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Detecting deterministic nature of pressure measurements from a turbulent combustor
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Identifying nonlinear structures in a time series, acquired from real-world systems, is essential to characterize
the dynamics of the system under study. A single time series alone might be available in most experimental
situations. In addition to this, conventional techniques such as power spectral analysis might not be sufficient
to characterize a time series if it is acquired from a complex system such as a thermoacoustic system. In
this study, we analyze the unsteady pressure signal acquired from a turbulent combustor with bluff-body and
swirler as flame holding devices. The fractal features in the unsteady pressure signal are identified using the
singularity spectrum. Further, we employ surrogate methods, with translational error and permutation entropy as
discriminating statistics, to test for determinism visible in the observed time series. In addition to this, permutation
spectrum test could prove to be a robust technique to characterize the dynamical nature of the pressure time
series acquired from experiments. Further, measures such as correlation dimension and correlation entropy are
adopted to qualitatively detect noise contamination in the pressure measurements acquired during the state of
combustion noise. These ensemble of measures is necessary to identify the features of a time series acquired
from a system as complex as a turbulent combustor. Using these measures, we show that the pressure fluctuations
during combustion noise has the features of a high-dimensional chaotic data contaminated with white and colored
noise.
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I. INTRODUCTION

Thermoacoustic instability is a dynamic phenomenon
marked by the presence of large amplitude, self-excited
pressure oscillations established in a confinement as a result
of complex combustion acoustic interactions [1–3]. Such
oscillations often lead to the failure of combustion systems
due to excessive vibration of the hardware [4] and increased
heat transfer to the walls of the chamber [5]. In many turbulent
combustion systems, these thermoacoustic oscillations are
preceded by an intermittent regime. Further, prior to inter-
mittency, there exists a state that is dictated by low-amplitude
aperiodic fluctuations in pressure and velocity measurements.
The transition of the system from this stable state, the so-
called combustion noise, to thermoacoustic instability has
become the focus of studies on combustion dynamics in recent
years [6–13].

There have been successful attempts to predict the transition
to instability that is observed in a thermoacoustic system.
Certain features inherent to combustion noise were identified
in order to devise predictive measures such as Hurst exponent
and translational error [9,11]. These measures are sensitive
to the changes in the system dynamics during the transition
from aperiodic to periodic pressure oscillations. However,
understanding this transition would require identifying the
deterministic or stochastic nature of these aperiodic pressure
fluctuations acquired during the state of combustion noise.
Understanding the nature of combustion noise is important to
model and study the transition in detail. It is worth emphasizing
that these transitions are observed not only in thermoacoustic
systems but also in aeroelastic [14,15] and aeroacoustic
systems [16]. Therefore, understanding the physics of this
transition will be of interest to a wide range of fields. In
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order to accomplish this, the dynamics of the base state of the
system must be clearly understood. Further, models developed
to describe these transitions must capture the features of the
base state accurately.

In literature, a stochastic description is generally adopted to
model the sources of combustion noise [17]. In the traditional
approach, the effects of turbulence are often modeled using
additive noise sources while analyzing thermoacoustic insta-
bility [18,19]. Any approach to understand the combustion
dynamics basically reduces the problem to an acoustic problem
once the description of hydrodynamic processes is bypassed.
The relevance of such analyses, where the effects of turbulence
are modeled using stochastic sources, depends on the problem
at hand. Moreover, it might be insufficient to capture the
dynamics of combustion noise if it occurs that the pressure
measurements indeed have a deterministic signature.

Recent studies indicate that the pressure measurements
acquired during the stable operation in turbulent combustors
display multifractal features [11] and its dynamics has been
attributed to deterministic chaos [8]. In these studies, measures
such as the Kaplan-Glass test and 0-1 test along with a
randomly shuffled surrogate test were employed to identify
the dynamic nature of combustion noise. A simple surrogate
test such as random shuffling, that eliminates temporal cor-
relations in the signal, does not provide conclusive proof for
determinism in the time series. However, the fact that those
studies were focused on devising appropriate precursors to
instability must be acknowledged.

Gotoda et al. [6], in an attempt to identify the nature of
pressure fluctuations near lean blowout in a lean-premixed
combustor, adopted methods of nonlinear time-series analysis
to interpret such fluctuations from a stochastic viewpoint. They
illustrated the need to adopt sophisticated nonlinear techniques
to extract the degree of determinism visible in the observed
time series. Further, they observed the transition of the system
from stochastic fluctuations to periodic oscillations through
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low-dimensional chaos, with increases in equivalence ratio.
Translational error was used as a measure to characterize the
observed time series as stochastic and chaotic in different
parameter regimes. It must be noted that they employed
appropriate surrogate tests to support this analysis. In a
subsequent paper, Gotoda et al. [7] adopted the permutation
entropy in combination with surrogate data methods to discuss
the possible existence of chaotic fluctuations in the pressure
measurements. In short, it is clear from earlier studies that
identifying the dynamic nature of an experimental time series
is not trivially obvious.

A basic understanding of the physical processes involved
in the dynamic behavior of the system is sufficient to choose
appropriate tools for analyzing the acquired time series. Power
spectral methods, that detect linear correlations in the signal,
are often insufficient to capture the intricacies of the measured
time series. The framework of nonlinear dynamics, inspired
from the recent advances in the field, well serves the purpose
of this analysis. A thermoacoustic system can be viewed as
a complex dynamical system due to the nonlinear processes
and time lags involved in the temporal evolution of the
system. The presence of time delays in the physical system
makes it a high-dimensional dynamical system [20]. Recent
studies on thermoacoustic phenomena from the viewpoint of
nonlinear dynamics reveal the existence of different dynamical
states such as chaos [8,21], intermittent bursts [9,10,22],
quasiperiodic oscillations [22], and so on.

In principle, to represent a complex system, all the state
variables that govern the evolution of the system must be
known. However, in an experimental situation, only a subset
of these variables can actually be measured. Moreover, the
objective in practical situations is to identify the processes
involved in the dynamics of the system from the available data
sets, which falls under the category of an inverse problem [23].
The first step towards identifying the underlying process is to
correctly characterize the time series that is generated out of
it. In this analysis, in a scalar time series, the acoustic pressure
p′(t) is often the only data available from experiments. The
time series of unsteady pressure acquired during combustion
noise appears noisy. However, the temporal correlations
identified in the measured signal necessarily mean that the data
cannot be disregarded as mere random fluctuations [11]. These
fluctuations can be due to the influence of pseudoperiodic
elements, chaos, linear or nonlinear correlations, or dynamic
or observational noise [23]. However, it is difficult to identify
the nature of an experimental time series as it is highly
likely to be contaminated with noise. The difficulty is more
pronounced when the time-series measurements are acquired
from a complex system such as a thermoacoustic system [24].
There can be cases where an experimental time series is
contaminated by dynamic as well as observational noises.
Taking into account such complexities, a conclusive approach
must be adopted to accurately determine the dynamic nature of
the pressure measurements. A complete analysis to recognize
the dynamic nature of these aperiodic fluctuations could
aid the studies on transitions to another stable state.

In this study, the time series is analyzed under the
assumption that it is generated out of either stochastic or purely
deterministic dynamics. Tests that can detect nonlinearity and
fractal features in a signal must be performed to conclusively

diagnose chaotic elements, if present, in the time series [25].
Measures such as generalized Hurst exponents and a singu-
larity spectrum are used to identify the scaling behavior of
the pressure signal obtained from experiments. However, the
presence of fractal features, though necessary, is not sufficient
to conclude that the observed time series is chaotic. This
is because correlated noise might as well possess scaling
behavior similar to that of a chaotic signal [26]. Therefore,
measures that can detect nonlinearity in a time series must
be adopted, in addition to fractal measures, for quantifying
deterministic chaos that is manifested in the time series.
Direct tests, such as the Lyapunov exponent and correlation
dimension, are normally adopted to claim the evidence of
chaos in a time series. A sensitive dependence on initial
conditions is the standard basis to detect the chaotic nature in
deterministic dynamical systems [27]. The Lyapunov exponent
is a measure that quantifies the exponential divergence of
nearby trajectories of an attractor in the state space. A system
with one or more positive Lyapunov exponents is defined to
be chaotic. Oseledec’s theorem [28], applicable to continuous
and differentiable equations, is used to develop algorithms for
calculating Lyapunov exponents [29]. However, this approach
may not work for experimental data contaminated with noise
and the qualitative behavior of such a signal is not merely
dictated by the sign of Lyapunov exponents [27,29].

Standard methods such as the Grassberger-Procaccia (GP)
algorithm, used to find the correlation dimension, can rec-
ognize chaotic time series; however, the procedure requires
the identification of the scaling region in the correlation
sum by visual inspection in order to correctly estimate the
dimension [30]. In practical data contaminated with dynamic
or observational noise, identifying the appropriate scaling
region in phase space becomes more difficult [30]. In the case
of a short time series, the value for correlation dimension
obtained using the GP algorithm might not be the actual
dimension of the attractor. It would rather be the result of
using a short time series for the analysis [31]. The inherent
limitations posed by these techniques will be exposed while
analyzing noisy data.

Direct tests are therefore not sufficient to claim evidence of
determinism in a time series acquired from experiments [32].
The other alternative, surrogate tests, is merely an extension
of direct tests; however, it is basically a statistical test. A null
hypothesis q is formulated for a given data set and its validity
is examined through this statistical test [23]. A null hypothesis
is basically a claim made on the origin of the data sets under
analysis. First, we generate surrogate data sets consistent with
the null hypothesis that one has to test for. Then we compute
a suitable nonlinear statistic, also known as discriminating
statistic (T ), for the original data set and for the ensemble of
surrogate data sets [23]. If the computed values of statistic
for the original data and set of surrogates significantly differ,
then one can safely argue that the data were not generated by
a process described by the null hypothesis. However, the null
hypothesis cannot be falsified with absolute certainty. Instead,
rejection is carried out in a probabilistic sense; i.e., at a certain
confidence level, determined by the number of surrogate data
sets, generated according to any particular hypothesis [23].
The distribution of the statistic T (for the surrogate data sets),
obtained according to the the null hypothesis, can be estimated.
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Then the rejection region is chosen at the tail of the distribution
based on a given significance level t [33]. The significance
level t is given by

t = |T − 〈T 〉surr|
σsurr

, (1)

where T is the statistic, 〈T 〉surr is the mean of the statistic
evaluated for the surrogate data sets, and σsurr is the standard
deviation for the surrogates [30]. In short, surrogate tests are
necessary to assess the confidence level associated with any of
the estimates for the metrics adopted. The most commonly
used techniques to generate surrogate data for statistical
analysis of nonlinear processes include random shuffling
of original series, Fourier transformed (FT) surrogates, and
amplitude adjusted Fourier transformed (AAFT) surrogates.

Random shuffling or random permutation (RP) is the
simplest way of generating surrogate data [23]. The elements
of the original data set are randomly rearranged to destroy
any linear correlations present, if any, in the data while
preserving its distribution. This method is consistent with the
null hypothesis that the data is generated from an uncorrelated
random process. Rejection of this hypothesis means that
the signal possesses temporal correlations. Testing the time
series against this hypothesis must be a trivial exercise in
most cases as the time-series data obtained from experiments
might possess temporal correlations. To deal with correlated
time-series data, an algorithm was developed by Theiler
et al. [23] for testing the null hypothesis of a linear stochastic
process [34]. Rejection of this hypothesis necessarily means
that the data being tested do not stem from a linear Gaussian
process. To implement this surrogate test, the mean and
covariance of the surrogate data sets should match with that of
the original data. In practice, the algorithms for FT surrogate
maintains the amplitude spectrum of the time series while
randomizing the Fourier phases [34]. The underlying phase
can be chosen randomly from a uniform distribution on [0,2π ].
This is because the Fourier phases of a linear Gaussian process
do not contain any useful information, as the features of such
a process can be completely determined by their mean and
autocovariance function [33]. Further, it is known from the
Wiener-Khinchin theorem that the autocovariance function has
a one-to-one correspondence with the power spectrum via the
Fourier transformation [35].

In practical cases, the time series acquired from experiments
might be contaminated with observational noise as well
as dynamic noise. The probability distribution of the data
originating from a linear Gaussian process might deviate
from a normal distribution if the data are contaminated with
observational noise. Thus, the nonlinearity in the signal might
be an artifact of the measurement system. The AAFT surrogate
test was hence developed to resolve the limitations that arise
when the original data do not follow a Gaussian probability
distribution [36]. This test is based on the null hypothesis
that the original data are derived from a linear Gaussian
process, modified by a nonlinear measurement function [34].
The steps involved in generating an AAFT surrogate data
set are as follows. Consider xn, n = 1,2, . . . ,N , where N is
the observed time series. According to the null hypothesis,
xn = h(sn), where sn is a realization of a linear Gaussian
process and h is a nonlinear measurement function. Methods

that implement AAFT try to invert the measurement function
by changing the distribution of the original data to obtain a
Gaussian distribution [33]. This is performed by assigning a
rank to the elements in the time series by comparing the relative
values of the elements. A white noise data (Gaussian) of the
same length as the original data is rearranged to obtain the same
rank structure as the original time series. A phase randomized
surrogate of the rearranged data (Gaussian) is then constructed.
Further, the transformed data are reordered in such a way that
the original data and the resultant surrogate have the same rank
order [34]. The results from this test turn out to be accurate,
when the number of data points in the signal is large and
the measurement function is almost an identity function [33].
Rejection of the null hypothesis of AAFT, FT, and random
shuffle is an indication of the presence of nonlinearity in the
measured signal.

The successful application of statistical hypothesis testing
relies on the choice of the discriminating statistic. The statistics
used in this study require reconstructing the phase space
from the measured time-series data using Takens’s embedding
theorem. Techniques are available to estimate the optimum
delay (τ ) and embedding dimension (D), which are necessary
to accurately reconstruct the state space [37]. Through delay
embedding, the scalar time series is converted into a set
of delayed vectors, which helps in visualizing the system
dynamics at different conditions. An important statistic that
can possibly distinguish the original data from the surrogate
data sets will be the translational error if the time series
under analysis has deterministic features. Translational error
was successfully employed as a tool to characterize the
combustion dynamics before lean blowout in a gas turbine
model combustor [9]. This method, proposed by Wayland
et al. [38], is used to obtain a quantitative measure of
determinism in a time series. It is based on the idea that
the neighboring trajectories in the state space align in similar
directions if the time series has deterministic features [38]. For
measured time-series data of pressure fluctuations, p′(t), the
set of delayed vectors are given by

P (t) = {p′(t),p′(t + τ ), . . . ,p′(t + (D − 1)τ )}, (2)

where P (t) is the phase-space vector at any time instant t

and the elements of this vector represent coordinates of the
corresponding vector in the D-dimensional phase space. The
elements of this delayed vector can as well be viewed as the
state variables of the dynamical system under study.

Let P (ti) be an arbitrary vector in the phase space and
P (tj ) (j = 1,2, . . . ,N ) be N nearest neighbors of the chosen
vector. Let P (tj + T ) represent the delayed vectors after T

time steps. The time interval T was suitably chosen to be the
optimal time delay as we observed maximum determinism in
the phase space at this choice of T .

An approximate tangent vector at time tj is given by v(tj ),

v(tj ) = P (tj + T ) − P (tj ), (3)

where 〈v〉 denotes the average of the tangent vectors v (tj ) for
j = 1,2, . . . ,N ,

〈v〉 = 1

N + 1

N∑

j=0

v(tj ). (4)
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The translational error, Etrans, can be defined as

Etrans = 1

N + 1

N∑

j=0

‖v(tj ) − 〈v〉‖2

‖〈v〉‖2
. (5)

The value of translation error is approximately 1.0 for
uncorrelated noise and close to zero for a periodic signal.
The estimated value of Etrans will be close to zero if the
degree of determinism visible in a time series is high. However,
deterministic features can be considered as significant when
Etrans for a signal is less than 0.1 [39]. It must be noted
that there can be cases where the temporal correlations in
a signal can be mistaken for determinism by the algorithms
adopted for the analysis [40]. Hence, a single test alone
might not be sufficient to detect chaos in the real-world
experimental data [30]. Further, the use of multiple measures of
nonlinearity could prove useful to detect contamination with
white or colored noise in a signal. Harikrishnan et al. [30]
illustrated an approach to detect white and colored noise
in a time series through the combined use of correlation
dimension and correlation entropy. The procedure to find
correlation dimension and entropy follows the GP algorithm.
The delayed vectors are constructed as an initial step to
estimate the dimension. Then the average number of points
within a distance R from an arbitrary phase space vector, P (ti),
is given by

ri(R) = lim
n→∞

1

N

N∑

j=1,j �=i

H (R − |P (ti) − P (tj )|), (6)

where N is the total number of delayed vectors constructed
and H is the Heaviside step function. The correlation function,
C(R), is obtained by averaging ri(R) over M selected delayed
vectors,

C(R) = 1

M

M∑

i=1

ri(R). (7)

Finally, the correlation dimension, D2, is defined as

D2 = lim
R→0

d log C(R)

d log(R)
. (8)

The limitations of using GP algorithm to analyze a noisy
time series were detailed before. To account for this, a
nonsubjective method, as described in Harikrishnan et al. [41],
was adopted to fix the scaling region in order to correctly
estimate the correlation dimension [41].

Further, correlation entropy, when employed in combi-
nation with an AAFT surrogate, can detect colored noise
embedded in a time series. The estimation of correlation
entropy follows the same procedure as that for correlation
dimension. Correlation entropy, K2, is defined as

K2δt = lim
R→0

lim
D→∞

lim
M→∞

[− log C(R)/D], (9)

where δt is the time step used to generate the time series if
the set of governing equations are known. In an experimental
situation, δt can be chosen as the sampling time. A linear
part in the log C(R) versus log(R) plot must be identified
to estimate the correlation entropy [42]. This scaling region
is computed algorithmically as described in Harikrishnan

et al. [42]. Another suitable statistic that serves the purpose of
this study is permutation entropy, which measures the degree
of randomness observed in a time series. This measure relies
on features that are based on ordinal pattern statistics. In this
symbolic approach, a time series is partitioned into subsets of
length D (embedding dimension), with its elements being sep-
arated by a delay τ . Partitioning the time series in this manner is
basically the same as phase-space reconstruction. The possible
permutations (D! permutations) for a sequence of length D

are indexed as i, following a standard procedure [43]. The D!
permutations are the possible ordinal patterns associated with
this set of length D. Consider a sequence of length D, say,
{p′(t),p′(t + τ ),p′(t + 2τ ), . . . ,p′(t + (D − 1)τ )}, obtained
by partitioning the time series (nonconsecutive points). The
relative values of the elements are compared to find the order
in which the elements appear in the set. The elements are
then replaced by their ranks such that the elements with the
smallest and largest value are assigned the rank “1” and “D,”
respectively. This definite arrangement of elements can be
assigned an index, called the ordinal pattern index, following
the procedure detailed in Parlitz et al. [43]. More details
about ordinal patterns and the possible patterns associated
with D = 4 and 5 can also be found in Parlitz et al. [43].
Permutation entropy, hp, is defined as

hp = −
∑D!

i=1 pi log2 pi

log2 D!
. (10)

Here pi represents the relative frequency of the ordinal pattern
that is indexed as i. The estimates of hp are then tested for their
statistical significance using the RP, FT, and AAFT surrogates.

A symbolic visual test is another simple and robust
technique that can recognize regular, chaotic, stochastic, and
hyperchaotic dynamics [44]. The permutation spectrum test
(PST), as it is commonly called, is rather an extension of
the Bandt and Pompe scheme [45] used to estimate the
permutation entropy. Ordinal patterns of length D = 4, i.e., 24
possible patterns, are typically used, as it is computationally
easier. The relative frequency of each ordinal pattern is used
to derive a spectrum of ordinal patterns. The patterns are
indexed according to the same convention as mentioned before.
The relative frequency of certain patterns will be really high
for a time series displaying regular dynamics. Thus, the
specific patterns observed in the permutation spectra can be
an indication of the nature of the time series under analysis.
The presence of a large number of certain patterns in the
time series indicates that there are many vectors pointing in
similar direction in the reconstructed state space. Further, the
ordinal patterns that are absent in the spectrum are termed
as forbidden ordinal patterns. The presence of consistent
forbidden ordinal patterns in the spectrum is evidence of
deterministic dynamics. A time series that displays regular
dynamics, for instance, a periodic signal, will have only
certain patterns in the permutation spectrum. It means that
the spectrum for a periodic time series often contains only a
small subset of the possible ordinal patterns. The remaining
patterns will be absent in the spectrum. The same case applies
to the permutation spectrum of any deterministic signal. A few
forbidden patterns observed in the spectrum is an indication
of the complexity of the time series [43]. The presence of few
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forbidden patterns in the spectrum means that a large subset
of the possible ordinal patterns are visible in the time series.
The presence of large subset of ordinal patterns observed in
the time series is an indication of the complexity of the time
series. Higher complexity also means a higher value of the
permutation entropy for the signal. Forbidden patterns will
be absent if the analyzed time series is purely random [44].
In a random signal, there is no preference for any particular
pattern. Thus, the probability of observing each of the possible
ordinal patterns (corresponding to a particular D) in the time
series is the same. Therefore, no forbidden patterns can be
observed in the permutation spectrum for a random signal.
Further, PST is highly sensitive to the presence of noise in
the time series. The forbidden patterns might disappear if the
time series is contaminated with even small amount of noise.
Ordinal patterns of larger permutation length, say, D = 5,
should be used to make sure that consistent forbidden patterns
are observed [44].

In summary, the deterministic or stochastic nature of
combustion noise has not been characterized accurately in
the literature. A conclusive approach must be undertaken
to ascertain the dynamic nature of combustion noise as its
relevance extends to studies on critical transition to combustion
instability. Fractal features in the pressure measurements ac-
quired during the state of combustion noise are captured using
the multifractal spectrum. In this study, we employ surrogate
tests, with translational error and permutation entropy as the
discriminating statistics, to test for determinism visible in the
measured signal. In addition to this, permutation spectrum test
is used to characterize the dynamic nature of the time series
acquired from experiments. The nature of noise contamination
in the signal could be qualitatively identified using correlation
dimension and correlation entropy.

II. EXPERIMENTAL SETUP

The unsteady pressure data was acquired from a swirl-
stabilized as well as from a bluff-body-stabilized backward-
facing step combustor. The schematics of the setup can be
found in Nair and Sujith [11]. The main components of the
setup are a settling chamber, a combustion chamber, and a
burner provided with a shaft to hold the bluff-body or swirler.
The length of combustion chamber along with the extension
ducts is around 700 mm. The bluff-body was located at a
distance 50 mm from the backward-facing step. A piezoelectric
transducer (sensitivity 72.5 mV kPa−1, 0.48 Pa resolution,
±0.64% uncertainty) located 90 mm from the backward-facing
step was used to acquire the pressure measurements, p′(t).
A 16-bit A–D conversion card (NI-643, ±5 V input voltage
range, ±0.15 mV resolution) was used to acquire the voltage
signal from the pressure transducer. The time series p′(t) (of 3 s
duration) was acquired at a sampling frequency of 10 kHz. The
ambient temperature was measured to be 27 ± 1 ◦C using a dry
bulb thermometer and the relative humidity was measured to
be 85 ± 1% on a hygrometer, when the pressure measurements
were acquired [8,10,11].

III. RESULTS

The time series of unsteady pressure p′(t) acquired from
bluff-body stabilized [Fig. 1(a)] and swirl-stabilized combus-

FIG. 1. Plot showing (a) the pressure time series acquired from
(a) bluff-body and (c) swirl configurations and the singularity
spectrum, f (α), as a function of the singularity strength, α, for the
experimental data sets. The multifractal spectrums presented in (b)
and (d) correspond to the pressure data in (a) and (c) respectively.
The values of the Hurst exponent being less than 0.5 [for both (a)
and (c)] illustrate the fractal nature of the observational time-series
data. The multifractal signature in the signal is illustrated through
the finite width of the singularity spectrum. The above estimates
for Hurst exponent and multifractal spectrum width are obtained
from the pressure data of length, N = 30 000 data points, sampled at
10 000 Hz, acquired from a turbulent combustor with bluff-body and
swirl configurations.

tor [Fig. 1(c)] during stable combustion are shown in Fig. 1.
The pressure signal from bluff-body stabilized combustor has
a Hurst exponent (H ) of 0.20 ± 0.002 and a multifractal
spectrum width of 0.65 as evident from Fig. 1(b). The
unsteady pressure data from the swirl-stabilized configuration
has a Hurst exponent (H ) of 0.15 ± 0.002 and a multifractal
spectrum width of 0.68 as evident from Fig. 1(d). The method
of multifractal detrended fluctuation analysis (MFDFA) is used
to obtain the multifractal spectrum [46].

It is known that the Hurst exponent [47] is a measure that
detects temporal correlations in a time series. It is a measure of
self-similarity as it characterizes a fractal or multifractal time
series with a scaling exponent or multiple scaling exponents
respectively. The scaling of the standard deviation for segments
of different length or scale, obtained from the time series, is
basically estimated as the Hurst exponent (H ) here. In other
words, the corresponding scaling order q associated with the
Hurst exponent discussed here is 2. Negative and positive
orders (q) can be adopted to detect small- and large-scale
amplitude fluctuations in the time series. The Hurst exponents,
Hq , estimated with these different scaling orders (q), will
differ if the time series has multifractal features. The finite
width of the multifractal spectrum basically conveys the same
information. It is clear that the time series obtained from
experiments (swirl and bluff-body configurations) has a Hurst
exponent that is less than 0.5. Therefore, the experimental data
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FIG. 2. Variation of translational error, Etrans, as a function of
embedding dimension, D, for the pressure time series from (a)
bluff-body and (b) swirl configurations and for the randomly shuffled
surrogate data set. The estimates of translational error for the original
data and the RP surrogates show a clear distinction between the two
data sets. The significance level corresponding to RP surrogate is
obtained to be 23.8 and 31.3 for the pressure data from bluff-body
and swirl configurations respectively.

under study is an antipersistent signal that displays multifractal
features, as illustrated in Fig. 1. These temporal correlations
observed in the experimental time series could arise from
deterministic processes or the time series might as well be
a correlated noise [26]. Hence, fractal features alone are not
sufficient to conclude about the deterministic nature of the data
under analysis.

It is clear from the estimates of the Hurst exponent and
multifractal spectrum that the pressure time series acquired
during the state of combustion noise possess fractal features.
Tests for nonlinearity, along with surrogate methods, though on
a statistical basis, could prove useful to recognize the dynamic
nature of the time series. An ensemble of 19 surrogate data
sets of the same length as the original time series is created
so the null hypothesis can be rejected at a 95% confidence
level if the significance level t [Eq. (1)] is greater than 1.6.
Translational error is used as a discriminating statistic for
the analysis. Figure 2 shows the translational error for the
experimental data from the two flame holding configurations
as well as for the randomly shuffled surrogate data. It should
be noted that the value of translational error must be less than
0.1 to characterize a time series as deterministic [6,39]. The
estimate of translational error for the experimental data is close
to 0.1, making it difficult to conclude that it is deterministic.
The sensitivity of the dynamical system to external noise is
an important factor in this context. We find that a dynamical
system might be highly sensitive to noise such that the
estimates of translational error might be much higher than
0.1 even for small amount of noise and vice versa. Therefore,
there exists the possibility that the estimates of translational

error obtained for the time series could be realized even with
small amount of noise in the system.

Further, translational error is highly sensitive to the length
of the time series for which the measure is calculated. The
value of translational error for the shuffled surrogate is much
less than 1, even though it is generated according to the null
hypothesis of an uncorrelated random process. In the case
of white noise, a short time series must be examined for
the measure to give the expected value of 1. However, it
is necessary to maintain the same length for the surrogate
data sets as the original data to perform the surrogate test.
Thus, the time-series length N = 30 000 was maintained for
the experimental data and for the ensemble of surrogate data
sets generated from the experimental data. Further, the value of
translational error at embedding dimension, D = 4 is used as
a representative value to compute the t value, as the measure
attains a minimum almost at D = 4. The translational error
for the experimental data is significantly lower than the RP
surrogate. Rejection of the null hypothesis governing the RP
surrogate means that the experimental data possess temporal
correlations. This conclusion is consistent with the value of
Hurst exponent estimated for the time series acquired from
experiments. This motivates us to test the time series obtained
from experiments, against the null hypothesis of FT and AAFT
surrogates, to reach a conclusion about the dynamical nature
of the time series.

FIG. 3. Variation of translational error, Etrans, as a function of
embedding dimension, D, for the unsteady pressure signal from
(a) bluff-body and (b) swirl configuration, FT and AAFT surrogate
data sets. The estimates of translational error for the FT and AAFT
surrogates appear close to that of the original data. The statistical
significance of their difference can be evaluated at a certain confidence
level. The significance level for the FT and AAFT surrogates are
1.33 and 1.04 respectively for the pressure data from the bluff-body
configuration while the significance level for the FT and AAFT
surrogates are 1.44 and 0.49 respectively for the pressure data from
the swirl configuration.
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Figure 3 shows the translational error for the experimental
data from bluff-body and swirl configurations, as well as for
the FT and AAFT surrogate data sets. In both cases [Figs. 3(a)
and 3(b)], the estimates of translational error for the FT and
AAFT surrogates appear closer to that of the experimental
data. Thus, the null hypothesis of FT and AAFT cannot be
rejected on a statistical basis at a 95% confidence interval, as
evident from the corresponding t values. It must be noted that
the t values corresponding to FT and AAFT surrogate data sets
are much less than that of the RP surrogates. The limitations
that can arise while developing the AAFT surrogates must
be addressed here. The power spectrum of the surrogate data
may not be exactly the same as that of the original data after
the rescaling process associated with the AAFT surrogate. The
power spectrum can get slightly flattened under this procedure.
Iterative algorithms must be used in order to correct such
deviations in the periodogram [33,34]. Taking into account
the limitations posed by AAFT, iterated AAFT was used to
confirm the conclusion derived from AAFT. However, a similar
observation could be made if iterated AAFT is used instead of
AAFT. Therefore, the results for the iterated AAFT surrogate is
not included in Fig. 3. Thus, the presence of nonlinearity in the
time series corresponding to combustion noise obtained from
experiments from swirl and bluff-body configurations could
not be proven through surrogate analysis, with translational
error as the discriminating statistic.

We continue the surrogate analysis with a different dis-
criminating statistic, the permutation entropy. Figure 4 shows
the plot of normalized permutation entropy as a function of
permutation order for the time series acquired from the two
combustor configurations, as well as for shuffle, FT, and AAFT
surrogate data sets. It is computationally expensive to estimate

FIG. 4. Plot showing normalized permutation entropy, nPE, as
a function of permutation order, D, for the acquired time series from
(a) bluff-body and (b) swirl configurations, as well as for shuffled, FT
and AAFT surrogate data sets. The estimate of permutation entropy
for the original data clearly differ from that of the randomly shuffled
surrogate data set. The estimates for the FT and AAFT surrogate
data sets are not significantly different from that of the experimental
series, as evident from the figure.

FIG. 5. Permutation spectra with D = 4 and time lag (τ ) = 1
for the pressure data acquired from (a) bluff-body and (b) swirl
configurations (each of length N = 30 000 data points) and (c)
Mackey-Glass chaotic time series of length N = 2000 data points.
The patterns for the two data sets (experimental and Mackey-Glass
chaotic data set) look similar. The presence of consistent forbidden
ordinal patterns in the spectra for Mackey-Glass chaotic data set
indicates the deterministic nature of the time series. Such patterns are
missing in case of the experimental data set, indicating the presence
of noise in the time series.

this measure for higher permutation orders i.e., for higher
embedding dimension. Hence, the maximum permutation
order was set to be seven. However, this statistic could not
differentiate the original data from FT and AAFT surrogates
as evident from the figure.

The presence of determinism in the time series is not
evident from the surrogate tests performed, when translational
error and permutation entropy are used as the discriminating
measures. To further analyze the experimental time series,
the symbolic visual test detailed before, called the permuta-
tion spectrum test, is adopted [44]. The Bandt and Pompe
scheme [45] is used to implement the test and hence the
name “permutation test.” Figure 5 compares the spectrum
of the experimental data from bluff-body [Fig. 5(a)] and
swirl [Fig. 5(b)] configurations with that of high-dimensional
chaotic data set [Mackey-Glass system, Fig. 5(c)]. The
frequency of the ordinal patterns are estimated with D = 4 and
embedding (consecutive points) as the parameters. Twenty-
four possible ordinal patterns are considered for this particular
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choice of D. The patterns in the spectra corresponding to
the experimental and Mackey-Glass data sets look similar.
The ordinal patterns that do not appear in the time series
data are called forbidden ordinal patterns. The frequency
of these forbidden patterns will be zero in the permutation
spectrum. Consistent forbidden patterns in the spectra for the
Mackey-Glass data set confirm the deterministic nature of the
time series. However, there are no forbidden ordinal patterns
in the spectra of the experimental data in contrast to that of
the Mackey-Glass system. Therefore, no deterministic features
could be observed in the spectra for the experimental data. The
time series obtained from experiments can be contaminated
with noise. There exists a possibility that the frequency of any
of the patterns might be non–zero in the presence of a small
amount of dynamic noise. There are some patterns that are
dominant (higher frequency) in the pressure data as evident
from Figs. 5(a) and 5(b). In other words, it means that there
are large number of vectors pointing in similar direction in
the reconstructed phase space. This indicates that the data
possesses temporal correlations. If the data is purely random,
the reconstructed vectors will be aligned in all directions and
not in any specific direction. Therefore, a distinct peak may
not be observed in the permutation spectrum of a completely
random signal.

Consecutive elements in the time series form the members
of the permutation sequence when a time delay of τ = 1
(as a multiple of sampling time) is chosen. The patterns in
the spectrum, derived using consecutive elements in the time
series, as shown in Fig. 5, might not be representing the
actual system dynamics if the time series is contaminated
with noise. This is because the patterns in the spectrum for
τ = 1 could as well be due to the noisy correlations in the
data. The choice of delay is critical in such situations. Hence,
a characteristic time scale must be an appropriate choice for τ ,
while analyzing a noisy time series. The optimum time delay
used for phase space reconstruction is an appropriate value for
τ . The average mutual information can be used to estimate the
optimum time delay. The average mutual information reaches
its first minimum at τ = 11 for the pressure time series and it
would be a proper choice for τ . For this τ , subsequences of the
form {p′(t),p′(t + τ ),p′(t + 2τ ), . . . ,p′(t + (D − 1)τ )} are
extracted from the time series, where t is a particular time
instant. The permutation spectrum thus obtained through this
partition will be much more reasonable and informative as far
as the objective of this analysis is concerned. The patterns in
the spectrum could thereby reveal the intrinsic dynamics of
the system from the analyzed time series.

Figure 6 compares the PST of the experimental data from
bluff-body [Fig. 6(a)] and swirl (6b) configurations with that of
the high-dimensional chaotic data set [Mackey-Glass system,
Fig. 6(c)] estimated with D = 4 and τ = 11 (nonconsecutive
points). Though the patterns look similar, the spectrum
corresponding to the experimental data set does not possess
any forbidden ordinal patterns, indicative of the presence of
noise in the signal. Low values of frequency for certain ordinal
patterns observed in the permutation spectra are suggestive of
the potential forbidden ordinal patterns if the experimental data
were not contaminated with noise. However, the similarity in
the patterns observed in the spectra (between unsteady pressure
data and Mackey-Glass chaotic data) at time delays 1 and 11

FIG. 6. Permutation spectra with D = 4 and time lag (τ ) = 11
for experimental data from (a) bluff-body and (b) swirl configurations
(each of length N = 30 000 data points), (c) Mackey-Glass chaotic
time series of length N = 2000 data points. τ = 11 is the embedding
delay for both the data sets as obtained from the average mutual
information. Notice the consistent forbidden patterns in the Mackey-
Glass chaotic data, which is a signature of determinism in the time
series.

might be a consequence of high-dimensional chaos manifested
in the experimental time-series data.

Certain forbidden patterns appeared for the PST with D = 5
and τ = 11, when it was implemented for the pressure time
series acquired from bluff-body [Fig. 7(a)] and swirl [Fig. 7(b)]
configurations (consisting of N = 30 000 data points each),
as shown in Fig. 7. This observation is similar to the result
obtained for the noise-driven sine map, as illustrated in Kulp
and Zunino [44].

To ascertain the claim that the data indeed have a deter-
ministic nonlinearity of high-dimensional nature, correlation
dimension and correlation entropy are adopted. There is an
additional objective underlying the choice of these measures.
It is clear from the permutation spectrum that deterministic
features are not discernible due to the presence of noise in the
time series. The next task is to find the nature of this noise.
It has been shown that the correlation dimension and entropy
can possibly detect white and colored noise contamination in
a signal [30]. The D2 estimates for the pressure data from
both configurations, along with the corresponding shuffle and
AAFT surrogates, can be found in Fig. 8. The number of
surrogates used for this analysis was limited to 10 for random
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FIG. 7. Permutation spectra with D = 5 and time lag (τ ) = 11 for
the experimental data from (a) bluff-body and (b) swirl configurations
(each of length N = 30 000 data points). Notice the presence of
certain forbidden ordinal patterns in the spectrum for pressure data
from both configurations (see zoomed in view).

and AAFT surrogates. This is because the objective is not
limited to assess the confidence level associated with the
estimates for correlation dimension. Rather, the interest here
extends to detecting the features of noise being embedded
in the time series. It can be seen that D2 does not attain
a saturated value for the ensemble of random surrogates.
It is, therefore, consistent with the fact that a pure random
signal must be infinite dimensional. Further, Dsat

2 for the
experimental data is observed at high embedding dimensions.
Hence, it supports the conclusion that the measured signal has
a high-dimensional nature. Another significant observation is
that original data and AAFT surrogates have similar estimates
for the correlation dimension. Earlier studies indicate that
this observation might be an outcome of contamination with
white noise in the signal [30]. This conclusion might not
be valid without using a higher embedding dimension to
obtain the estimate for correlation dimension. The estimates
for correlation dimension could turn out to be inaccurate if the
number of delayed vectors are insufficient or, in other words, if
the time series is short in length. This is because the number of
reconstructed vectors depends on the embedding parameters
used, and, more importantly, this number decreases as the
embedding dimension is increased. However, these factors do
not undermine the following conclusions being derived from
the analysis, i.e., D2 saturates at an embedding dimension
close to 10 suggesting high-dimensional dynamics and similar
estimates for data and AAFT surrogates indicating possible
contamination with white noise. The presence of white noise
might be a contribution from the measurement system as
observational noise is expected to be unrelated to the system
dynamics.

Further, the presence of dynamic noise in the signal is also
expected. It is often difficult to detect noise of this nature
as it possesses temporal correlations. This difficulty persists,

FIG. 8. D2 as a function of the embedding dimension (D) for the
experimental data (•) from (a) bluff-body and (b) swirl configurations,
random shuffled surrogates (−), and AAFT surrogates ( ). Dsat

2

is attained at D ∼ 9−10, indicating the high-dimensional nature of
the system. An ensemble of 10 surrogates (random permutation and
AAFT surrogates) is used to obtain the plot. For the shuffled surrogate,
the estimates of D2 is cut off at D = 5, as the trend of the curve clearly
showed no saturation in D2. The estimates of D2 for the experimental
data sets [both (a) and (b)] closely resemble that of the ensemble
of AAFT surrogates. This observation for the experimental data is
indicative of contamination with white noise.

irrespective of the nature of the system; i.e., a low- or high-
dimensional system, from which the time series is acquired.
The estimates of correlation entropy for the original data can
be compared to that of the AAFT surrogates to establish
the presence of correlated noise in the time series. Figure 9
illustrates the correlation entropy as a function of embedding
dimension for the experimental data, random shuffled, and
AAFT surrogate sets. The estimates of correlation entropy
for AAFT surrogate data sets follow that of the original data
as evident from Fig. 9. It is also clear from the permutation
spectrum that the experimental data has features of a high-
dimensional chaotic signal (see Figs. 5 and 6). Hence, we
conclude that the data are generated from a deterministic
process and not an outcome of a stochastic process. Thus,
the estimates of AAFT surrogates being similar to that of
the experimental data suggests possible contamination with
colored noise [30].

In summary, we conclude that the pressure fluctuations
during the state of combustion noise has the features of
high-dimensional chaotic data. We show that the pressure
data are contaminated with white and colored noise. We find
that the pressure data from swirl-stabilized combustor has
similar dynamical features as that of the data from a bluff-
body stabilized combustor. This observation indicates that the
features of combustion noise are independent of the flame
holding configuration of the combustor. Earlier studies [8,11]
have shown that combustion noise is multifractal and that the
pressure fluctuations have dynamical features which resemble
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FIG. 9. Correlation entropy, K2 vs D, for the experimental data
(•) from (a) bluff-body and (b) swirl configurations, random shuffled
surrogates (−), and AAFT surrogates ( ). An ensemble of 10
surrogates is used to compare the entropy estimates with that of
the measured signal. The estimates of K2 for the experimental data
sets [both (a) and (b)] do not significantly differ from the AAFT
surrogates indicating the presence of colored noise in the signal.

that of a chaotic signal. Nair et al. [8] adopted the local flow
test (Kaplan-Glass test) along with the random permutation
test to identify if these aperiodic pressure fluctuations have a
deterministic signature. The Kaplan-Glass method is similar
to translational error as both measures are based on the idea
that the trajectories of a deterministic signal will have similar
direction in a given region in the reconstructed phase space.
The estimates of the Kaplan-Glass method and translational
error provides the degree of determinism in the phase space.
However, appropriate surrogate methods must be adopted to
completely distinguish the time series from a stochastic signal
if the Kaplan-Glass method is used as a test for determinism.
The estimates of the pressure data for any statistic, differing
from that of the RP surrogate, do not provide any conclusive
proof that the original data are deterministic. This observation
merely indicates that the pressure data possess temporal
correlations. Therefore, it is necessary to adopt FT and AAFT
surrogates in addition to the RP surrogates to conclusively
prove that the data are deterministic in nature. Further, Nair
et al. [8] used the 0-1 test for chaos to determine the dynamic
nature of pressure fluctuations. However, the 0-1 test, by itself,
cannot distinguish a chaotic signal from a correlated stochastic

process [48,49]. In short, Nair et al. [8] used two measures
along with the RP surrogate to conclude that the pressure data
are chaotic in nature. Therefore, the analysis carried out by
Nair et al. [8] is not conclusive. In this study, we employed
additional surrogate methods such as FT and AAFT surrogates
to check if the original data are indeed deterministic or merely
an outcome of a stochastic process. We used multiple measures
to test for determinism visible in the pressure measurements.
To avoid false rejections, we calculated the significance level
for the estimates of different statistics based on the total
number of surrogates used. We used correlation entropy and
correlation dimension to find the nature of noise contamination
in the pressure data.

IV. DISCUSSIONS

The combined use of measures, the Hurst exponent, trans-
lational error, permutation entropy, permutation spectrum,
correlation dimension, and correlation entropy reveal that
the time series acquired during the state of combustion
noise exhibits high-dimensional chaotic dynamics. Further,
the pressure data are contaminated with measurement (white)
and dynamic (colored) noises, as evident from the estimates
of correlation dimension and entropy. In the analysis, we find
that the discriminating measures adopted are sensitive to noise.
Thus, a single metric is not sufficient to conclude about the
features of a time series acquired from experiments. It also
turns out that the surrogate tests, employed in this study,
could not reveal any nonlinearity present in the measured
signal. This motivated us to adopt a symbolic visual test called
permutation spectrum test to recognize the dynamic nature
of the pressure data obtained from experiments. Further, the
permutation spectrum adopted in this study could be used as
a tool to study different states observed in dynamical systems,
such as intermittency, quasiperiodicity, etc. In addition to this,
the spectrum test is efficient to characterize the nature of a
time series even if it is contaminated with noise.
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