves switching between one ex-
ternal cavity mode and one antimode while the RPP dynamics
is a global attractor encompassing a large number of modes.
In both cases, however, the repelling trajectories among the
modes are responsible for the signature of the low-frequency
dynamics seen in the quasiperiodic traces like the one in
Fig. 3(c.1). Now, if the feedback strength is increased again,
this quasiperiodic dynamics collapses and the laser recovers
steady state [Fig. 3(d.1)].

Those three successive behaviors (steady state, self-
pulsation, and quasiperiodicity) are part of a dynamical cycle
which will be actually repeating itself on the whole range of
the feedback strength. Figure 4 represents an experimental
bifurcation diagram obtained when varying JSOA1 from 0 to
50 mA. In this example, three cycles are visible, since the
scenario [steady state (yellow, S); self-pulsation (dark red,
P); quasiperiodicity (brown, Q)] is reproduced three times.
Although the third one is extended on a quite long feedback
span compared to the first two, the dynamical features are
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FIG. 5. (Color online) Experimental bifurcation diagrams show-
ing dynamical transitions as the feedback strength JSOA1 is increased
for values of the laser injection current J/Jth varying from 1.0
to 5.0. The colors and letters correspond to different dynamics:
yellow (S) is steady state, dark red (P) is self-pulsation, brown (Q)
is quasiperiodicity. Orange (C) and red (I) represent chaotic and
intermittent regimes, which are not discussed here.

the same. One understands then that the whole dynamical
evolution of the laser under the effect of the feedback sketches
a cycle which successively reproduces itself.

In order to analyze the influence of the laser injection
current on this succession of dynamical cycles, we focus now
on the bifurcation diagrams displayed in Fig. 5. The figure is
a collection of independent series of dynamical observations
carried out by changing the feedback strength (JSOA1) for
five different values of the normalized laser injection current
(J/Jth). Therefore, the values on the vertical axis do not
vary continuously. Figure 5 can be seen as a superposition
of observations carried out for five different experimental
conditions. Comparing to the case we have been discussing
for J/Jth = 1.0, the succession of dynamics as the feedback
strength increases is globally the same for all values of J/Jth.
Nonetheless we can point out that for medium and high values
of the injection currents J/Jth, the regions corresponding
to steady states vanish, and the whole dynamics is mostly
governed by regions of self-pulsation and quasiperiodicity
visible on larger feedback spans. Therefore the sequence of
bifurcations to steady states, self-pulsation, and quasiperiod-
icity is reduced to bifurcations leading to self-pulsation and
quasiperiodicity only. In that case, experimental observations
show that quasiperiodicity terminates with a direct transition to
the next self-pulsing state. Yet although the steady states may
be discarded, the dynamical evolution composed of transitions
to successive self-pulsing states through quasiperiodicity is
robust to changes of J/Jth. It is also worth to mention that the
evolution of the feedback spans on which self-pulsation and
quasiperiodicity are visible is not simple and does not seem to
follow a particular law with J/Jth, even though they tend to
widen for high currents.

TABLE I. Parameter values in simulations.

Symbol Parameter Value

GN Gain coefficient 8.40 × 10−13 m3 s−1

N0 Carrier density at transparency 1.40 × 1024 m−3

τ Feedback time delay 59 × 10−12 s
τp Photon lifetime 1.927 × 10−12 s
τs Carrier lifetime 2.04 × 10−9 s
τin Internal cavity round-trip time 8.0 × 10−12 s
R2 Laser facet reflectivity 0.556
α Line width enhancement factor 3.0
Nth Carrier density at threshold 2.018 × 1024 m−3

j = J/Jth Normalized injection current 1.5
ε Gain saturation coefficient 2.5 × 10−23

IV. NUMERICAL ANALYSIS

In order to study the theoretical mechanism underlying the
experimental observations, we carry out simulations making
use of the Lang-Kobayashi rate equations [42–44]:

dE(t)

dt
= 1

2

[
GN (N (t) − N0)

1 + εE2(t)
− 1

τp

]
E(t)

+ κE(t − τ ) cos[�(t)], (1)

d�(t)

dt
= α

2

{
GN [N (t) − N0]

1 + εE2(t)
− 1

τp

}

− κ
E(t − τ )

E(t)
sin[�(t)], (2)

dN(t)

dt
= J − N (t)

τs

− GN [N (t) − N0]

1 + εE2(t)
E2(t), (3)

�(t) = ωτ + �(t) − �(t − τ ). (4)

In these equations N,E, and � are, respectively, the carrier
density, the electric field amplitude, and the electric field phase.
τ and κ represent the feedback delay and strength, α is the line-
width enhancement factor, J is the laser injection current, GN

is the gain coefficient, N0 is the carrier density at transparency,
τp and τs are the photon and carrier lifetime, respectively, and
ε is the gain saturation coefficient. The delay τ is chosen equal
to 59 ps, which corresponds to fcav = 17 GHz, like in our PIC.
In the simulations, we use the parameter R to measure the
feedback strength. R can be seen as a reflectivity coefficient
for the electric field amplitude and is defined by κ = (1 −
R2

2)R/(τinR2). In this formula, τin and R2 are respectively
the photon round-trip time in the laser internal cavity and the
amplitude reflectivity coefficient of the laser output facet. The
values of the parameters are given in Table I.

The Lang-Kobayashi equations do not take into account
the dynamics related to the active external cavity. As a
consequence, we have no parameter to model the SOA
currents, and the feedback is simply considered as originated
from an external mirror of tunable reflectivity bounding
a passive external cavity. The reason for this is that our
aim is not to produce a detailed and therefore complex
model but rather to understand the general mechanism at
the origin of self-pulsation. Therefore our theoretical analysis
is limited to qualitative comparisons with our experimental
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FIG. 6. (Color online) Distribution of the modes (black dots) and
antimodes (circles) in the phase space when R = 0.35. Y axis is the
carrier density (in arbitrary units corresponding to 100Ns/Nth), and
X axis is the optical frequency shift with respect to the solitary state
[(ωs − ω)/2π in GHz]. The red square represents the current steady
state.

observations. Yet it is worth mentioning that analyses using
the more sophisticated model of the TWE have been carried
out, showing good quantitative compliance with experimental
observations [11].

Before getting into the dynamical analysis, we present the
distribution of the modes and antimodes of our system in the
phase space. Modes and antimodes correspond, respectively,
to stable and unstable solutions of steady intensity in the
Lang-Kobayashi equations [17]. A laser operating in steady
state corresponds to stabilization on a mode, while antimodes
are unstable steady states. However, as we are about to
discuss, modes and antimodes may interact and lead to mode
beating dynamics [15,19,20]. We consider the steady-state
solutions E(t) = Es,�(t) = (ωs − ω)τ , and N (t) = Ns in the
Lang-Kobayashi equations (1), (2), and (3). Inserting the
steady-state solutions into the Lang-Kobayashi equations gives
Eqs. (5), (6), and (7) for the steady-state solutions [43,44]:

1

2

[
GN (Ns − N0)

1 + εE2
s

− 1

τp

]
= −κ cos (ωsτ ), (5)

ωs − ω = −κ
√

1 + α2 sin(ωsτ + tan−1 α), (6)

Ns = Nth + εNth(j − 1) − 2κτs cos(ωsτ )

τsGN + ε
. (7)

In the two-dimensional phase space depicted in Fig. 6, the
modes are represented by black dots and the antimodes by
circles. The corresponding feedback rate is R = 0.35. Their
positions are determined by the above-mentioned stationary
solutions. For a given stationary solution, the horizontal
position (optical frequency shift) corresponds to the value of
(ωs − ω)/2π in GHz, and its vertical position (normalized
carrier density) corresponds to the value of 100Ns/Nth in
arbitrary units. The value of the corresponding electric field

amplitude Es is not used in this two-dimensional distribution
of modes and antimodes.

Once the distribution of modes and antimodes is set,
the phase trajectory of the laser is sketched in this phase
space. It represents the temporal evolution of the carrier
density versus the optical frequency shift. The normalized
carrier density is calculated as 100N (t)/Nth. The optical
frequency shift represents a change from ω/(2π ) and is
calculated as [�(t) − �(t − τ )]/(2πτ ), which corresponds
to a time-averaged value calculated on the time scale of τ .
In the example given in Fig. 6, the laser operating point is
represented by a red square located on the maximum gain
mode (mode for which the value of Ns is minimal), indicating
a steady state. As the feedback strength increases, modes and
antimodes successively appear in pairs and these new solutions
shape an ellipse in the phase plane projection [17]. By contrast
to long-cavity configurations in which the number of external
cavity modes is large [45], we work here in a short cavity
regime where the mode spacing is large and consequently
only few modes exist, as can be seen in Fig. 6.

The simulated dynamical scenario corresponding to the
experimental one presented in Fig. 3 is shown in Fig. 7. For
each value of the feedback strength, we display the temporal
waveform [the laser intensity is calculated as E2(t)] and
phase trajectory in the phase space. The corresponding RF
spectra are given in Fig. 8. The sequence of qualitatively
different dynamics starts with a first steady state [Fig. 7(a.1)],
corresponding to the laser operating in the maximum gain
mode [Fig. 7(a.2)]. When increasing the feedback strength,
the system undergoes a Hopf bifurcation leading to a limit
cycle attractor, hence to a time-periodic evolution of the
output power [Fig. 7(b.1)–7(b.2)]. The self-pulsing frequency
(fSP ) is 13.3 GHz, which is different from fcav. This was
also the case in the experimental observations presented in
Fig. 3(b.2). The value of fSP is easily understood from the
relative positions of the modes and the antimodes in the phase
space. The phenomenon is explained by a beating between
one mode (mode 1) and the antimode belonging to the next
pair of mode-antimode (antimode 2). This new pair does not
yet exist in Fig. 7(a.2) but ends up by appearing as R is
increased [Fig. 7(b.2)]. As explained in Ref. [21], new pairs of
modes and antimodes are generated as the feedback strength
increases. Then beating can happen when a mode and an
antimode have approximately the same gain, thus enabling
the laser to undergo a bifurcation from the initial steady
state to a limit cycle, corresponding to a pulsing dynamics at
the frequency difference between the beating external-cavity
modes [which can be read on the horizontal axis of Fig. 7(b.2)].
In this example, the frequency separation between mode 1
and antimode 2 is equal to 13.3 GHz. As a consequence, the
peak corresponding to the self-pulsing dynamics is located at
13.3 GHz in Fig. 8(a).

Then if R is increased again, the limit cycle corresponding
to the self-pulsation bifurcates to a more complex attractor
that, in the phase space, involves trajectories close to both
the mode and the antimode facing it [mode 1 and antimode
2 in Fig. 7(c.2)]. This new dynamics is representative of
quasiperiodicity with the appearance of two incommensurate
frequencies [Fig. 7(c.1)]. Indeed, as presented in Fig. 8(b),
there is one fast dynamics and one slow dynamics. The fast
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FIG. 8. RF spectra illustrating the frequency content of traces
in Figs. 7(b.1) and 7(c.1). The values reported above the peaks
correspond to their positions in GHz.

dynamics is represented by the peak at 13.2 GHz, which is
actually the peak seen at 13.3 GHz in Fig. 8(a) but slightly
shifted. The fast dynamics is therefore still governed by the
phenomenon of beating between the mode and the antimode
and is represented in the temporal waveform in Fig. 7(c.1)
by the fast oscillations. This tiny frequency shift in the RF
spectrum is not due to a variation in the positions of the modes
and antimodes induced by the increase of R from 0.42 to
0.43 since we found in the simulations that the frequency
spacing between given modes and antimodes only increases
with the feedback strength. It is rather related to the torus
bifurcation itself, which alters a little bit the fundamental
pulsing frequency.

The slow dynamics of the quasiperiodicity is represented
by the peak at 1.34 GHz in Fig. 8(b). It corresponds to the
speed at which the phase trajectory switches between the two
attractors located at the vicinities of mode 1 and antimode 2
[Fig. 7(c.2)]. These intermittent jumps between the mode and
the antimode represent switches between two solutions having
approximately the same gain. In the temporal waveform in
Fig. 7(c.1), this second dynamics governs the slowly varying
envelope in the laser intensity. Again we can notice in the
RF spectrum Fig. 8(b) the peaks corresponding to the beating
between the fast and the slow dynamics at 11.9 GHz and
14.6 GHz and on both sides of the peak at 26.5 GHz. Note
that the mechanism at the origin of the quasiperiodicity in our
case [jumps between attractors located on one mode and one
antimode as seen in Fig. 7(c.2)] is different from the global
attractor corresponding to a regular itinerancy between many
destabilized external cavity modes as reported for the case of
RPP [22,33,34].

Eventually, if the feedback strength is increased from
that point, those two attractors end up collapsing and the
laser gets stabilized to a new steady state [Fig. 7(d.1)].
This transition corresponds more precisely to a saddle-node
bifurcation bringing the system to a fixed point on the next
mode, represented by a square located on mode 2 in Fig. 7(d.2).

At that stage where the laser has recovered steady state
the sequence of bifurcations repeats on the newly born
external cavity mode. These simulated results are in very good
accordance with the experimental scenario depicted in Fig. 3
from the point of view of both the succession of dynamics and
the values of the frequencies at stake in the self-pulsations.
This confirms that the self-pulsations seen in the experiment
can be explained by the phenomenon of mode beating as we
describe here.

The bifurcation scenario yielding the succession of station-
ary state, self-pulsation, and quasiperiodicity is fundamentally
similar to the one reported in Ref. [33], in which RPP dynamics
has been reported. The self-pulsing dynamics are originated
by a phenomenon of bifurcation bridges inducing a beating
between modes and antimodes. The secondary bifurcation
from self-pulsation to either pulse packages (in the case of
Ref. [33]) involving an itinerancy encompassing many modes
and antimodes or the quasiperiodicity reported in the present
paper (made of jumps between attractors located on one mode
and one antimode) may be due to different experimental
conditions.

Now, if the feedback strength increases again, the same
three-step scenario will be reproduced, revealing successive
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FIG. 9. (Color online) Simulated bifurcation diagrams showing
successive cycles, each one constituted of a steady state, self-
pulsation, and quasiperiodicity for two values of the laser injection
current: J/Jth = 1.5 (a) and J/Jth = 5.0 (b). Note that in the case of
diagram (b), chaos also occurs.

self-pulsing and quasiperiodic states showing the same quali-
tative frequency content. This succession of self-pulsations is
illustrated in Fig. 9 where numerical bifurcation diagrams are
presented on a large span of feedback values for J/Jth = 1.5
and J/Jth = 5.0. The scenario illustrated in Fig. 7 corresponds
to the region between R = 0.35 and R = 0.46 in diagram
(a). One can clearly see that the sequence of bifurcations
repeats itself, revealing regions of self-pulsing states and
quasiperiodicity of increasing amplitude. However, by contrast
to the experimental bifurcation diagram presented in Fig. 5
in which no particular tendency is denoted, the regions of
self-pulsing dynamics seem to shrink as the feedback rate
increases. In addition, diagram (b) illustrates the tendency seen
in Fig. 5, showing that as the injection current increases, the
intervals of feedback in which regions of steady state exist get
shorter.

Although the dynamical scenario is qualitatively the same,
the comparison between experiment and simulations cannot
be carried out much further than phenomenological consider-
ations. We do not find for instance a total disappearance of
the regions of steady state when the laser injection current is
increased to five times its threshold value. This discrepancy
stands probably from the simplicity of the Lang-Kobayashi
model, which may be far from the complexity of the actual
PIC and which, for instance, does not take into account
the dynamics of the photons and the carriers in the SOAs.
Nonetheless, the model is satisfactory enough to study the
evolution of the pulsing frequency with the feedback strength
as we discuss in the next section. Besides being able to
understand the phenomenon of beating itself, it is also
interesting to carry out a deeper analysis of the evolution
of the pulsing frequencies as the feedback increases. Since
we know that the frequency spacing between external cavity
modes increases with the feedback strength, fSP is expected
to evolve alike.
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FIG. 10. (Color online) Simulated (a) and experimental (b) evo-
lutions of the self-pulsing frequency as the feedback strength
increases when the value of the laser injection current J/Jth is fixed
to 2.0.

V. EVOLUTION OF THE SELF-PULSING FREQUENCY
WITH THE FEEDBACK STRENGTH

In this section we analyze how the pulsing frequencies
evolve over a large span of feedback strength and how a
dependence on fcav can be established. Figure 10 presents the
evolution of the self-pulsing frequencies fSP both measured
in the experiment and calculated numerically as the feedback
strength increases for the case where J/Jth = 2.0. The
frequencies reported in this figure correspond to fSP when the
laser operates in a self-pulsing state. In regions of quasiperi-
odicity, we considered for fSP the values of the frequency
corresponding to the fast-dynamics component in the RF
spectrum, as if we were following the position of the peak
along the frequency axis. The curves show a general increase
of the frequency which is first rapid but gradually slows down.
Therefore the larger the feedback strength the higher the puls-
ing frequency. In Fig. 10(a) a succession of dynamics like the
one presented in Fig. 9 is recognizable. In this figure regions of
squares close to each other represent regions of self-pulsation
and quasiperiodicity, where an oscillating dynamics is visible
while regions with no dots correspond to steady states. How-
ever, there is a limit value to the increase of fSP . Indeed, we
understand from Fig. 10 that this increasing evolution is limited
by the value of fcav, which acts as an asymptote to the curves.
As a consequence, for a given external cavity length, the
self-pulsing states can be expected to pulse at frequencies up to
the value of fcav, yet without really reaching it. This evolution
of fSP with the feedback strength is related to the evolution
of the frequency distribution of the external cavity modes and
antimodes, which follows the same tendency with the feedback
strength.

VI. INFLUENCE OF THE LASER INJECTION CURRENT
ON THE SELF-PULSING FREQUENCY

We saw in Sec. III that the dynamical scenario, composed
of cycles of self-pulsation and quasiperiodicity, is robust to
changes of the values of the laser injection current. As for
the values of the self-pulsing frequencies, their experimental
evolution as a function of the feedback strength for different
values of J/Jth is displayed in Fig. 11. For all values of
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FIG. 11. (Color online) Experimental evolution of the self-
pulsing frequencies with the feedback strength (J/JSOA1) for values
of the laser injection current J/Jth increasing from 1.0 to 5.0.

J/Jth,fSP increases with the feedback strength, as seen for
the case presented in Fig. 10. An interesting feature is the
fact that when comparing the values of the frequencies for
given feedback values but for different currents, one clearly
sees that the difference is large when the feedback is weak
and gets smaller as the feedback strength increases. In other
words, the sensitivity of the pulsing frequency to J/Jth is
higher under weak feedback conditions. This implies that the
feedback strength also has an influence on the dependence of
fSP on J/Jth and Lcav. The smaller the feedback rate the higher
the influence of the injection current. As a consequence
fSP is close to the relaxation oscillation frequency (fRO)
and the difference between the values of fSP for different
values of J/Jth is large. By contrast, when the feedback
is strong, fSP is little influenced by the laser injection
current and is mostly determined by Lcav. As presented in
Fig. 11, when JSOA1 is large the values of fSP are closer
to fcav and little discrepancy is seen in their values when
varying J/Jth. We checked numerically that the evolution
of fSP corresponding to the very first self-pulsations (the
ones that are seen for the lowest values of feedback) follows
a tendency very close to fRO when J/Jth is varied. This
tendency is not seen for the values of fSP corresponding
to medium or high feedback regimes, which confirms that
the influence of fRO is significant only in weak feedback
configurations.

These observations, along with further numerical analysis,
allow us to give a general interpretation of the evolution of
fSP . The main result that we point out here is that according
to the feedback strength, the relative influences of fRO and
fcav on fSP vary. They act as two competing parameters
causing fSP to describe an evolution within a frequency
interval bounded by the two of them, as presented in Fig. 12.
The corresponding curve starts with a strong increase from
a value slightly larger than fRO and tends to reach the value

Frequency

Feedback strength
0

fRO

fcav

fSP

FIG. 12. (Color online) Qualitative interpretation of the general
evolution of the self-pulsing frequency with the feedback strength.
fSP describes an evolution in a range of frequencies bounded by fRO

and fcav.

of fcav at a smoother pace as the feedback strength increases.
The existence of a self-pulsing dynamics dominated by the
relaxation oscillation frequency at weak feedback and by
the external cavity frequency at larger feedback strengths is
a known feature of the Lang-Kobayashi model [46]. It is
here experimentally measured in the case of a short external
cavity.

VII. CONCLUSION

We provide a systematic experimental bifurcation scenario
showing self-pulsing dynamics in a laser with short external
cavity embedded in a photonic integrated circuit. The
dynamical scenario made of cycles of stationary states,
self-pulsations of increasing frequency, and quasiperiodicity
induced by the increase of the feedback strength is evidenced.
Numerical simulations based on the Lang-Kobayashi rate
equations provide results in good qualitative agreement
with the experimental observations and bring insight into
the phenomenon of self-pulsation through mode-antimode
beating, originated by bridges between branches of stable
and unstable stationary solutions. Despite the simplicity of
the model, we unveil a set of parameters under which the
dynamical and frequency features show very good compliance
with the experimental observations. In addition, we understand
that the pulsing frequency is a consequence of an interplay
between the frequencies of both the relaxation oscillations and
the external cavity. This dynamical specificity to short-cavity
lasers is an encouraging step towards both the understanding
of PIC behaviors and generation of high-frequency harmonic
optical oscillations without the need for electrical modulation
and its frequency limitation concerns.
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of the Fondation Supélec, Conseil Régional de Lorraine,
Agence Nationale de la Recherche (ANR) through the project
TINO (Grant No. ANR-12-JS03-005), FEDER through the
projects PHOTON and APOLLO, and the Inter-University
Attraction Pole (IAP) program of BELSPO through the project
“Photonics@be,” Grant No. IAP P7/35.

062905-8



CYCLES OF SELF-PULSATIONS IN A PHOTONIC . . . PHYSICAL REVIEW E 92, 062905 (2015)

[1] M. C. Soriano, J. Garcı́a-Ojalvo, C. R. Mirasso, and I. Fischer,
Rev. Mod. Phys. 85, 421 (2013).

[2] M. Sciamanna and K. A. Shore, Nature Photon. 9, 151 (2015).
[3] J. S. Cohen, R. R. Drenten, and B. H. Verbeeck, IEEE J. Quantum

Electron. 24, 1989 (1988).
[4] J. Mørk, B. Tromborg, and J. Mark, IEEE J. Quantum Electron.

28, 93 (1992).
[5] H. Li, J. Ye, and J. G. McInerney, IEEE J. Quantum Electron.

29, 2421 (1993).
[6] K. Petermann, in Advanced Networks and Services (Interna-

tional Society for Optics and Photonics, Amsterdam, 1995),
pp. 121–129.

[7] A. Hohl and A. Gavrielides, Phys. Rev. Lett. 82, 1148 (1999).
[8] H. G. Winful and G. D. Cooperman, Appl. Phys. Lett. 40, 298

(1982).
[9] C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S.
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