
PHYSICAL REVIEW E 92, 062901 (2015)

Compounding approach for univariate time series with nonstationary variances
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A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured
time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample
statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term
statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider
two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series
of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for
the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into
windows and determine the distribution function of the thus obtained local variances.
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I. INTRODUCTION

Due to the central limit theorem a great deal of phenomena
can be described by Gaussian statistics. This also guides our
perception of the risks of large deviations from an expecta-
tion value. Consequently, the occurrence of any aggravated
probability of extreme events is always cause for concern
and subject of intense research interest. In a large variety
of systems where heavy-tailed distributions are observed,
Gaussian statistics holds only locally; the parameters of the
distribution are changing, either in time or in space. Thus, to
describe the sample statistics for the whole system, one has to
average the parametric distribution over the distribution of the
(shape) parameter. This construction is known as compounding
or mixture [1–3] in the mathematics and as superstatistics [4]
in the physics literature.

An important example for parameter distribution functions
is the K distribution mentioned 1978 for the first time by
Jakeman and Pusey [5]. It was introduced in the context of
intensity distributions, and their significance for scattering
processes of a wide range of length scales was stressed.
Moreover, the distribution is known to be an equilibrium
solution for the population in a simple birth-death-immigration
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process which was already applied in the description of eddy
evolution in a turbulent medium [6]. The underlying picture of
turbulence assumes that large eddies are spontaneously created
and then “give birth” to generations of children eddies, which
terminates when the smallest eddies die out due to viscous
dissipation. In [7], Jakeman and Pusey use the K distribution
for fitting data of microwave sea echo, which turned out to
be highly non-Rayleigh. The K distribution is also found as
a special case of a full statistical-mechanical formulation for
non-Gaussian compound Markov process, developed in [8].
Field and Tough find K-distributed noise for the diffusion
process in electromagnetic scattering [9,10]. Experimentally,
the K distribution appeared in the contexts of irradiance
fluctuations of a multipass laser beam propagating through
atmospheric turbulence [11], synthetic aperture radar data [12],
ultrasonic scattering from tissues [13,14], and mesoscopic
systems [15]. Also in our study we will encounter the K
distribution for one of the systems under consideration.

Compounded distributions can be applied to very different
empirical situations: they can describe aggregated statistics
for many time series, where each time series obeys stationary
Gaussian statistics, the parameters of which vary only between
time series. In this case, it is straightforward to estimate the
parameter distribution. The situation is more difficult when
we consider the statistics of single long time series with
time-varying parameters. In this nonstationary case, one often
makes an ad hoc assumption about the analytical form of the
parameter distribution, and only the compounded distribution
is compared to empirical findings.
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In this paper, we address the problem of determining the
parameter distribution empirically for univariate nonstationary
time series. Specifically, we consider the case of Gaussian
statistics with time-varying variance. In this endeavor we
encounter several problems: If the variance for each time point
is purely random, as the compounding ansatz would suggest,
we have no way of determining the variance distribution from
empirical data. A prerequisite for an empirical approach to the
parameter distribution is a time series which is quasistationary
on short time intervals. In other words, the variance should vary
only slowly compared to the time scale of fluctuations in the
signal. The estimation noise for the local variances competes
with the variance distribution itself. Therefore, the time
interval on which quasistationarity holds should not be too
short. Furthermore, we have to heed possible autocorrelations
in the time series themselves since they might lead to an
estimation bias for the local variances. Our aim is to test the
validity of the compounding approach on two different data
sets.

The paper is organized as follows: In Sec. II, we give a
short summary of the compounding approach and present two
recent applications where the K distribution comes into play. In
Sec. III, we introduce the two systems we are going to analyze,
a table-top experiment on air turbulence and the empirical
time series of exchange rates between U.S. dollar and Euro. In
Sec. IV, we address the problem of estimating nonstationary
variances in univariate time series. Our empirical results are
presented in Sec. V.

II. COMPOUNDING ANSATZ

A. Basics

We consider a distribution p(I |α) of d random variables,
ordered in the vector I . It is also a function of a parameter α

that determines the shape or other features of the distribution,
e.g., the variance of a Gaussian. If, in a given data set, the
parameter α varies in an interval A, one can try to construct
the distribution of I as the linear superposition

〈p〉(I ) =
∫

A

f (α)p(I |α)dα (1)

of all distributions p(I |α) with α ∈ A. Here, f (α) is the weight
function determining the contribution of each value of α in the
superposition. Since α itself typically is a random variable,
we assume that the function f (α) is a proper distribution. In
particular, it is positive semidefinite. As each p(I |α) and the
resulting 〈p〉(I ) have to be normalized with respect to the
random vector I , Eq. (1) implies the normalization

∫
A

f (α)dα = 1. (2)

The physics reasons for the variation of the parameter α

can be very different. In nonequilibrium thermodynamics, α

might be the locally fluctuating temperature. Although our
systems are not of a thermodynamic kind, we also have in
mind nonstationarities.

B. Rayleigh distribution

In all examples discussed in this paper, p(I |a) is given by
a Rayleigh distribution

p(I |α) = 1

α
exp(−I/α) . (3)

Rayleigh distributions typically result from a superposition of
random variables. They have been proposed more than 100
years ago by Rayleigh to describe the intensity distribution of
waves in the ocean and have been studied meanwhile in many
other systems elsewhere. In chaotic billiards, e. g., Berry [16]
proposed to describe the wave function in a chaotic billiard
by a random superposition of plane waves ψi(�r) = exp(i�ki�r)
entering from different directions with a fixed modulus k =
|�ki | of the wave vector

ψ(�r) = 1√
N

N∑
i=1

ψi(�r) . (4)

As a consequence of the central limit theorem in the limit
N → ∞ for closed systems Porter-Thomas distribution results
for the wave-function intensities I = ψ2. In open systems,
the wave function becomes complex, ψ = ψR + ıψI , and a
Rayleigh distribution is found for the average of the intensity
over all positions 〈I 〉pos = 〈ψ2

R〉pos + 〈ψ2
I 〉pos. (This is true, if

the variances of the real and imaginary parts are equal, for the
general case see Ref. [17].)

C. K distribution

Let us now consider a different though related situation,
where a time signal is generated by a superposition of Gaussian
random variables ψi(�r):

ψ(�r,t) = 1√
N

N∑
i=1

ψi(�r)eıωi t . (5)

In contrast to the situation discussed above, we now assume
that the number N of components is small. We then obtain for
the distribution of the intensity, now averaged over the time
for a fixed position, again a Rayleigh distribution

p(I |Iloc) = 1

Iloc
exp(−I/Iloc), (6)

where the variance Iloc = 〈I 〉time depends on the position.
In this situation, the distribution of local variance can be
calculated. It is given by a χ2

ν distribution, where ν is the
number of statistically independent ψi(�r) entering the sum in
Eq. (5). Depending on the situation, ν may be much smaller
than N .

With f (α) = χ2
ν (α) and α = Iloc the integral (1) can be

done and yields

〈p〉(I ) = ν

�
(

ν
2

)
(

νI

2

) ν
4 − 1

2

K ν
2 −1

(
2

√
νI

2

)
, (7)

where Kμ is the modified Bessel function of degree μ. This is
the K distribution introduced in the Introduction.

An example of the compounding ansatz in the aforemen-
tioned situation is given by a recent experiment [18] where we
studied the propagation of microwaves through an arrangement
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FIG. 1. (Color online) Distribution of the time-averaged intensi-
ties Iloc found for the 780 pixels of our measurement (for details see
[18]). The inset shows the same data using a semilogarithmic scale.
The solid curve is a χ 2 distribution with ν = 32 degrees of freedom.

of disordered scatterers in a cavity, corresponding to a potential
landscape. From the stationary field patterns ψi(�r) obtained in
the measurement, time-dependent wave fields were generated
according to Eq. (5) by superposition of N = 150 patterns.

For fixed positions, indeed Rayleigh distributions were
found in each time sequence ψ(�r,t) for the distribution
of intensities I , with Iloc depending on the position. The
distribution of Iloc turned out to be χ2

ν distributed (see Fig. 1).
The number ν of degrees of freedom was related to the number
of independent field components and took a value of ν = 30.

D. Generalization to the multivariate case

We briefly sketch another example which stems from
finance (for details see Ref. [19]). We consider a selection
of K stocks with prices Sk(t), k = 1, . . . ,K , belonging to the
same market. One is interested in the distribution of the relative
price changes over a fixed time interval �t , also referred to as
returns:

rk(t) = Sk(t + �t) − Sk(t)

Sk(t)
. (8)

For short sample windows T of a month or less, the distribution
of the K component vector r can be described by a multivariate
Gaussian

p(r|	t ) = 1√
det(2π	t )

exp

(
−1

2
r†	−1

t r

)
, (9)

where 	t denotes the covariance matrix. For longer sample
windows T the nonstationarity of the covariance matrix
causes deviations from the Gaussian behavior. To take this
into account, the fluctuating covariance matrices 	t can be
approximated by an ensemble of random matrices.

In Ref. [19], a Wishart distribution was assumed for this
ensemble. The ensemble average of the distribution (9) over
the Wishart ensemble yields

〈p〉(r|	,N ) =
∫ ∞

0
χ2

N (z)p

(
r

∣∣∣∣ z

N
	

)
dz, (10)

where 	 is the sample-averaged covariance matrix over the
entire time window T . As 	 is fixed, this result has the form
of the compounding ansatz (1). The number N of degrees of
freedom in the χ2

N distribution determines the variance in the
distribution of the random covariance matrices. The role of the
locally averaged intensity Iloc is now played by an effective
parameter z which fully accounts for the ensemble average.
Again, a K distribution follows:

〈p〉(r|	,N ) = 1

2
N
2 +1�

(
N
2

)√
det

(
2π 	

N

)
K K−N

2
(
√

NI	)

(
√

NI	)
K−N

2

, (11)

in which, roughly speaking, the bilinear form I	 = r†	−1r

takes the place of the intensity I in Eq. (7). This shows that
K distributions may appear in very different contexts (see also
the Introduction). We shall meet a further example in the next
section.

III. DATA ACQUISITION

In the last section, the compounding approach has been
illustrated by two multivariate systems. For the microwave sys-
tem, Rayleigh distributions were found in the generated time
series for each point of the field pattern. The variances within
each time series were constant and thus easily measurable,
but varied from position to position. Here, the compounding
corresponds to the aggregation over all positions. In the stock
market example, the fluctuating covariance matrices 	t were
assumed to follow a Wishart distribution. While the resulting K
distribution for the intensities captures the empirical data quite
well, the Wishart distribution for the covariances was merely
an ad hoc assumption and is difficult to verify empirically.
These examples have been presented to introduce the ideas,
but are not part of the main topic of this paper.

We now turn to systems where only univariate time series
exist, but no prior information on their possible compositions.
In such a situation it is not evident whether the compounding
ansatz is appropriate at all since it implies that for short times
the variance is constant and changes only slowly on the scale
of the typical correlation time of the fluctuations. But, if the
ansatz works, and one succeeds in reducing the signal to the
distribution function of its variances, then it would mean a
large step towards an understanding of the origin of the signal.
In the case of K distributions, e. g., it could be possible to
relate the number of degrees of freedom to the hidden sources
of the signal.

A. Turbulent air flow

The first data set is obtained by measuring the noise
generated by a turbulent air flow [20]. For the turbulence
generation we used a standard fan with a rotor frequency of
18.44 Hz. We restricted ourselves to standard audio technique
handling frequencies up to 20 kHz and standard sampling
rates of 48 kHz offering reliable quality at an attractive
price. The microphone for the sound recording is a E 614
by Sennheiser with a frequency response of 40 Hz–20 kHz, a
good directional characteristic and a small diameter of 20 mm.
It guarantees a broadband frequency resolution and a pointlike
measuring position. An external sound card with matching
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FIG. 2. (Color online) Setup for the generation and measurement
of the turbulent air flow. The turbulent air flow has been generated by
the fan on the left hand side and recorded by the microphone in front
of it. In the preliminary stage of the experiments, the sound card of
the laptop has been used for data acquisition.

properties was necessary to use the full capacity of the quality
of microphone and to minimize the influence of the intrinsic
noise of the PC. Figure 2 shows a photograph of the used
setup. A microphone has been placed in front of a fan running
continuously and generating a highly turbulent air flow. The
microphone records the time signal of the sound waves excited
by the turbulence (for details see [20]). The analyzed time
series will be discussed in detail in Sec. IV.

B. Foreign exchange rates

The foreign exchange markets have the peculiar feature of
all-day continuous trading. This is in contrast to stock markets,
where the trading hours of different stock exchanges vary due
to time zones, with partial overlap of different markets and very
peculiar trading behavior at the beginning and the end of each
trading day. Therefore, foreign exchange rates are particularly
suited for the study of long time series.

We consider the time series of hourly exchange rates
between Euro and U. S. dollar in the time period from January
2001 to May 2013 [21]. We denote the time series of exchange
rates by S(t). From these we calculate the time series of
returns (8), i.e., the relative changes in the exchange rates
on time intervals �t . Since we work with hourly data, the
smallest possible value for �t is one hour. However, as we
will see later on, a return interval of one trading day �t = 1d
is preferable for the variance estimation. Note that foreign
exchange rates are typically modeled by a multiplicative
random process, such as a geometric Brownian motion (see,
e.g., [22]). Therefore, we consider the relative changes of the
exchange rates instead of the exchange rates themselves. While
the latter resemble, at least locally, a lognormal distribution,
the returns are approximately Gaussian, conditioned on the
local variance, that is.

IV. NONSTATIONARY VARIANCES IN UNIVARIATE
TIME SERIES

We consider the problem of univariate time series with
time-dependent variance. More specifically, we consider time
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FIG. 3. (Color online) (Top) Sound signal of the ventilator mea-
surement. (Bottom) Time series of daily returns. Both signals have
been normalized to mean zero and standard deviation one. In both
cases, we observe extended periods of low and high fluctuation
strength.

series where the variance is changing, but exhibits a slowly
decaying autocorrelation function. This point is crucial be-
cause otherwise it is not possible to make meaningful estimates
of the local variances. Time series with this feature show
extended periods of large fluctuations interrupted by periods
with moderate or small fluctuations. This is illustrated in Fig. 3
for the two data sets we are studying in this paper. In the top
plot of Fig. 3, we show the sound signal for the ventilator
measurement. In the bottom plot, the time series of daily
returns for the foreign exchange data is plotted. In both cases
we observe the same qualitative behavior, which is well known
in the finance literature as volatility clustering.

The compounding ansatz for univariate time series assumes
a normal distribution on short time horizons, where the local
variance is nearly stationary. However, we wish to determine
the distribution of the local variances empirically since it is a
critical part in the compounding ansatz. If the variances were
fluctuating without a noticeable time-lagged correlation, this
would not be feasible. Still, we need to establish the right time
horizon on which to estimate the local variances. Reference
[23] introduced a method to locally normalize time series
with autocorrelated variances. To this end, a local average was
subtracted from the data and the result was divided by a local
standard deviation. In this spirit, we determine the time horizon
on which this local normalization yields normal distributed
values and analyze the corresponding local variances.
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FIG. 4. (Color online) (Top) Autocorrelation function of the
measured sound signal. (Bottom) Autocorrelation function of the
absolute values of hourly returns.

Another aspect we need to take into account is a possible
bias in the variance estimation which occurs for correlated
events. In Fig. 4, we show the autocorrelation function (ACF)
of the measured sound signal, as well as the autocorrelation
function of the absolute value of hourly returns. Both plots hint
at possible problems for the variance estimation. Due to the
high sampling frequency, the sound signal is highly correlated.
In other words, the sampling time scale is much shorter than
the time scale on which the turbulent air flow changes. After
2500 data points, or about 52 ms, the autocorrelation function
has decayed to zero. Consequently, we consider only every
2500th data point for our local variance estimation. To improve
statistics, we repeat the variance estimation starting with an
offset of 1 to 2499. The results are presented in the following
section.

In the case of the foreign exchange data we are confronted
with a different problem. The consecutive hourly returns are
not correlated. While local trends may always exist, it is
unpredictable when a positive trend switches to a negative one,
and vice versa (see Ref. [24]). However, the autocorrelation
of the absolute values shows a rich structure which is due to
characteristic intraday variability. This would lead to a biased
variance estimation and, consequently, to a distortion of the
variance distribution. Therefore, we consider returns between
consecutive trading days at the same hour of the day. Put
differently, we consider �t = 1 d for the returns and get 24
different time series, one for each hour of the day as starting
point.

V. EMPIRICAL RESULTS

We first discuss the results for the turbulent air flow.
As described in the previous section, we sliced the single
measurement time series into 2500 time series with lower
sampling rate, taking only every 2500th measurement point.
This is necessary to avoid a bias in the estimation of the
local variances. Before proceeding, each of these time series
is globally normalized to mean zero and standard deviation
one. Figure 5 shows the empirical results for the distribution
of local variances and the compounded distribution. The local
variances are rather well described by a χ2 distribution with
N degrees of freedom. We find N = 10 to provide the best fit
to the data. The distribution of the empirical sound amplitudes
is well described by a K distribution with the same N which
fits the variance distribution. Hence, we arrive at a consistent
picture, which supports our compounding ansatz for this
measurement.

The results for the daily returns of EUR-USD foreign
exchange rates are shown in Fig. 6. As outlined in Sec. IV,
we calculated the daily returns as the relative changes of the
exchange rate between consecutive trading days with respect
to the same hour of each day. This procedure yields 24 time
series of daily returns. We normalize each time series to mean
zero and standard deviation one. This allows us to produce
a single aggregated statistics. In the top plot of Fig. 6 we
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FIG. 5. (Color online) Results for the turbulent air flow. (Top)
Distribution of variances, compared to a χ 2 distribution with N = 10
degrees of freedom (dashed green line). (Bottom) Distribution of the
sound amplitudes, compared to the K distribution with parameter
N = 10 (dashed green line).
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RUDI SCHÄFER et al. PHYSICAL REVIEW E 92, 062901 (2015)

0 2 4 6 8 10
10 4

0.001

0.01

0.1

1

local

pd
f

4 2 0 2 4

0.001

0.01

0.1

returns

pd
f

variances

FIG. 6. (Color online) Results for daily returns of foreign ex-
change rates EUR-USD. (Top) Distribution of variances, compared to
a lognormal distribution (dashed red line). (Bottom) Distribution of
the daily returns, compared to a lognormal compounded distribution
(dashed red line).

show the histogram of local variances, i.e., the variances
estimated on 13-day intervals. The empirical variances follow a
lognormal distribution over almost three orders of magnitude,
with only some deviations in the tail. This is in accordance
with the finance literature, where normal-lognormal mixtures
have first been suggested to describe commodity prices [25],
and later stock prices [26] and foreign exchange rates [27].
According to [28], the occurrence of the lognormal distribution
points to an information cascade reminiscent of the energy
cascade in turbulence. The histogram of the daily returns
is shown in the bottom plot of Fig. 6. The empirical result
agrees rather well with the normal-lognormal compounded
distribution. It is important to note, however, that we only
achieve this consistent picture of variance and compounded
return distribution because we have taken into account all the
pitfalls of variance estimation, which we described in Sec. IV.

VI. CONCLUSIONS

In a large variety of systems we encounter time series that
exhibit Gaussian statistics locally, where the variances are
nonstationary. In such a setting, a compounding approach can
be used to describe the sample statistics on large time scales.
For demonstration we applied the compounding approach
to two very different systems, a ventilator setup generating
turbulent air flow and foreign exchange rates. Both systems

are characterized by univariate time series with nonstationary
variances. Our main objective was to empirically determine the
distribution of variances and thus arrive at a consistent picture.
The estimation of variances from a single, nonstationary
time series presents several pitfalls, which have to be taken
into account carefully. First of all, we have to avoid serial
correlations in the signal itself. These might otherwise lead
to an estimation bias. For the sound measurement, we had
to reduce the sampling rate of the data to achieve this. The
foreign exchange data presented another obstacle for variance
estimation: We observed a characteristic intraday variability
which had to be taken into account. Last but not least, it is a
prerequisite that the nonstationary variances are not purely
stochastic, but exhibit a slowly decaying autocorrelation.
Otherwise, we would not be able to determine a reasonable
variance distribution for the compounding ansatz. When we
take all these aspects into account, we arrive at the correct
variance distribution. In good approximation we found a χ2

distribution in the case of ventilator turbulence, which leads to
a K distribution for the compounded statistics. For the foreign
exchange returns we observe lognormal distributed variances;
and the normal-lognormal compounded distribution fit the
return histogram well.

In cases where the intensities are K distributed with ν

degrees of freedoms, it seems worthwhile to look whether
it is possible to trace back the time signal to ν independent
sources. For the turbulent flow discussed in this paper, these
sources might be the dominant vortex structures. Controlled
experiments are needed to check this conjecture. In favorable
cases the variance distributions of the time signal might even
be used to monitor the underlying structures. Lognormal
distributed variances, as they are found in the time series
extracted from the stock market, suggest an information
cascade reminiscent of the energy cascade in turbulence [28].

Why is it so important to get an empirical handle on the
variance distributions themselves? They reflect the system
behavior and might not even be stationary. Here, we restricted
ourselves to two examples where the variance distribution is
well described by a simple χ2 or a simple lognormal distribu-
tion, since we aimed to explore the pitfalls of determining the
variance distribution.

However, things become even more interesting when the
variance distribution also changes in time. Our table-top exper-
iment on turbulent air flow corresponded to a well-controlled
setting where the characteristics of the generated turbulence
are rather stable. In contrast, the turbulence observed in a wind
park, for instance, is not as steady, but subject to changing
weather conditions on larger scales. Similarly, distinct market
states have recently been observed for stock markets [29],
implying a richer structure of the covariance matrix ensemble
than a simple Wishart distribution [30]. Our present study is a
first step towards an empirical assessment of these and similar
highly nonstationary systems.
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