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We investigate the transport properties of a particle subjected to a deterministic inertial rocking system, under
a constant bias, for which the phase of the symmetric spatial potential used is time modulated. We show that this
modulated phase, assisted by a periodic driving force, can lead to the occurrence of the so-called absolute negative
mobility (ANM), the phenomenon in which the particle surprisingly moves against the bias. Furthermore, we
discover that ANM predominantly originates from chaotic-periodic transitions. While a detailed mechanism
of ANM remains unclear, we show that one can manipulate the control parameters, i.e., the amplitude and
the frequency of the phase, in order to enforce the motion of the particle in a given direction. Finally, for
this experimentally realizable system, we devise a two-parameter current plot which may be a good guide for
controlling ANM.
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I. INTRODUCTION

A common expectation is that particle transport in a
system follows the direction of the applied bias. However,
counterexamples are found in systems where such a particle
can, instead, travel in a direction opposite to the applied
bias. One thus speaks of absolute negative mobility (ANM), a
phenomenon which has attracted the attention of researchers
in the directed transport community during the last decade
(see Ref. [1] and references therein). ANM was originally
perceived as being solely due to quantum mechanical effects
[2] which may not survive in the classical limit. However,
further investigations have revealed the occurrence of this
phenomenon in classical dynamical systems. The first class
of classical systems exhibiting ANM consists of a variety
of models of interacting Brownian particles whereby the
collective effects are responsible for the onset of ANM [3–10].
But at the time those models were first considered, it was
commonly presumed that a single particle cannot manifest
ANM [1]. Shortly afterwards, ANM was demonstrated in a
system where a single Brownian particle was allowed to move
along meandering paths in a conveniently tailored channel with
inner walls [11–14]. Also, an affordable working concept for
a classical ANM device was proposed by embedding spatial
asymmetry into the shape of the transported particles [15],
much like the case of a particle exposed to a two-dimensional
square lattice of Ref. [16].

In the systems mentioned above, noise actually played a
constructive role, much like in systems exhibiting stochastic
resonance [17]. This framework of noise-induced ANM with
a single particle turned out to be a very active field of
research, which rapidly led to more and more interesting
outcomes [18–21], including ANM in Josephson junctions
that constitute realistic examples [22,23]. While ANM is
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enhanced for an appropriate amount of noise in a purely
noise-induced case [18], this phenomenon may be weakened
as the temperature increases in the presence of chaos in an
underdamped system where the particle mass is significant
[19,20]. In an overdamped regime, a spatially symmetric and
periodic system is likely to manifest ANM in the presence of
the time delay feedback [24].

Recently, the role usually played by noise in stochastic
resonance has been conveniently replaced by a time periodic
signal, thereby leading to a new phenomenon called vibrational
resonance [25,26]. In this framework, ANM was observed
in a system termed a “vibrational motor” following the
terminology of the vibrational resonance [27]. Here, ANM
originated from the combination of two periodic driving
signals which, together, are asymmetric under time reversal.
Even more surprising is that ANM was observed in a
deterministic system evolving in a periodic and symmetric
potential subjected to external unbiased periodic driving and
nonuniform space-dependent damping [28].

Motivated by the manifestation of ANM in a driven
single-particle system in the absence of noise, we propose a
model for which the phase of the symmetric standing potential
is modulated in time. Interestingly, such a potential can be
designed experimentally and its phase modulation has been
found to cause the Rabi oscillations observed in an optical
potential system [29]. The question that we ask now is whether
such a system can exhibit ANM. If so, what then could be the
origin and the mechanism of this unexpected phenomenon? To
the best of our knowledge, these questions have not yet been
addressed in the model of the present study.

This paper is organized as follows. In Sec. II, we introduce
our model system and provide ingredients for particle-current
computations. We show in Sec. III that the occurrence of ANM
is due to the potential phase modulation. Then the origin as
well as the mechanism of ANM are discussed. Finally, in
Sec. IV we show that ANM can be systematically controlled
as a function of phase parameters and we summarize the main
results of this paper in Sec. V.
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II. MODEL DESCRIPTION

Consider a single particle in a spatially phase-modulated
symmetric potential subjected to external fields. The dynamics
of this system is deterministic and is governed by the
dimensionless equation of motion of the form

d2x

dt2
+ γ

dx

dt
= −∂V (x,t)

∂x
+ F (t) + f, (1)

where x = x(t) denotes the spatial coordinate of the particle
at time t . Here, γ is a damping parameter, f a constant load,
F (t) = q cos(�t) a periodic driving force of amplitude q and
frequency �, and V (x,t) the spatial time-dependent potential
given by

V (x,t) = −V0 sin[x − φ(t)], (2)

where φ(t) = λ cos(βt) stands for the time-dependent periodic
phase of amplitude λ and frequency β, and V0 the normalized
amplitude. Thanks to Raizen et al. [29], such a potential can
be prepared by counterpropagating two laser beams in order to
build up a one-dimensional optical lattice potential for which
the phase can be conveniently time modulated. The associated
experimental setup could then correspond to a very weakly
damped alkali atom, a cesium atom for instance, trapped in this
optical lattice potential V (x,t) and subject to external driving
forces. Note that the applied load f implies an added potential
−xf to the system. When λ = 0, one recovers the standing
sinusoidal potential V0 sin(x), while the nonzero phase induces
a time-dependent shift along the spatial coordinate of this
potential. In particular, for small λ, one can shed light on the
effect of this phase modulation by expanding the potential to
first order in λ as V (x,t) = −V0 sin(x) + V0λ cos(x) cos(βt).
Clearly, the second term of the expansion adds a harmonic
driving force that is very likely to induce important changes
in the system. This was responsible for the Rabi oscillations
observed in Ref. [29]. Observe that

∫ 2π/�

0 F (t)dt = 0 and∫ 2π

0 V (x,t)dx = 0, so that the resulting average of F (t) and
V (x,t) over space and time on the particle is nil.

The system of Eq. (1), without the modulated phase φ(t),
has been an active field where ANM has been detected, but in
the presence either of noise and/or periodic driving forces or
in the presence of two driving forces (vibrational resonance)
as elucidated in Sec. I. Here, this counterintuitive ANM effect
is explored by modulating the phase of the spatial potential, in
the presence of one driving force and in the absence of noise.

The behavior of this system is examined by calculating the
current. Because not only transient chaos may be present, but
also different types of attractors may coexist, the computation
of this current must account for well defined statistical
considerations. On that basis, Mateos [30] intuitively defined
the current J as the time average of the average velocity
over an ensemble of initial conditions. Specifically an average
can be performed at a given observation time tj for several
trajectories xi(tj ) calculated with different initial conditions
xi(0) and ẋi(0). This yields the average velocity as

vj = 1

N

N∑

i=1

ẋi(tj ), (3)

where the overdot denotes the time derivative and N the
number of initial conditions used. The current is finally
obtained by time averaging the velocity above over the total
number of observations M:

J = 1

M

M∑

j=1

vj . (4)

In practice, the computation of this current may be very
time consuming; especially in the chaotic situation where a
very large number of trajectories is needed and a very long
observation time is required. To circumvent this difficulty,
Kenfack et al. realized that the convergence can be accelerated
just by ruling out the transients [31]. This results in modifying
the current formula in Eq. (4) to

J = 1

M − Mc

M∑

j=Mc+1

vj , (5)

where Mc is some empirical cutoff number accounting for the
transients. Remarkably this task becomes simplified, relying
on a single trajectory calculation, if the system is exempt from
chaos.

In our numerical experiments, performed using the Runge-
Kutta algorithm to solve Eq. (1), we could achieve converged
currents using an ensemble of N = 1000 initial conditions
randomly distributed about the origin of the coordinate axis,
with the associated velocities fixed at zero. With a time step
	t = 0.09, the transient-discard time at Mc = 1000 was
sufficient and the total observation time was set to M = 106.
Throughout the paper, the potential amplitude V0 = 1 and the
damping coefficient γ = 0.108 are kept fixed, while other
parameters may be purposely tuned. In the next section, we will
explore the dynamics of our system, focusing on the behavior
of the particle current, a plausible indicator of the absolute
negative mobility.

III. ABSOLUTE NEGATIVE MOBILITY IN THE
PHASE-MODULATED DRIVEN TILTED POTENTIAL

To appreciate the influence of the phase modulation on our
particle current J , it is instructive to first explore the dynamics
at zero phase modulation. We solve Eq. (1) numerically as
discussed in the previous section.

A. Zero-phase dynamics

In the absence of the phase, i.e., with λ = 0, the current
has been computed as a function of the constant load f and
is depicted in Fig. 1. When the driving force F (t) is switched
off (q = 0.0), no current is generated for any value of f less
than the critical force fc = V0; the particle, actually trapped
inside the potential well, leads to zero particle transport [see
dashed red line in Fig. 1(a)]. But once f is larger than the
potential barrier V0, which has been set to unity, the particle
will typically follow the direction of the constant load with the
current J generally proportional to f . On the other hand, when
the system is driven out of equilibrium with the help of the
driving force F (t) (i.e., q �= 0), the dynamics is expected to be
richer as chaos may come into play. Figure 1(a), solid blue line,
shows the nonzero current as a function of the constant load
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FIG. 1. (Color online) (a) The current as a function of the bias
f , with λ = 0.0, for q = 0.0 (dashed red line) where J ≡ 0 and for
q = 1.12 (solid blue line). (b) The bifurcation diagram associated
with (a) for J �= 0. One sees a periodic window f ∈ (0.0631,0.0776)
with a constant current and chaotic regions exhibiting jumps that can
lead to ANM (red circle) at f = 0.001 and f = 0.0478.

f < fc. The overall behavior shows an increasing current as f

increases but with some sudden jumps. To obtain more insight
into such current behavior, the associated bifurcation diagram
has been computed; see Fig. 1(b). One can clearly distinguish
two regimes: (i) the regime of regular motion for which the
current is constant within the window f ∈ (0.0631,0.0776);
and (ii) the regime of chaotic motion which is predominant
here. It is precisely in the chaotic regime that these erratic
jumps appear in the current. One such jump has a direct effect
of enhancing the current and may in few isolated cases lead
to absolute negative mobility; see red circles in Fig. 1(a). In
ratchet systems, that is, in the absence of the bias (f = 0), such
negative currents were found at the chaos-periodic transition,
often leading to the so-called current reversal [30–32].

B. Influence of the phase modulation

Besides the periodic driving force F (t), the modulation
of the potential phase constitutes another important source
intended to drive the system out of equilibrium. Indeed, when
the time-dependent phase φ(t) is switched on, this standing
potential is time-shifted back and forth along the position
coordinate of the particle.

In the absence of the driving force F (t), q = 0, and
for β = 0.67, the current of the particle under the phase
modulation is displayed in Fig. 2 as a function of the applied
load f for λ = 0.0 (dashed red line) and for λ = 2.0 (solid
blue line). The nonzero current here with λ = 2 is clear
evidence that the phase is responsible of the particle motion
since no current is revealed for λ = 0. In this case, one
distinguishes a periodic regime where the current is constant
and the chaotic ones where the behavior of the current is
not predictable. In fact, in this chaotic regime, the current J

monotonically increases from zero up to J = 0.07 and then
remains on average around this value of the current with a
few instances of jumps that induce significant changes. The
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FIG. 2. (Color online) The current as a function of the bias f

in the absence of periodic driving (q = 0.0). Here J is identically
zero for λ = 0.0 (dashed red line). But, for λ = 2.0 (solid blue line),
J is constant in the periodic regime, while in the chaotic regime
J monotonically increases for f ∈ (0.0,0.035) and takes on erratic
values for f ∈ (0.035,0.2).

corresponding bifurcation diagram (not shown) is actually
consistent with the behavior observed here, much like in
Fig. 1. Furthermore, it is worth mentioning that the dynamics
becomes completely dominated by the constant load when
f > V0. In this case the current J increases linearly with f .

It is also worth mentioning that the general trend observed
here for λ = 2.0 is similar to that obtained for a broad range
of λ, including very small values.

Next, when the driving force is taken into account, q �= 0,
the current of the particle under the phase modulation, as in
Fig. 2, is depicted in Fig. 3 as a function of the applied load f .
Remarkably, a large window [f ∈ (0.04,0.125)] of absolute
negative mobility (ANM) emerges, with a strong current
flowing in the direction opposite to the constant load. From
the discussions above, we can infer that this counterintuitive
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FIG. 3. (Color online) (a) The current as function of the bias f in
the presence of the modulated phase φ(t) = λ sin(βt) and the driving
force F (t) = q cos(�t) (solid blue line). Here λ = 2.0, β = 0.67, and
q = 1.12. (b) The bifurcation diagram associated with (a) (dotted blue
line). Remarkably, a large window (0.04,0.13) of absolute negative
mobility occurs at chaotic-periodic transitions.
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FIG. 4. (Color online) The trajectory of the particle for f =
0.035 (a), showing positive current, and for f = 0.05 (b), demon-
strating the counterintuitive ANM [see Fig. 3(b)]. Here q = 1.12,
β = 0.67, and λ = 2.0.

phenomenon is presumably due to the phase modulation
assisted by the periodic driving force F (t). In other terms,
the periodic driving force F (t) is a prerequisite for the phase
modulation inducing ANM. Much like in the previous case,
with q = 0, when the constant bias f is bigger that the critical
value fc = V0 + q, the dynamics is dictated by f and the
current transport J increases linearly with f .

C. Origin and mechanism of absolute negative mobility

In order to understand the origin of ANM here, we
plot the bifurcation diagram in Fig. 3(b) (dotted blue line)
corresponding to the current in Fig. 3(a) (solid blue line). One
clearly sees, in this chaotic deterministic system, a pronounced
correlation between both graphs. Jumps exhibited by the
current happen precisely at tangent points where transitions
between chaos and periodic orbits are produced. In particular,
this behavior has led to ANM in the range f ∈ (0.04,0.125) in
which a few jumps also appear to mimic again a similar type
of transition with very few points in the bifurcation diagram.
Outside this window, the current follows the bias both in
periodic and chaotic regimes. Figure 4 displays the time series
of particle position, highlighting the chaotic motion of the
particle in the same direction with the constant load f = 0.035
(a) and, of special interest, the manifestation of ANM where
a periodic orbit is being accelerated in the direction opposite
direction of f = 0.05 (b).

Having explained the origin of ANM in this system, we
can subsequently endeavor to follow the particle current in
more detail in order to attempt to highlight the heuristic
mechanism underlying this counterintuitive phenomenon.
From our numerical results above, it turns out that ANM shows
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FIG. 5. (Color online) Potential V (x,tS) [Eq. (6)] highlighting
the phase effect on a particle as a function of the particle position
x and for two snapshots times tS [(a) and (b)]. For λ = 0 (solid line),
the particle (brown ball) sits at the bottom of the potential xA or xB

with zero velocity (v0 = v′
0 = 0), while for λ = 2 (dashed red line)

and λ = 3 (dot-dashed blue line), the particle receives positive kicks
v1 and v2 (a) and negative kicks v′

1 and v′
2 (b) likely to stimulate the

occurrence of ANM.

up here as a result of the cooperation between the periodic
driving force and the time-dependent phase of the potential.
The driving force contributes to the periodic rocking of the
potential, with equal probability of pulling the particle to the
left and to the right since the potential is symmetric. This
probability will of course be increased in the direction of an
additional applied constant load with a few exceptions leading
to ANM [see Fig. 1(a)] due to the presence of chaos in the
system. However to uncover the role played by the phase on
the particle, we first consider the case of zero phase (Fig. 2
with λ = 0) where only a constant load is applied and then
the case where the time-dependent phase φ(t) is switched on
(Fig. 2 with λ = 2). The latter is equivalent to exploring the
particle in the following potential landscape:

V (x,tS) = −V0 sin[x − φ(tS)] − xf, (6)

where tS is a given snapshot time. Figure 5 shows the particle
in the potential of Eq. (6) [V (x,tS)], as function of the position
x, for different values of the phase λ and for two different
configurations of the snapshot times tS leading to positive
velocities [Fig. 5(a)] and to negative velocities [Fig. 5(b)]. For
λ = 0 (solid line), the particle experiences small oscillations
in the bottom of the tilted potential, at positions XA and XB ,
with velocities which are on average zero (V0 = 0 or V ′

0 = 0).
However, when the phase is switched on, i.e., λ �= 0 (dashed
line and dot-dashed line), this induces a shift that can drive the
particle (brown ball) to the right in the direction of the constant
load f or to the left (opposite to f ), thereby contributing
to cause ANM in this chaotic deterministic system. One
can conclude that this phase and the periodic driving force
cooperatively assist each other to move against the applied
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FIG. 6. (Color online) The (λ,f ) prototypical current diagram
plotted for β = 0.67 (a) and for β = 4.5 (b) with q = 1.12. In (a)
islands of ANM emerge, while in (b) one observes instead a positive
transport throughout with a regular periodic pattern with much lower
constant currents, at λc = 1.25, as compared to much higher and
irregular currents at λ > λc.

constant load, especially at the tangent points where transitions
from chaos to periodicity happen.

IV. ABSOLUTE NEGATIVE MOBILITY CONTROL

In the previous section, ANM as well as its origin have been
numerically demonstrated for isolated values of the modulated
phase of the potential in the presence of the driving force. To
allow for more systematic control of the occurrence of ANM,
it would be enlightening to explore the current landscape for a
much wider range of system parameters. Figure 6 displays the
current as a function of both the amplitude of the modulated
phase of the potential λ and the constant bias f , where
(λ,f ) ∈ ((0.0,2.5),(0.0,0,2)) with q = 1.12, for β = 0.67 (a)
and for β = 4.5 (b). These two-parameter plots provide us with
a global view of the current where regions of normal transport
and regions of absolute negative mobility (ANM) transport
are clearly uncovered for a constant load. In particular, in
Fig. 6(b) the transport happens predominantly in the expected
direction, that is, the direction of the constant load, with very
few instances of ANM, which, when detected, is of the order
of (J = 10−4). Note also the emergence of a regular periodic
pattern when λ � λc = 1.25 with much lower currents as com-
pared to currents for λ > λc. On the other hand, one observes
many islands of ANM in Fig. 6(a), which mostly show up at
around λ = 0.75 and λ = 2.0. White regions correspond to
almost zero current. It is important to notice that the dynamics
explored in (β,f ) space show a two-parameter diagram for
which the probability of experiencing ANM is very small.
Figure 7 depicts two plots extracted from such a (β,f ) diagram
(not shown) as a cut at λ = 2.0 for f = 0.16 [Fig. 7(a)],
showing a completely positive current, and a cut for f = 0.06
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FIG. 7. (Color online) The current as a function of the phase
frequency β for (a) f = 0.16 and (b) f = 0.06. Here λ = 2.0 and
q = 1.12. In accordance with Fig. 3, the positive current is revealed
in (a), while ANM (red circle) occurs in (b) at values β = 0.67 (used
in Fig. 3) and β = 2.34.

[Fig. 7(b)] with two occurrences of ANM (red circle), in agree-
ment with Fig. 3. Here, the value of the frequency of the phase
β = 0.67 is well reproduced (Fig. 3) together with another one
at β = 2.34. It is in such a landscape (Fig. 6) that ANM can be
systematically controlled in this transport problem. In doing
so, ANM can be avoided if not purposely desired. Finally it
is crucial to point out that Fig. 6 is a prototypical plot which
may constitute a useful guide for people conducting particle
transport experiments in such a model [29].

V. CONCLUSION

To sum up, we have addressed the single-particle transport
properties in an inertial periodically driven spatial symmet-
ric phase-modulated potential and under the influence of
a constant bias. With the amplitude λ and the frequency
β of this time modulated phase as controlled parameters,
we unveiled the striking phenomenon of absolute negative
mobility (ANM) in which the particle counterintuitively moves
against the constant bias. Having established that this is a
cooperative effect between the phase modulation and the
periodic driven force, we analyzed the relationship between
the current and the bifurcation diagram. It turned out that this
surprising phenomenon can be associated with the bifurcation
from chaotic to periodic orbits, where the current exhibits
remarkable jumps that can lead to a situation where the
current reverses its direction (ANM) from the expected one.
Although a proper mechanism is still not completely detailed,
we were able to show that we can make use of the control
parameters to increase the probability of the particle to move
in a desired direction. To allow for a more systematic and
global control of ANM, we constructed a two-parameter
(λ,f ) prototypical current diagram. We expect these results
to stimulate people working in this field to conduct some
experiments.
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