
PHYSICAL REVIEW E 92, 062904 (2015)

Oscillation of a rotating levitated droplet: Analysis with a mechanical model
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A droplet of millimeter-to-centimeter scale can exhibit electrostatic levitation, and such levitated droplets can
be used for the measurement of the surface tension of the liquids by observing the characteristic frequency of
oscillatory deformation. In the present study, a simple mechanical model is proposed by considering a single
mode of oscillation in the ellipsoidal deformation of a levitated rotating droplet. By measuring the oscillation
frequency with respect to the rotational speed and oscillation amplitude, it is expected that the accuracy of the
surface tension measurement could be improved. Using the proposed model, the dependences of the characteristic
frequency of oscillatory deformation and the averaged aspect ratio are calculated with respect to the rotational
angular velocity of a rotating droplet. These dependences are found to be consistent with the experimental
observations.
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I. INTRODUCTION

The dynamics of a droplet is one of the most interesting
topics in physics [1]. In the 19th century, Rayleigh investigated
the frequency of the fundamental mode of oscillation in droplet
shape [2]. Since then, there have been several studies on the
dynamics of droplets, for example, on the dynamics of the
collision of a droplet [3,4] and the wetting of a droplet on
a substrate [5,6]. There have also been many studies on the
oscillation of droplet shape under various conditions [7–9].

Through such studies, the techniques for levitating a droplet
have been improved. A droplet of the millimeter-to-centimeter
scale can be levitated in a static electric field by adding an
electric charge to it; this phenomenon is called electrostatic
levitation. By using such a levitated droplet, new materials
can be synthesized without disturbance by a container wall.
Levitated droplets have also been utilized for the measurement
of physical properties of liquids such as surface tension and
viscosity, without using a container [1,10].

The surface tension of a liquid can be determined by
measuring the characteristic frequency of an infinitesimally
small oscillation in the shape of a levitating droplet of the
liquid, induced by a small external driving force [2,11]. The
characteristic frequency of oscillation in the n-mode deforma-
tion was also calculated as a natural extension of the ellipsoidal
deformation [12]. Moreover, Busse analyzed the characteristic
frequency of a rotating droplet and showed that the frequency
is a decreasing function of the rotational speed as long as the
amplitude of the deformation is small [13]. This tendency was
confirmed experimentally by Annamalai et al. [14].

On the other hand, when the amplitude of the oscillation
in droplet deformation is not small, it was experimentally
observed that the characteristic frequency increased as the
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amplitude increased in the case without rotation [15,16]. The
dependence of the amplitude was analytically estimated, and
the analytical predictions were found to be consistent with
the experimental results [17]. Recently, some of the authors
of this paper reported their experimental observations on
the dependence of the characteristic frequency of oscillatory
deformation for a rotating droplet with large amplitude
[18]. Their results were reproduced numerically through
hydrodynamic analyses [19,20]. However, there have been no
analytical studies on the characteristic frequency of a rotating
droplet with large deformation.

In the present work, the dependence of the characteristic
frequency of oscillatory deformation is investigated for a
levitated rotating droplet with large amplitude, based on a
simple mechanical model. The study focuses on a single fun-
damental mode of deformation, i.e., ellipsoidal deformation,
and analyzes the properties of the oscillation of the levitated
rotating droplet. Then the analytical results are compared with
experimental observations. The corresponding experimental
setup is illustrated in Fig. 1(a). By adding a positive charge
to the droplet and applying a static electric field between the
upper and lower electrodes, the droplet is levitated against
gravity. A sinusoidal modulation of the voltage between the
two electrodes then induces an oscillation in the ellipsoidal
deformation of the droplet. Finally, a torque is exerted on
the droplet by applying an acoustic field using two speakers
located orthogonally to each other, and the droplet rotates. By
measuring the dependence of the frequency on the amplitude
and rotational speed, it is expected that the accuracy of the
surface tension measurement will be improved.

Typically, we applied the voltage at around 3 kV between
the electrodes with an interval of about 10 mm. Since the
diameter of the electrodes were about 20 mm, which was larger
than the interval of the electrodes, the electric field is assumed
to be homogeneous at the center part and the magnitude of
the electric field is calculated to be 300 kV/m. When a liquid

1539-3755/2015/92(6)/062904(8) 062904-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.062904


HIROYUKI KITAHATA et al. PHYSICAL REVIEW E 92, 062904 (2015)

droplet with a diameter of about 3 mm, whose mass is 10 mg,
is levitated, the charge in the droplet is estimated to be around
3 × 10−10 C. The applied electric charge should be distributed
at the surface of the droplet, which can induce the change
in shape and/or characteristic frequency of the droplet. Such
effects by electric charge were previously discussed [13,21–
24]. However, from the experimental observation, the levitated
droplet without rotation had an almost spherical shape, and
we consider that the charge distribution at the droplet surface
hardly affects the droplet deformation. In this study, therefore,
we neglect the charge effect for the sake of simplicity.

II. MODEL

The mechanical model is constructed under the following
three assumptions: (i) A levitated droplet has an ellipsoidal
shape with a constant volume. (ii) The fluid inside the droplet
moves elastically; in other words, the fluid particles do not
change their configuration. (iii) There is no energy dissipation.

Here, the cylindrical coordinates are adopted such that the
symmetric axis corresponds to the z axis in Fig. 1. The shape
of the ellipsoid is then described as

r2

b2
+ z2

a2
= 1, (1)

which can also be written as

r(z) = b

a

√
a2 − z2, (2)

where a and b are positive, as illustrated in Fig. 1(b).
The volume V and surface area S of the ellipsoid are given

by

V = 4π

3
ab2, (3)
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FIG. 1. (Color online) (a) Schematic illustration of the experi-
mental setup. The droplet levitated by the static electric field is rotated
by the acoustic field, and the sinusoidal modulation of the electric field
induces the oscillation in the ellipsoidal deformation. (b) Definition
of variables, a and b, representing deformation.

and

S =
{

2b2π
(
1 + arcsin

√
1−κ2

κ
√

1−κ2

)
for κ � 1

2b2π
(
1 + arcsinh

√
κ2−1

κ
√

κ2−1

)
for κ � 1,

(4)

where κ = b/a. Because the volume is conserved, b is a
function of a, i.e., b =

√
R3/a, where R is the equivalent-

volume radius satisfying 4πR3/3 = V . As a result, the shape
of the ellipsoidal droplet is represented by only one parameter,
a. In order to consider the deformation from a spherical shape,
a nondimensionalized variable ξ is defined as

a = R(1 + ξ ), (5)

where ξ = 0 represents a perfectly spherical shape. In addition,
positive and negative ξ correspond to a prolate and an oblate,
respectively. The surface area of the droplet can be expanded
with respect to ξ as

S =4πR2

(
1 + 2

5
ξ 2 − 52

105
ξ 3 + 11

21
ξ 4 − 608

1155
ξ 5

)
+ O(ξ 6),

(6)

where O(ξn) denotes the terms of the same order as or higher
order than ξn.

In order to derive the equation of motion, the Lagrangian
L is considered as a function of a and θ , where θ is the
characteristic direction of the droplet, introduced to describe
the droplet rotation. The Lagrangian L can be written as

L = Ek − Es, (7)

where Ek and Es are the kinetic energy and potential energy,
respectively. Under the above-mentioned assumption, the
velocity of a fluid particle located at (r,θ,z) is written as
(ḃr/b,rθ̇ ,ȧz/a), where ȧ, ḃ, and θ̇ are the time derivatives
of a, b, and θ , respectively. It can be confirmed that the flow
profile satisfies the Navier-Stokes equation (see Appendix A).
Thus, the kinetic energy is calculated as

Ek = π

15
ρ

(
2R3 + R6

a3

)
ȧ2 + 4

15
πρθ̇2 R6

a
, (8)

where ρ is the density of the fluid inside the droplet. To evaluate
Es, only the surface energy of the droplet originating from the
surface tension is considered:

Es = γ S(a), (9)

where γ is the surface tension of the fluid. Therefore, the
Lagrangian can be written as

L = π

15
ρ

(
2R3 + R6

a3

)
ȧ2 + 4

15
πρθ̇2 R6

a
− γ S(a). (10)

The Euler-Lagrange equation for θ represents the angular
momentum conservation, i.e., θ̇/a = �/R, where � is a
parameter corresponding to the initial angular momentum. By
substituting this relation in the Euler-Lagrange equation for a,
a second-order ordinary differential equation (ODE) for a is
derived as

2πρ

15

(
2R3 + R6

a3

)
ä − πρ

5

R6

a4
ȧ2 + 4πρ

15
�2R4 + γ

∂S

∂a
= 0.

(11)
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This is the governing equation of the dynamics of the droplet.
In order to consider the deformation from a spherical shape,
Eq. (11) can be rewritten as an ODE for ξ :

ξ̈ + 8
ξ

(
1 − 6

7
ξ − 5

21
ξ 2 + 117

77
ξ 3

)
− 1 − 3ξ + 5ξ 2

2
ξ̇ 2

+ 2

3
�2

(
1 + ξ − ξ 2 + 1

3
ξ 3 + 2

3
ξ 4

)
= 0, (12)

where 
 = γ /(R3ρ), and the terms higher than the fourth-
order terms of ξ and ξ̇ and the second-order terms of ξ̈ are
neglected. Hereafter, Eq. (12) is analyzed for understanding
the dynamics of deformation of a rotating droplet.

III. ANALYSIS

Linearizing Eq. (12) with respect to ξ , we obtain

ξ̈ + 8
ξ + 2

3
�2(1 + ξ ) = 0. (13)

Thus, the characteristic frequency f0 of the oscillation in
droplet deformation without rotation, i.e., for � = 0, is
calculated as

f0 = 1

2π

√
8
 = 1

π

√
2γ

ρR3
, (14)

which corresponds to the result obtained by Rayleigh [2].
When the droplet rotates, ξ = 0 is no longer at equilibrium,
but the equilibrium state shifts to ξ = ξ0, which is explicitly
written as

ξ0 = − �2

12

+ O(�4), (15)

where � is regarded as a small parameter. Then, the charac-
teristic frequency of the droplet oscillation, f , is formulated
as

f = f0

(
1 + 19�2

168


)
+ O(�4)

= f0

(
1 + 19

21

�2

ω0
2

)
+ O(�4), (16)

where ω0 is the angular velocity of the droplet oscillation
without rotation, i.e., ω0 = 2πf0 = √

8
. These results are
comparable to those reported in the studies by Busse [13] and
Annamalai et al. [14].

To consider the nonlinear effect of large deformation on
the frequency of oscillatory deformation of the droplet, a
weakly nonlinear analysis is conducted [25]. As Eq. (12) has
a form similar to Eq. (B1) in Appendix B, the frequency and
amplitude can be calculated by Eqs. (B5) and (B6), respec-
tively. Comparing Eq. (12) with Eq. (B1), α1 = −1/2 + 3ξ0/2,
α2 = 3/2 − 5ξ0, α3/ω0

2 = −6/7 − 100ξ0/49, and α4/ω0
2 =

−5/21 + 2748ξ0/539. Thus, the frequency f , with respect to
the angular velocity of the rotation � and the amplitude of ξ

for the oscillation A, can be calculated as

f = f0

(
1 + 19

21

�2

ω0
2

− 379

784
A2

)
+ O(�4,�2A2,A4). (17)

The averaged aspect ratio 〈Ar〉 is defined as

〈Ar〉 = 〈b〉
〈a〉 , (18)

where 〈a〉 and 〈b〉 are the center positions of the oscillation
in the long and short axes, a and b, respectively. Therefore,
the time series of a and b are assumed to be a = 〈a〉 +
a1 cos(2πf t + δ) and b = 〈b〉 − b1 cos(2πf t + δ), where a1

and b1 are the amplitudes and δ is the phase shift. It should be
noted that a1 corresponds to RA. The center positions can be
written explicitly as

〈a〉 = R

(
1 − 2

3

�2

ω0
2

+ 19

28
A2

)
+ O(�4,�2A2,A4), (19)

and

〈b〉 =
√

R3/〈a〉

= R

(
1 + 1

3

�2

ω0
2

− 19

56
A2

)
+ O(�4,�2A2,A4). (20)

Therefore, 〈Ar〉 is obtained as

〈Ar〉 =
√

R3

〈a〉3
= 1 + �2

ω0
2

− 57

56
A2 + O(�4,�2A2,A4).

(21)

Tsamopoulos and Brown reported the frequency shift
due to the large amplitude in the ellipsoidal deformation
as f = f0(1 − (34409/58800)A2) [17,21,26]. This result is
different from the one obtained in the above discussion
[Eq. (17)] because Tsamopoulos and Brown investigated the
large two-mode deformation from a perfect sphere, whereas
we consider an ellipsoidal droplet in this study. These
two approaches provide the same results for infinitesimally
small deformations, but they exhibit deviations when large
deformations are considered.

Next, the results obtained above are compared with a simple
spring-bead model. The simplest model that can describe the
deformation and rotation is a system with two equivalent small
beads connected by a spring on a two-dimensional plane. The
mass of each bead is set as m, and the potential for the extension
of the spring is set as U (�), where � is the distance between
the two beads. It is noted that U (�) = k(� − 2�0)2/2, when the
spring responds linearly. Here, the natural length of the spring
is 2�0, and the spring constant is k. In this case, the frequency
f ′ is obtained as

f ′ = f ′
0

(
1 + 3�′2

2ω′
0

2

)
+ O(�′4,�′2A′2,A′4), (22)

and the center position of the oscillation, ξ ′
center, is obtained as

ξ ′
center = �′2

ω0
′2 + O(�′4,�′2A′2,A′4), (23)

where ω′
0 = 2πf ′

0 = √
2k/m is the angular frequency without

rotation, �′ =
√

J/(2m�0
2) corresponds to the parameter for

the frequency of the rotation, and A′ denotes the amplitude of
the oscillation. The center-position shift is calculated as zero
when the terms with the same order as �′2 and A′2 are taken
into consideration. From the results, the increase in frequency
when a droplet is rotating can be considered to be due to the
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surface tension, which works like a spring. However, a spring-
bead model with a linear spring cannot reproduce the center-
position shift and the frequency dependence on the amplitude.

By taking into account the nonlinearity of the spring,
i.e., U (�) is set as U (�) = k(� − 2�0)2/2 + k2(� − 2�0)3/3 +
k3(� − 2�0)4/4 + k4(� − 2�0)5/5, the frequency f ′ and center-
position shift ξ ′

center are calculated as

f ′ = f ′
0

[
1 +

(
3

2
+ K2

ω′
0

2

)
�′2

ω′
0

2 +
(

− K2
2

2ω′
0

4 + 3K3

8ω′
0

2

)
A′2

]

+O(�′4,�′2A′2,A′4), (24)

ξ ′
center = �′2

ω0
′2 − K2

2ω0
′2 A′2 + O(�′4,�′2A′2,A′4). (25)

Here, K2 = 4k2�0/m and K3 = 8k3�0
2/m. By setting K2 > 0

and K2
2 > 3ω′

0
2
K3/4, the spring-bead model can qualitatively

reproduce the frequency shift and center-position shift with re-
spect to the amplitude and rotational angular velocity. It should
be noted that these conditions cannot be realized when only the
surface energy of the droplet is considered as the potential in
Eq. (6), i.e., the nonlinearity of kinetic energy plays an impor-
tant role. The detailed calculations are shown in Appendix C.

IV. NUMERICAL CALCULATION

In order to confirm the analytical results, numerical calcu-
lations were carried out based on Eq. (12). The Euler method
was used with a time step of 10−5. First, the effects of rotation
and amplitude change were evaluated. The time series of ξ

for different rotational angular velocities and amplitudes are
shown in Fig. 2. From the numerical results, it was confirmed
that the frequency increases when the droplet is rotating and
that the frequency decreases as the amplitude increases.

In order to compare the numerical results with the analytical
predictions, the frequency shift (f − f0)/f0 and the averaged

Time  t
010 2 4 6 8

ξ

0.6

0.4

0.2

−0.2

−0.4

0

FIG. 2. (Color online) Time series of ξ calculated based on
Eq. (12). The solid red (dark gray) and dashed green curves
correspond to the conditions without and with rotation, respectively.
The solid cyan (light gray) curve shows the results for larger initial
amplitude. The center position of the oscillation for the larger
amplitude shifted to a positive value of ξ . The parameters and
initial conditions, ξini, are set as � = 0,ξini = 0.05 (solid red curve),
� = 1,ξini = 0.05 (dashed green curve), and � = 0,ξini = 0.5 (solid
cyan curve). The other parameters are the same for all of the plots:
γ = ρ = R = 1.
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FIG. 3. (Color online) Frequency shift and averaged aspect ratio
with respect to rotational angular velocity and oscillation amplitude.
(a) Frequency shift with respect to angular velocity. (b) Averaged
aspect ratio with respect to angular velocity. (c) Frequency shift with
respect to amplitude. (d) Averaged aspect ratio with respect to the
amplitude. All of the plots are in the logarithmic scale. The results
of the numerical calculation are shown by the red (dark gray) points,
whereas the cyan (light gray) lines correspond to the analytical results
from Eqs. (17) and (21).

aspect ratio 〈Ar〉 with respect to the rotational angular velocity
and oscillation amplitude were calculated. The method used
for the numerical calculation was the same as above, and the
results are shown in logarithmic plots in Fig. 3. The numerical
results correspond well with the analytical ones.

V. COMPARISON WITH EXPERIMENTS

In order to confirm the validity of the proposed model, the
analytical results were compared with experimental ones. A
brief description of the experimental setting is provided below.
A more detailed explanation can be found in another paper
[18].

In order to levitate the droplet, a pair of electrodes was
set up such that one electrode was located just above the
other. By applying a positive voltage at the lower electrode,
the droplet injected from a syringe connected to the lower
electrode was electrified. The volume of the droplet could
be adjusted by controlling the volume of the injected liquid.
After injection, negative voltage was applied at the upper
electrode, and the droplet was levitated. Then, an additional
sinusoidal voltage was applied at the lower electrode in order
to induce an oscillation in the ellipsoidal deformation of the
droplet. By scanning the frequency of the applied sinusoidal
voltage, the resonance frequency of the droplet was obtained.
In order to realize the rotation of the levitated droplet, standing
acoustic waves were generated in a container using a pair of
orthogonally positioned acoustic drivers so that a torque was
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exerted on the droplet [27]. The rotational angular velocity
was controlled by adjusting the sound pressure.

The droplet was illuminated by a He-Ne laser and its
vertical position was determined using a position detector. The
position of the levitated droplet was controlled by changing
the upper electrode voltage, which was determined by the
position feedback of a proportional-integral-derivative (PID)
algorithm. The droplet radius was measured using a line
sensor, and the time change in the shape of the droplet was
recorded using two high-speed cameras. For the observation
of the flow field inside the droplet, tracer particles made of
nylon (9–13 μm in diameter) were dispersed into the droplet
and observed from above. The test liquid used for generating
the droplet was propylene carbonate, whose density, surface
tension, and viscosity are 1206 kg/m3, 43 mN/m, and
2.7 mPa s, respectively, at room temperature.

From Eq. (17), the relationship between the nondimension-
alized rotational angular velocity �/ω0 and the nondimension-
alized amplitude A for the condition in which the frequency
does not shift significantly compared with that in the case
of the sufficiently small deformation without rotation can be
obtained as

�

ω0
=

√
1037

2128
A. (26)

Moreover, the relationship between �/ω0 and A for the
condition in which the averaged aspect ratio is one can be
obtained as

�

ω0
=

√
57

56
A. (27)

The experimental observations for the different rotational
angular velocities and oscillation amplitudes are compared
with the analytical results in Fig. 4.

In order to confirm the assumptions used in constructing
the simple model, it was experimentally verified whether
the droplet rotates like an elastic rigid body and whether
the angular momentum is conserved. The velocity profile of the
fluid inside the droplet was obtained from the motion of the
tracer particles observed from above, i.e., in the direction of
the rotational axis. From the recorded video, the position of
the rotational center and the time series of the positions of
the tracer particles were determined. The configuration of the
particles did not change much, as shown in Fig. 5, in which
three particles were traced.

Furthermore, we also measured the angular velocity of
the particle, ω, and the apparent radius, i.e., the radius of
the droplet in the plane perpendicular to the z axis, b, with
respect to time were obtained from the video, as shown in
Fig. 6(a). It was found that the angular velocity oscillates
in synchronization with the change in b. In addition, the
angular momentum per mass, Q, was defined as Q = b2ω

and plotted with respect to time in Fig. 6(b). The change in
Q was approximately 20% of the averaged value. From these
results, it can be concluded that assumptions (ii) and (iii), i.e.,
fixed configuration inside the droplet and angular momentum
conservation due to the small energy dissipation, are adequate.

0 0.20.1
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0 0.60.3
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0.4
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Ω
/ ω
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0.1

0.3

)b()a(

FIG. 4. (Color online) Comparison of analytical and experimen-
tal results. (a) Frequency shift of oscillation in ellipsoidal deformation
with respect to nondimensionalized rotational angular velocity �/ω0

and nondimensionalized amplitude A. The blue (open) and red
(closed) circles represent the positive and negative frequency shifts,
respectively, observed in the experiments, and the green squares
represent zero frequency shifts. The condition for zero frequency
shift obtained analytically is shown by the dashed line [Eq. (26)]. (b)
Averaged aspect ratio of droplet with respect to nondimensionalized
rotational angular velocity �/ω0 and nondimensionalized amplitude
A. The blue (open) and red (closed) circles represent the prolate- and
oblate-like deformations, respectively, in the averaged shape observed
in the experiments. The condition for the averaged aspect ratio to be
one obtained analytically is shown by the dashed line [Eq. (27)].

VI. SUMMARY

A droplet of the millimeter-to-centimeter scale can be
levitated by applying an electric charge, and such levitated

(a) 0 ms (b) 4 ms (c) 60 ms

(d) 100 ms (e) 200 ms (f) 300 ms

1 mm

FIG. 5. (Color online) Results of experiments to check whether
the droplet rotates like an elastic rigid body. Snapshots taken from the
direction of the rotational axis are shown. The time shown in the figure
represents the elapsed time, and each arrow indicates the position of
a tracer particle. The droplet was rotating counterclockwise, and the
rotational frequency was approximately 10.5 Hz (angular velocity
was 66 rad/s), which corresponds to a period of 95 ms. In this case,
the droplet exhibited oscillations in the ellipsoidal deformation at
∼70.9 Hz. The three regions surrounded by the dashed circles in (a)
were bright due to the direct reflection of the light illuminated for
visualization of small particles. The white arrows in (a) indicate the
direction of rotation.
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FIG. 6. (Color online) (a) Time evolution of angular velocity of
the droplet ω (solid red curve, left vertical axis) and apparent radius b

(dashed blue curve, right vertical axis). (b) Time evolution of angular
momentum per mass, Q, defined as Q = b2ω.

droplets have been used to measure the surface tension of
liquids by determining the characteristic frequency of oscil-
latory deformation. In the present study, a simple mechanical
model was proposed by considering a single oscillation mode
of the ellipsoidal deformation of levitated rotating droplets. By
measuring the dependence of the frequency on the amplitude
and rotational speed, it was expected that the accuracy of
the surface tension measurement could be improved. By
the proposed model, the characteristic frequency of the
oscillation for a rotating droplet can be calculated. Moreover,
the dependence of the frequency on the rotating speed and
amplitude observed in the experiment was reproduced by the
model.

ACKNOWLEDGMENTS

This work was supported in part by Grants-in-aid for
Scientific Research (B) (Grant No. 15H03925) and for

Scientific Research on Innovative Areas “Fluctuation &
Structure” (Grant No. 25103008), as well as by the Core-to-
Core Program “Nonequilibrium dynamics of soft matter and
information” (H.K.) from the Japan Society for the Promotion
of Science (JSPS).

APPENDIX A: CONFIRMATION OF FLOW FIELD AS
SOLUTION OF NAVIER-STOKES EQUATION

In the main text, the velocity field inside the ellipsoidal
droplet was assumed as

v = ḃr

b
er + rθ̇eθ + ȧz

a
ez = − ȧr

2a
er + �ar

R
eθ + ȧz

a
ez,

(A1)

in the cylindrical coordinates.
In this appendix, it is shown that the flow field in Eq. (A1)

satisfies the Navier-Stokes equation,

ρ

(
∂

∂t
+ v · ∇

)
v = η∇2v − ∇P, (A2)

with incompressibility

∇ · v = 0, (A3)

where ρ is the density of the fluid, η is the viscosity of the
fluid, P is the pressure, and er , eθ , and ez are the unit vectors
in the r , θ , and z directions, respectively. It is assumed that no
external force is exerted on the droplet.

In the cylindrical coordinates, the Navier-Stokes equation
can be written as

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r

)
= −∂P

∂r
+ η

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
+ 1

r2

∂2vr

∂θ2
+ ∂2vr

∂z2
− 2

r2

∂vθ

∂θ
− vr

r2

)
, (A4)

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r

)
= −1

r

∂P

∂θ
+ η

(
∂2vθ

∂r2
+ 1

r

∂vθ

∂r
+ 1

r2

∂2vθ

∂θ2
+ ∂2vθ

∂z2
+ 2

r2

∂vr

∂θ
− vθ

r2

)
, (A5)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)
= −∂P

∂z
+ η

(
∂2vz

∂r2
+ 1

r

∂vz

∂r
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2

)
, (A6)

for each component, where the flow profile is represented in
the cylindrical coordinates as v = vrer + vθeθ + vzez [11]. By
setting the pressure P as

P = P0 + ρ

[
1

4

ä

a
r2 − 3

8

(
ȧ

a

)2

r2 − a2�2

2R2
r2 − 1

2

ä

a
z2

]
,

(A7)

the flow profile satisfies the Navier-Stokes equation in the
cylindrical coordinates. Here, the volume conservation and
the equality, θ̇/a = �/R, which is derived in the main text,
were used.

The incompressibility condition [Eq. (A3)] also holds:

∇ · v = ∂vr

∂r
+ vr

r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0. (A8)

APPENDIX B: DERIVATION OF SHIFTS IN FREQUENCY
AND CENTER POSITION WITH RESPECT TO

AMPLITUDE

In this section, the shifts in frequency and center position are
derived by comparing with a harmonic oscillator. The system

062904-6
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includes the nonlinear terms as

ẍ + ω0
2x + α1ẋ

2 + α2xẋ2 + α3x
2 + α4x

3 = 0, (B1)

where ẍ and ω0
2x are the main terms and the other terms are

sufficiently small. By letting x = A cos pt + B, where A and
B are of the order of ε, and substituting in Eq. (B1),

ẍ + p2(x − B) = (p2 − ω2)(A cos pt + B) − α1A
2p2 sin2 pt − α2A

2p2 sin2 pt(A cos pt + B)

− α3(A cos pt + B)2 − α4(A cos pt + B)3 − Bp2

= − ω2B − α1

2
A2p2 − α2

2
A2Bp2 − α3B

2 − α3

2
A2 − α4B

3 − 3α4

2
A2B

+
[

(p2 − ω2)A − α2

4
A3p2 − 2α3AB − 3α4AB2 − 3α4

4
A3

]
cos pt

+
[
α1

2
A2p2 + α2

2
A2Bp2 − α3

2
A2 − 3α4

2
A2B

]
cos 2pt +

[α2

4
A3p2 − α4

4
A3

]
cos 3pt. (B2)

The constant term and the secular term necessarily have to
be zero for the system to exhibit oscillation. Considering the
balance of the infinitesimally small terms, B is of the same
order as A2. Therefore,

B = − α1

2ω2
A2p2 − α3

2ω2
A2, (B3)

which gives

p2 − ω2 =
(

−α1α3 + 1

4
α2ω

2 − 1

ω2
α3

2 + 3

4
α4

)
A2. (B4)

Thus, the frequency p is calculated as

p

ω
= 1 +

[
−1

2
α1

α3

ω2
+ 1

8
α2 − 1

2

(
α3

ω2

)2

+ 3

8

α4

ω2

]
A2, (B5)

and the shift in the center position B is calculated as

B = −
(

α1

2
+ α3

2ω2

)
A2. (B6)

APPENDIX C: COMPARISON WITH SIMPLE
SPRING-BEAD MODEL

A system with two equivalent small beads connected by a
spring in a two-dimensional plane is considered as shown in
Fig. 7. A force is exerted on the two beads as a result of the
potential corresponding to the extension of spring, U (r). The
Lagrangian of the system can be written as

L = m

2

(
ṙ2

1 + ṙ2
2 + r1

2θ̇2
1 + r2

2θ̇2
2

) − U (|r2 − r1|), (C1)

where m is the mass of the bead, ri is the positional vector
of the ith bead (i = 1,2), and ri and θi are the components

FIG. 7. Schematic illustration of the simple spring-bead model.

of ri in the two-dimensional polar coordinates. The potential
energy of the spring can be written as

U (r) =k

2
(r − 2�0)2 + k2

3
(r − 2�0)3

+ k3

4
(r − 2�0)4 + k4

5
(r − 2�0)5. (C2)

The Euler-Lagrange equation for θi represents the angular
momentum conservation, i.e., mri

2θ̇i = Ji . By assuming
that the center of mass of the system is always at the
origin and the oscillation always occurs in a symmetric
manner, i.e., r1 = r2 = r , and θ1 = θ2 + π = θ , it can be
obtained that 2mr2θ̇ = J , where J is the initial angular
momentum.

Then, the governing equation is obtained as

r̈ = J 2

4m2

1

r3
− 2k

m
(r − �0) − 4k2

m
(r − �0)2

− 8k3

m
(r − �0)3 − 16k4

m
(r − �0)4, (C3)

where r1 and r2 are substituted by r .
Without rotation, the equilibrium point is r = �0, and

therefore the position is normalized by �0, i.e., the
nondimensionalized variable ξ ′ is set as ξ ′ = (r − �0)/�0.
Then,

ξ̈ = �′2 1

(1 + ξ ′)3
− ω′

0
2
ξ ′ − K2ξ

′2 − K3ξ
′3 − K4ξ

′4. (C4)

Here, ω′
0 and �′ are set as

ω′
0 =

√
2k

m
, (C5)

�′ =
√

J

2m�0
2 , (C6)
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and the normalized values K2, K3, and K4 are set as

K2 = 4k2�0

m
, (C7)

K3 = 8k3�0
2

m
, (C8)

K4 = 16k4�0
3

m
. (C9)

The equilibrium point is

ξ ′
0 = �′2

ω′
0

2 + O(�′4). (C10)

By expanding the governing equation with respect to ξ ′
0, the

frequency is obtained as

f ′ = f ′
0

[
1 +

(
3

2
+ K2

ω′
0

2

)
�′2

ω′
0

2 +
(

− K2
2

2ω′
0

4 + 3K3

8ω′
0

2

)
A′2

]

+ O(�′4,�′2A′2,A′4), (C11)

and the center-position shift, which corresponds to the average
value of b, is determined as

ξ ′
center = �′2

ω′
0

2 − K2

2ω′
0

2 A′2 + O(�′4,�′2A′2,A′4). (C12)

In this calculation, the results from Appendix B were used.
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