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Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks:
Growing wave of increase in speed in synchronized flow
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We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized
flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the
bottleneck; therefore, we call this instability an S → F instability. Whereas the S → F instability leads to a local
increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the
1950s–1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local
decrease in speed (growing deceleration wave). We have found that the S → F instability can occur only if there
is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called “speed
peak”) that initiates the S → F instability occurs usually at the downstream front of synchronized flow at the
bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been
found that the S → F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough
can the S → F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of
a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S → F
instability governs traffic breakdown—a phase transition from free flow to synchronized flow (F → S transition)
at the bottleneck: The nucleation nature of the S → F instability explains the metastability of free flow with
respect to an F → S transition at the bottleneck.
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I. INTRODUCTION

From 1958 to 1961, Herman, Gazis, Montroll, Potts,
Rothery, and Chandler [1–4] from General Motors (GM)
Company revealed the existence of a traffic flow instability
associated with a driver overdeceleration effect: If a vehicle
begins to decelerate unexpectedly, then, due to a finite driver
reaction time, the following vehicle starts deceleration with
a delay. As a result, the speed of the following vehicle
becomes lower than the speed of the preceding vehicle. If this
overdeceleration effect is realized for all following drivers,
then the traffic flow instability occurs leading to a growing
wave of a local speed decrease in traffic flow that can be
considered a “growing deceleration wave” in traffic flow.
With the use of very different mathematical approaches, this
classical traffic flow instability has been incorporated into a
huge number of traffic flow models; examples include the well-
known Kometani-Sasaki model [5,6], the optimal velocity
(OV) model by Newell [7–9], a stochastic version of Newell’s
model [10], Gipps model [11,12], Wiedemann’s model [15],
Whitham’s model [16], Payne’s macroscopic model [13,14],
the Nagel-Schreckenberg (NaSch) cellular automaton (CA)
model [17], the OV model by Bando et al. [18], a stochastic
model by Krauß et al. [19], a lattice model by Nagatani [20,21],
Treiber’s intelligent driver model [22], the Aw-Rascle macro-
scopic model [23], a full velocity difference OV model by
Jiang et al. [24], and a huge number of other traffic flow models
(see the references in books and reviews [25–27]). All these
different traffic flow models can be considered belonging to the
same GM model class. Indeed, as found in 1993–1994 [28],
in all these very different traffic flow models the classical
instability leads to a moving jam (J) formation in free flow
(F) (F → J transition) (see references in Refs. [26,27,29,30]).
The classical instability of the GM model class should explain
traffic breakdown, i.e., a transition from free flow to congested
traffic observed in real traffic [1–26]).

However, as shown in Refs. [27,29,30], traffic flow
models models of the GM model class (see references in
Refs. [27,29,30]) failed in the explanation of real traffic
breakdown. This is because rather than an F → J transition
of the models of the GM model class, in all real field traffic
data traffic breakdown is a phase transition from a metastable
free flow to synchronized flow (F → S transition) [27,29–39].

To explain an F → S transition in metastable free flow, a
three-phase traffic theory (“three-phase theory” for short) has
been introduced [27,29,30,32–36] which shows, in addition
to the free flow phase (F), that there are two phases in
congested traffic: the synchronized flow (S) and the wide
moving jam (J) phases. One of the characteristic features
of the three-phase theory is the assumption about the exis-
tence of two qualitatively different instabilities in vehicular
traffic.

(i) A traffic flow instability predicted in three-phase the-
ory [27,29,30,34–36] that is associated with an overacceler-
ation effect. It is assumed that the probability of overacceler-
ation should exhibit a discontinuous character [29,30,34–36]
[Fig. 1(c)]. Due to the discontinuous character of the overac-
celeration probability the instability [labeled S → F instability
in Fig. 1(d)] should cause a growing wave of a local increase
in the vehicle speed in synchronized flow. Respectively, in
the three-phase theory it is assumed that a spatiotemporal
competition between the overacceleration effect and the speed
adaptation effect occurring in car-following leads to the
metastability of free flow with respect to an F → S transition
at the bottleneck. The assumption that traffic breakdown at
a highway bottleneck is the F → S transition occurring in
metastable free flow is the basic assumption of the three-phase
theory [27,29,30,34–36].

(ii) In the three-phase theory it is further assumed that
rather than traffic breakdown, the instability of the GM model
class explains a phase transition from synchronized flow to
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FIG. 1. (Color online) A known empirical example of phase
transitions in traffic flow illustrating two traffic flow instabilities
of three-phase theory (real measured traffic data of road detectors
installed along three-lane highway) [(a) and (b)] [40] and illustrations
of associated hypotheses of three-phase theory [(c) and (d)]: (a)
Sketch of section of three-lane highway in Germany with three
bottlenecks. (b) Speed data measured with road detectors installed
along road section in (a); data [29] are presented in space and time with
averaging method described in Sec. C.2 of Ref. [41]. (c) Hypothesis of
three-phase theory about discontinuous character of overacceleration
probability [29,30,34–36]. (d) Hypothesis of three-phase theory about
F → S → J phase transitions in traffic flow: 2Z-characteristic for
phase transitions [29,33,35]. F, free flow phase; S, synchronized flow
phase; and J, wide moving jam phase. In (b), “sp,” spontaneous F → S
transition and “ind,” induced F → S transition [29].

wide moving jams (S → J transition) that is labeled as S → J
instability in Fig. 1(d).

The first mathematical implementation of these hypotheses
of three-phase theory [29,30,32–36] has been a stochastic
continuous in space microscopic model [42] and a CA
three-phase model [43], which has been further developed for
different applications in Refs. [40,44–58]. Over time there has
been developed a number of other three-phase flow models
(e.g., Refs. [59–109]) that incorporate some of the hypotheses
of the three-phase theory [29,30,34–36].

The hypothesis that the S → F instability at a highway
bottleneck should govern the nucleation nature of an F → S
transition, i.e., the metastability of free flow with respect to
an F → S transition (traffic breakdown) was introduced in the
three-phase theory many years ago [29,34–36] [Fig. 1(d)].

However, microscopic physical features of this S → F in-
stability have been unknown until now. In particular, the
following theoretical questions arise, which have not been
answered in earlier theoretical studies of three-phase flow
models [29,30,40,42–51,53–56,58]:

(i) What is a disturbance in synchronized flow that can
spontaneously initiate the S → F instability at the bottleneck?

(ii) Can it be proven that the S → F instability at the
bottleneck exhibits a nucleation nature?

(iii) How does the S → F instability occurring in syn-
chronized flow govern the metastability of free flow with
respect to the F → S transition at the bottleneck? Indeed,
in accordance with the three-phase theory [29], the speed
adaptation effect, which describes the tendency of free flow
to become synchronized flow, cannot lead to traffic flow
instability. Therefore, the speed adaptation effect cannot be
the origin of the nucleation nature of the F → S transition at
the bottleneck observed in real traffic.

(iv) What is the physics of a random time delay to
the F → S transition at the bottleneck found in simulations
with stochastic three-phase traffic flow models [29,30,40,43–
51,53–55]?

In this article, we reveal microscopic features of the
S → F instability that answer the above questions (i)–(iv).
We will show that this microscopic theory of the S → F
instability exhibits a general character: All results can be
derived with very different mathematical stochastic three-
phase traffic flow models, in particular with the KKSW
(Kerner-Klenov-Schreckenberg-Wolf) CA model [43,53,54]
and the Kerner-Klenov stochastic model [40,42,44,49–51].
Because the KKSW CA model is considerably more simple
than the Kerner-Klenov stochastic model, we present results
of the microscopic theory of the S → F instability based on a
study on the KKSW CA model; associated results derived with
the Kerner-Klenov stochastic model are briefly considered
under Discussion (Sec. VI).

The article is organized as follows. In Sec. II, we show the
existence of an S → F instability at a highway bottleneck. The
nucleation nature of an S → F instability at the bottleneck is
the subject of Sec. III. Microscopic features of random time-
delayed traffic breakdowns (F → S transition) at highway
bottlenecks are studied in Sec. IV. This analysis proves that the
S → F instability governs traffic breakdowns at the bottleneck.
A general character of this conclusion is shown in Sec. V. In
Sec. VI, we compare the classical traffic flow instability of
the GM model class with the S → F instability of three-phase
theory (Sec. VI A), discuss cases in which either there is no
overacceleration in the KKSW CA model (Sec. VI B) or there
is no time delay in overacceleration in the KKSW CA model
(Sec. VI C), make a generalization of the results based on an
analysis of the Kerner-Klenov stochastic model (Sec. VI D),
as well as formulate conclusions (Sec. VI E).

II. S → F TRAFFIC FLOW INSTABILITY

A. KKSW CA model

To study the S → F traffic flow instability in synchronized
flow at a highway bottleneck, we use the KKSW CA
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FIG. 2. Steady states of the KKSW CA model in the flow-density
(a) and space-gap–speed planes (b). G and gsafe are, respectively, a
synchronization gap and a safe gap at a time-independent speed v

(where gsafe = v), F denotes free flow, and S denotes synchronized
flow [hatched 2D regions in (a) and (b)]. Parameters of the KKSW CA
model used in simulations are as follows: d = 5 (7.5 m), vfree = 25
(135 km/h), p3 = 0.01, p

(2)
0 = 0.5, vpinch = 8 (43.2 km/h), k1 = 3,

k2 = 2. pa,1 = 0.07, pa,2 = 0.08, p(2)
2 = 0.35, vsyn = 14 (75.6 km/h),

and �vsyn = 3 (16.2 km/h).

three-phase traffic flow model [43,53,54] whose parameters
are the same as those in Ref. [54].

1. Rules of vehicle motion in KKSW CA model

In the KKSW CA model for identical drivers and vehicles
moving on a single-lane road [54], the following designations
for main variables and vehicle parameters are used: n =
0,1,2, . . . , is the number of time steps; τ = 1 s is the time
step; δx = 1.5 m is the space step; xn and vn are the coordinate
and speed of the vehicle; time and space are measured in units
of τ and δx, respectively; vfree is the maximum speed in free
flow; gn = x�,n − xn − d is a space gap between two vehicles
following each other; the subscript � denotes variables related
to the preceding vehicle; d is vehicle length; and Gn is a
synchronization space gap [Figs. 2(a) and 2(b)].

The KKSW CA model consists of the following sequence
of rules [54]:

(a) “comparison of vehicle gap with the synchronization
gap”:

if gn � G(vn)

then follow rules (b) and (c) and skip rule (d), (1)

if gn > G(vn)

then skip rules (b) and (c) and follow rule (d), (2)

(b) “speed adaptation within synchronization gap” is given
by formula:

vn+1 = vn + sgn(v�,n − vn), (3)

(c) “overacceleration through random acceleration within
synchronization gap” is given by formula

if vn � v�,n, then with probability pa,

vn+1 = min(vn+1 + 1, vfree), (4)

(d) “acceleration”:

vn+1 = min(vn + 1, vfree), (5)

(e) “deceleration”:

vn+1 = min(vn+1, gn), (6)

(f) “randomization” is given by formula:

with probability p, vn+1 = max(vn+1 − 1, 0), (7)

(g) “motion” is described by formula:

xn+1 = xn + vn+1. (8)

Formula (4) is applied when

r < pa, (9)

formula (7) is applied when

pa � r < pa + p, (10)

where pa + p � 1; r = rand() is a random value distributed
uniformly between 0 and 1. Probability of overacceleration pa

in (4) is chosen as the increasing speed function:

pa(vn) = pa,1 + pa,2 max(0, min(1, (vn − vsyn)/�vsyn)),
(11)

where pa,1, pa,2, vsyn, and �vsyn are constants. In (1) and (2)

G(vn) = kvn. (12)

The rules of vehicle motion (2)–(12) [without formula (11)]
have been formulated in the KKW (Kerner-Klenov-Wolf) CA
model [43]. In comparison with the KKW CA model [43], we
use in (7) and (10) for probability p formula

p =
{

p2 for vn+1 > vn,

p3 for vn+1 � vn,
(13)

which has been used in the KKSW CA model of Ref. [53]. The
importance of formula (13) is as follows. This rule of vehicle
motion leads to a time delay in vehicle acceleration at the
downstream front of synchronized flow. In other words, this is
an additional mechanism of time delay in vehicle acceleration
in comparison with a well-known slow-to-start rule [110,111]:

p2(vn) =
{

p
(2)
0 for vn = 0

p
(2)
1 for vn > 0

, (14)

that is also used in the KKSW CA model. However, in the
KKSW CA model in formula (14) probability p

(2)
1 is chosen

to provide a delay in vehicle acceleration only if the vehicle
does not accelerate at previous time step n:

p
(2)
1 =

{
p

(2)
2 for vn � vn−1

0 for vn > vn−1

. (15)

In (13)–(15), p3, p
(2)
0 , and p

(2)
2 are constants. We also assume

that in (12) [43]

k(vn) =
{

k1 for vn > vpinch

k2 for vn � vpinch

, (16)

where vpinch, k1, and k2 are constants (k1 > k2 � 1).
The rule of vehicle motion (13) of the KKSW CA

model [53] together with formula (11) allows us to improve
characteristics of synchronized flow patterns (SP) simulated
with the KKSW CA model (2)–(16) for a single-lane road.
Other physical features of the KKSW CA model have been
explained in Ref. [53]. A model of an on-ramp bottleneck is
the same as that presented in Ref. [55].
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In accordance with qualitative three-phase theory [29], a
competition between speed adaptation and overacceleration
should determine the existence of an S → F instability. Thus
it is useful to discuss the description of these effects with the
KKSW CA model.

2. Speed adaptation effect in KKSW CA model

In the KKSW CA model, the speed adaptation effect in
synchronized flow takes place within the space gap range:

gsafe,n � gn � Gn, (17)

where gsafe,n is a safe space gap, gsafe,n = vn. Under condi-
tion (17), formula (3) is valid, i.e., the vehicle tends to adjust its
speed to the preceding vehicle without caring what the precise
space gap is, as long as it is safe: The vehicle accelerates
or decelerates in dependence of whether the vehicle moves
slower or faster than the preceding vehicle, respectively. In
other words, there are both “negative” and “positive” speed
adaptations.

3. Time delay in overacceleration in KKSW CA model

A formulation for model fluctuations that simulates
overacceleration on a single-lane road is as follows. Each
vehicle, which moves in synchronized flow with a space
gap that satisfies conditions (17) [Fig. 2(b)], accelerates
randomly with some probability pa (4). This random vehicle
acceleration occurs only under conditions (17) and

vn � v�,n. (18)

Thus the vehicle accelerates with probability pa , even if the
preceding vehicle does not accelerate and the vehicle speed is
not lower than the speed of the preceding vehicle. Therefore,
in accordance with the definition of overacceleration [29,30],
this vehicle acceleration is an example of overacceleration.
Because the probability of overacceleration pa < 1, there
is on average a time delay in overacceleration. The mean
time delay in the overacceleration is longer than time step
of the KKSW CA model (τ = 1 s). The overacceleration
effect results in the discontinuous character of the probability
of overacceleration as a density (and flow rate) function
as required by the associated hypothesis of three-phase
theory [29,30,34–36] [Fig. 1(c)].

The probability of overacceleration pa (4) is an increasing
function of vehicle speed. This model feature supports the
overacceleration within a local speed disturbance of increase
in speed in synchronized flow. As predicted in Refs. [29,30],
the stronger the overacceleration, the more probable should be
the occurrence of the S → F instability.

B. Speed peak at downstream front of synchronized flow
at on-ramp bottleneck

In simulations of traffic flow on a single-lane road with
an on-ramp bottleneck with the KKSW CA model, we find a
sequence of F → S and S → F transitions at the bottleneck
[labeled respectively as “F → S transitions” and “S → F
transitions” in Figs. 3(a)–3(d)]. At chosen flow rates qon

and qin (Fig. 3), each of the F → S transitions leads to the
formation of a widening synchronized flow pattern (WSP)

FIG. 3. Simulations of the S → F instability in synchronized flow
leading to the S → F transition at an on-ramp bottleneck on single-
lane road with the KKSW CA model: [(a)–(d)] Speed in space and
time [(a) and (c)] and the same speed data presented by regions with
variable shades of gray (in white regions the speed is equal to or higher
than 110 km/h, and in black regions the speed is zero) [(b) and (d)];
panels (c) and (d) are, respectively, fragments of (a) and (b) in larger
scales in space and time. (e) Fragment of vehicle trajectories in space
and time related to (c) and (d); bold dashed-dotted curves in (e) denote
the development of S → F instability in synchronized flow leading
to the S → F transition. F, free flow; S, synchronized flow; WSP,
widening synchronized flow pattern. qon = 360 vehicles/h and qin =
1406 vehicles/h. On-ramp location xon = 15 km. Merging region
of the on-ramp is located within 15 km � x � 15.3 km (i.e., road
locations within which vehicles can merge from the on-ramp lane
onto the main road). Other model parameters are the same as those
in Fig. 2.

at the bottleneck (labeled “WSP1,” “WSP2,” and “WSP3”
in Fig. 3). To understand microscopic features of the S →
F instability, we consider the S → F transition shown in
Figs. 3(c) and 3(d).

Microscopic features of the S → F instability [Fig. 3(e)] are
as follows. First, a disturbance of increase in speed emerges
at the downstream front of synchronized flow at the on-ramp
bottleneck (Fig. 4). We call this disturbance a “speed peak”
[labeled “speed peak” on trajectory 2 in Figs. 4(b)–4(d)]:
At time instant t = t

(1)
1 vehicle 1 begins to accelerate at the

downstream front of synchronized flow [Figs. 4(b) and 4(c)].
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FIG. 4. Speed peak at the downstream front of synchronized flow
at bottleneck that initiates S → F instability shown in Figs. 3(c)–3(e):
(a) Fragment of vehicle trajectories related to Fig. 3(e); bold dashed-
dotted curves in (a) denote the development of the speed wave of
increase in speed within synchronized flow. [(b)–(d)] Microscopic
vehicle speed along trajectories as time functions (b) and (d) and
road location functions (c). In (b)–(d), vehicle trajectories are labeled
by the same numbers as those in (a). xon = 15 km and x(e)

on = 15.3 km
are, respectively, the beginning and the end of the merging region of
the on-ramp which which vehicles can merge from the on-ramp onto
the main road.

Within the downstream front of synchronized flow, vehicle 1
accelerates continuously from a synchronized flow speed to
free flow downstream of the bottleneck. Vehicle 1 reaches a
free flow speed at time instant t

(1)
2 [trajectory 1 in Fig. 4(b)]. A

different situation is realized for vehicle 2 that follows vehicle
1 on the main road.

After vehicle 1 has begun to accelerate, vehicle 2 begins
also to accelerate at the downstream front of synchronized
flow at time instant t

(2)
1 [trajectory 2 in Fig. 4(b)]. However, a

slower moving vehicle merges from on-ramp lane onto the
main road between vehicles 1 and 2 [bold dotted vehicle
trajectory between vehicle trajectories 1 and 2 in Fig. 4(a)].

Because vehicles 1 and 2 move on single-lane road, vehicle
2 cannot overtake the vehicle merging from the on-ramp. As
a result, vehicle 2 must decelerate at time t

(2)
2 [trajectory 2

in Fig. 4(b)]. After the vehicle merging from the on-ramp
increases its speed considerably, vehicle 2 can continue
acceleration to the free flow speed at time instant t (2)

3 [trajectory
2 in Fig. 4(b)]. This effect leads to the occurrence of a speed

FIG. 5. Transformation of speed peak shown in Fig. 4(c) into
a growing speed wave of increase in speed propagating upstream
within synchronized flow: [(a)–(d)] Microscopic vehicle speeds along
trajectories as road location functions labeled by the same numbers
as those in Fig. 4(a). In (a)–(d), bold dashed-dotted curves denote a
growing speed wave of increase in speed within synchronized flow
as a function of road location.

peak at the downstream front of synchronized flow at the
bottleneck [Fig. 4(b)].

C. Overacceleration effect as the reason of growing speed wave
of increase in speed within synchronized flow

The speed peak initiates a speed wave of increase in
speed within synchronized flow. This speed wave propagates
upstream. This effect can be seen in Figs. 4(a), 4(d), and 5.
First, while the wave propagates upstream, the maximum speed
vmax within the wave does not change considerably [Fig. 4(d)].

Later, the speed wave begins to grow both in the amplitude
and in the space (Figs. 5–7). Finally, the growth of the
wave leads to an S → F transition at the bottleneck. The
S → F instability, i.e., the growth of the speed wave of a
local increase in speed within synchronized flow is caused
by the overacceleration effect. The growing speed wave of
increase in speed in synchronized flow can also be considered
“growing acceleration wave” in synchronized flow. To show
the effect of overacceleration on the S → F instability, we
consider vehicle trajectories 5–13 within the growing speed
wave of increase in speed (Fig. 6).

The overacceleration effect can be seen if we compare
the motion of vehicles 5 and 6 with vehicle 7 that follow
each other [Fig. 6(a)] within the speed wave of increase in
speed [Fig. 6(b)]. Whereas vehicle 6 follows vehicle 5 without
overacceleration, vehicle 7 accelerates while reaching the
speed that exceeds the speed of preceding vehicle 6 appreciably
[trajectories 6 and 7 in Fig. 6(b)]. Although vehicle 6 begins to
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FIG. 6. Effect of overacceleration on S → F instability shown
in Figs. 3(c)–3(e): (a) Fragment of vehicle trajectories in space and
time; bold dashed-dotted curves denote upstream propagation of the
growing wave of increase in speed within synchronized flow. [(b)–(d)]
Microscopic vehicle speed along trajectories as time functions labeled
by the same numbers as those in (a).

decelerate, nevertheless vehicle 7 accelerates. This accelera-
tion of vehicle 7 occurs under conditions (17) and (18). For this
reason, the acceleration of vehicle 7 is an example of the over-
acceleration effect [labeled “overacceleration” in Fig. 6(b)].

The effect of overacceleration is exhibited also in vehicle
9 that follows vehicle 8, vehicle 10 that follows vehicle 11, as
well as vehicle 13 that follows vehicle 12 [trajectories 9–13 in
Figs. 6(c) and 6(d)]. The subsequent effects of overacceleration
of different vehicles leads to the S → F instability, i.e., to a
growing wave of the increase in speed within synchronized
flow. The speed wave grows both in the amplitude and in
the space extension during its upstream propagation within
synchronized flow. The subsequent development of this traffic
flow instability caused by the overacceleration effect can be
seen in Fig. 7.

III. NUCLEATION NATURE OF S → F INSTABILITY
AT BOTTLENECKS

A. Random sequence of speed peaks at downstream front
of synchronized flow

There can be many speed peaks that occur randomly at
the downstream front of synchronized flow at the on-ramp

FIG. 7. Subsequent development of S → F instability, i.e., of
growing speed wave of increase in speed within synchronized flow
shown in Fig. 6(a): (a) Fragment of vehicle trajectories in space
and time; bold dashed-dotted curves in (a) denote the development
of speed wave of increase in speed within synchronized flow. (b)
Microscopic vehicle speeds along trajectories as time functions
labeled by the same numbers as those in (a); bold dashed curve
denotes the increase of the wave amplitude over time vmax(t). [(c)–(f)]
Microscopic vehicle speeds along trajectories as road location func-
tions labeled by the same numbers as those in (a); bold dashed-dotted
curves denote the development of growing speed wave of increase in
speed within synchronized flow as a function of road location.

bottleneck [Fig. 8(a)]. The physics of all speed peaks shown
in Fig. 8 is the same as discussed above (Sec. II B).

As an example, we consider a speed peak labeled “speed
peak A” in Fig. 8(a). Due to slow vehicle merging from the
on-ramp onto the main road [bold dotted vehicle trajectory
between vehicle trajectories 18 and 19 in Fig. 8(b)], vehicle
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FIG. 8. Speed peaks at downstream front of synchronized flow
at the on-ramp bottleneck: (a) Speed in space and time; fragment of
Fig. 3(a) for a time interval that begins after time instant at which
the S → F instability at bottleneck has occurred; one of the speed
peaks in (a) is denoted by “speed peak A.” (b) Fragment of vehicle
trajectories with a dissolving speed wave initiated by speed peak
A in (a) (the dissolving wave is denoted by dotted-dashed curves).
(c) Microscopic vehicle speed along trajectories as time functions
showing the emergence of speed peak A; vehicle trajectories are
labeled by the same numbers as those in (b). The values xon = 15 km
and x(e)

on = 15.3 km are, respectively, the beginning and the end of
the merging region of the on-ramp within which vehicles can merge
from the on-ramp onto the main road.

19 moving on the main road at time instant t
(2)
2 should change

acceleration at the downstream front of synchronized flow to
deceleration [Fig. 8(c)]; other time instants denoted in Fig. 8(c)
have also the same sense as those in Fig. 4(b). As a result of this
deceleration of vehicle 19, speed peak A emerges [Figs. 8(a)
and 8(c)].

B. Dissolving speed wave of increase in speed within
synchronized flow at bottleneck

Speed peak A initiates a speed wave of increase in speed
within synchronized flow that propagates upstream. However,
rather than an S → F instability occurring, as discussed in
Secs. II B and II C, the wave is fully dissolved about 0.3 km
upstream of the beginning of the on-ramp merging region at

FIG. 9. Dissolving speed wave within synchronized flow at the
on-ramp bottleneck related to Figs. 8(b) and 8(c): [(a)–(e)] Micro-
scopic speed along vehicle trajectories as road location functions.
Vehicle trajectories are labeled by the same numbers as those in
Fig. 8(b). Bold dashed-dotted curves denote the propagation of
dissolving speed wave in space.

x = 15 km. We call this wave a “dissolving speed wave” of
increase in speed in synchronized flow [Figs. 8(b) and 9].

The speed peak shown in Fig. 4, which initiates the S → F
instability (Secs. II B and II C), and the speed peak that does
not initiate an S → F instability differ in their amplitudes: The
speed within the peak shown in Fig. 4 is about 98 km/h; the
speed within peak A is considerably smaller (about 70 km/h).
All other speed peaks that emerge at the downstream front of
synchronized flow [Fig. 8(a)] exhibit also considerably smaller
amplitudes than that of the speed peak shown in Fig. 4. As a
result, all waves of increase in speed within synchronized flow
that the other speed peaks initiate are dissolving speed waves.
A dissolving speed wave of increase in speed in synchronized
flow can also be considered “dissolving acceleration wave” in
synchronized flow.

We have found that if the speed peak amplitude is equal to
or larger than some critical one, the speed peak is a nucleus
for an S → F instability (Secs. II B and II C). Contrarily, if
the peak amplitude is smaller than the critical one [as is the
case for all speed peaks in Fig. 8(a)], the speed peak is smaller
than a nucleus for an S → F instability: Instead of the S → F
instability, the peak initiates a dissolving wave of the increase
in speed within synchronized flow [Figs. 8(b) and 9].
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The physics of the nucleation nature of an S → F instability
is as follows. The overacceleration effect is able to overcome
speed adaptation between following other vehicles (speed
adaptation effect) only if the speed within the speed wave is
large enough: When the overacceleration effect is stronger than
the speed adaptation effect within the speed wave, as occurs
in Fig. 6, the S → F instability is realized. Otherwise, when
during the speed wave propagation the speed adaptation effect
suppresses the overacceleration within synchronized flow, the
speed wave dissolves over time, i.e., no S → F instability is
realized [Figs. 9(b)–9(e)].

IV. RANDOM TIME-DELAYED TRAFFIC BREAKDOWN
AS RESULT OF S → F INSTABILITY

As already found in Refs. [42–44], there is a random
time delay T (B) between the beginning of a simulation
realization and the time instant at which traffic breakdown
(F → S transition) occurs, resulting in the emergence of
a congested pattern at the bottleneck. In simulations, the
following condition for the pattern formation resulting from
the F → S transition at the bottleneck has been used: The
averaged synchronized flow speed vsyn < 70 km/h measured
1 km upstream of the bottleneck remains during a time interval
�t > 4 min. At chosen flow rates qon and qin, the congested
pattern is a WSP (Fig. 10).

The microscopic nature of a random time delay of traffic
breakdown at the bottleneck revealed below allows us to

FIG. 10. Random time delay of traffic breakdown (F → S tran-
sition) at on-ramp bottleneck: [(a)–(d)] Speed in space and time for
four different simulation realizations (runs) presented by regions with
variable shades of gray (in white regions the speed is equal to or higher
than 110 km/h and in black regions the speed is zero). Different
realizations are made at the same model parameters, however, at
different initial values r in formulas (9) and (10) at time instant t = 0.
Realization 1 in (a) is a fragment of Fig. 3(b), i.e., realization 1 is
the simulation realization studied in Figs. 3–9. Time delays of traffic
breakdown T (B) in different simulation realizations 1–4 are T

(B)
1 = 19

min (a), T (B)
2 = 35 min (b), T (B)

3 = 7 min (c), and T
(B)

4 = 13 min (d).
qon = 360 vehicles/h, qin = 1406 vehicles/h.

FIG. 11. Traffic breakdown (F → S transition) at on-ramp bottle-
neck that leads to the formation of WSP1 in Fig. 10(a): (a) Fragments
of vehicle trajectories related to Fig. 10(a); bold dashed-dotted
curve denotes the propagation of the upstream front of synchronized
flow (labeled “front of F → S transition”) in space and time.
[(b)–(d)] Microscopic speed along vehicle trajectories as road
location functions. Vehicle trajectories are labeled by the same
numbers as those in (a).

understand that and how an S → F instability governs traffic
breakdown. However, we should understand microscopic
features of traffic breakdown at the bottleneck (Sec. IV A).

A. Microscopic features of traffic breakdown
(F → S transition) at bottleneck

We have found that in each of the simulation realizations
(Fig. 10), traffic breakdown (F → S transition) exhibits the
following common microscopic features:

(i) Vehicles that merge onto the main road from the on-ramp
[vehicle trajectories labeled by bold dotted curves in Fig. 11(a)]
force vehicles moving on the main road to decelerate strongly.
This results in the formation of a speed disturbance of
decrease in speed. The upstream front of the disturbance
begins to propagate upstream of the bottleneck [labeled “speed
disturbance” on vehicle trajectory 26 in Fig. 11(b)].

(ii) Due to speed adaptation of vehicles following this
decelerating vehicle on the main road [vehicle trajectories
27–31 in Figs. 11(a), 11(c), and 11(d)], the synchronized flow
region appears that the upstream front propagates upstream
(labeled “front of F → S transition” in Fig. 11).
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(iii) After traffic breakdown has occurred, many speed
peaks appear in the synchronized flow at the bottleneck
(not shown). The microscopic features of these peaks are
qualitatively the same as those shown in Figs. 8(a) and 8(c)].
In particular, the speed peaks lead to formation of a speed
wave of increase in speed that propagates upstream within the
synchronized flow. During a long-enough time interval [time
interval of the existence of WSP1 shown in Fig. 10(a)], all
speed waves are dissolving ones. The dissolving speed waves
(not shown) exhibit the same microscopic features as those
shown in Figs. 8(b) and 9.

B. Microscopic features of sequence of F → S → F transitions
at bottleneck

We have found that during the time delay of traffic
breakdown 0 < t < T

(B)
1 [Figs. 10(a) and 12(a)] there is

a permanent spatiotemporal competition between the speed
adaptation effect supporting an F → S transition and the
overacceleration effect supporting an S → F instability that
counteracts the emergence of synchronized flow. This compe-
tition results in the occurrence of a permanent speed decrease
in a neighborhood of the bottleneck that we call “permanent
speed disturbance” at the bottleneck. There can be two cases
of this competition:

(i) There is a noticeable time lag between the beginning
of an F → S transition due to the speed adaptation and the
beginning of an S → F instability due to overacceleration that
prevents the formation of a congested pattern at the bottleneck;
we call this “a sequence of F → S → F transitions” at the
bottleneck.

(ii) There is a spatiotemporal “overlapping” of the speed
adaptation and overacceleration effects (Sec. IV C).

One of the sequences of the F → S → F transitions within
the permanent speed disturbance at the on-ramp bottleneck is
denoted by dashed-dotted curves in Figs. 12(a) and 12(c). An
F → S transition and a return S → F transition that build the
sequence of F → S → F transitions are explained as follows
[Figs. 12(b)–12(e) through Fig. 16].

1. F → S transition

After several slow moving vehicles have merged from the
on-ramp onto the main road [bold dotted vehicle trajectories
in Fig. 13(a)], the following vehicles on the main road have to
decelerate strongly due to the speed adaptation effect [vehicle
trajectories 42 and 43 in Figs. 13(a)–13(c)]. This results
in the upstream propagation of synchronized flow upstream
of the bottleneck, i.e., an F → S transition occurs [vehicle
trajectories 42–46 in Fig. 13(a)–13(f)]. Microscopic features of
this F → S transition [in particular, the upstream propagation
of the upstream front of synchronized flow labeled “front of
F → S transition” in Fig. 13(a)] are qualitatively the same as
those shown in Fig. 11.

Moreover, after the F → S transition has occurred, in the
synchronized flow that has emerged at the bottleneck speed
peaks appear [speed peaks 1 and 2 in Figs. 14(b) and 14(d)]
[see item (iii) of the common microscopic features of traffic
breakdown of Sec. IV A]. The physics of the speed peaks is
the same as that discussed in Secs. II B and III A. The speed
peaks lead to the emergence of dissolving speed waves in the

FIG. 12. Simulations of F → S → F transitions within a perma-
nent speed disturbance at on-ramp bottleneck: (a) Speed in space
and time presented by regions with variable shades of gray (in white
regions the speed is equal to or higher than 100 km/h, and in black
regions the speed is equal to 20 km/h) within time delay of traffic
breakdown related to Fig. 10(a). [(b) and (c)] Speed in space and time
(b) and the same speed data presented by regions with variable shades
of gray (c) for a short time interval in (a). (d) Fragment of vehicle
trajectories in space and time related to [(b) and (c)]. (e) Microscopic
vehicle speeds along trajectories as time functions labeled by the
same numbers as those in (d).

synchronized flow (Fig. 14); the dissolving waves have also
qualitatively the same microscopic features as shown in Fig. 9.

2. Return S → F transition due to S → F instability

A crucial difference of the case under consideration
(Fig. 12) with traffic breakdown shown in Fig. 11 becomes
clear when we consider Fig. 15. We find that synchronized
flow exists for a few minutes only: A speed peak (speed
peak 3 in Fig. 15) occurs at the downstream front of this
synchronized flow that initiates an S → F instability at the
bottleneck. The S → F instability interrupts the formation of
a congested pattern at the bottleneck, i.e., the above-mentioned
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FIG. 13. Simulations of an F → S transition within a permanent
speed disturbance (labeled “permanent disturbance”) at on-ramp
bottleneck: (a) Fragment of vehicle trajectories in space and time
related to Figs. 12(b) and 12(c). [(b)–(f)] Microscopic vehicle speeds
along trajectories as road location functions labeled by the same
numbers as those in (a).

condition for the pattern formation resulting from the F → S
transition at the bottleneck is not satisfied.

Indeed, due to the S → F instability, rather than a WSP oc-
curring, as shown in Fig. 11, a localized region of synchronized
flow departs from the bottleneck: The downstream front and the
upstream front of this synchronized flow [labeled “downstream
front” and “upstream front” in Figs. 12(c) and 12(d) and 16(a)]
propagate upstream from the bottleneck. While propagating
upstream from the bottleneck, synchronized flow dissolves
over time. Due to the occurrence of such a dissolving
synchronized flow, the minimum speed vmin(t) within the
permanent disturbance first decreases and then increases over
time [trajectories 32–41 in Fig. 12(e)].

The physics of the S → F instability is the same as disclosed
in Sec. II C. In particular, the S → F instability leads to a
growing wave of increase in speed within synchronized flow
(labeled “growing speed wave” in Fig. 15). The growth of
the speed wave is realized due to an overacceleration effect

FIG. 14. Simulations of speed peaks 1 and 2 with resulting dis-
solving speed waves 1 and 2 of increase in speed within synchronized
flow at on-ramp bottleneck: (a) Fragment of vehicle trajectories in
space and time related to Figs. 12(b) and 12(c). [(b)–(g)] Microscopic
vehicle speeds along trajectories as road location functions labeled
by the same numbers as those in (a).

(Fig. 16) whose physics is the same as that discussed in
Sec. II C.

C. Spatiotemporal “overlapping” speed adaptation
and overacceleration effects

During the time delay 0 < t < T
(B)

1 of the breakdown
[Fig. 10(a)], there are also time intervals within which there
is no noticeable time lag between the beginning of the F → S
transition and the S → F instability due to overacceleration. In
this case, rather than to distinguish a sequence of F → S → F
transitions within the permanent speed disturbance at the
bottleneck, we find a spatiotemporal “overlapping” of the
speed adaptation and overacceleration effects.

In this case (Figs. 17–19), there is an upstream front of
the permanent disturbance within which vehicles on the main
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FIG. 15. Simulations of a growing speed wave of increase in
speed within synchronized flow at on-ramp bottleneck (region
bounded by bold dashed-dotted curves labeled “growing speed
wave”): (a) Fragment of vehicle trajectories in space and time related
to Figs. 12(b) and 12(c). [(b)–(g)] Microscopic vehicle speeds along
trajectories as road location functions labeled by the same numbers as
those in (a). A dissolving speed wave (region bounded by bold dashed-
dotted curves labeled “dissolving speed wave 2”) is a continuation of
the dissolving speed wave 2 shown in Figs. 14(e)–14(g).

road decelerate to a smaller speed due to slower moving
vehicles that merge from the on-ramp. Vehicles upstream of
the upstream front of the disturbance move at their maximum
free flow speed vfree. There is also a downstream front of the
disturbance within which vehicles accelerate to the maximum
free flow speed vfree (Fig. 17). We have found that the
distribution of the speed within the permanent disturbance
exhibits a complex spatiotemporal dynamics:

(i) The value of the minimum speed vmin within the
disturbance changes randomly over time [Fig. 17(d)].

(ii) This speed minimum occurs randomly at different road
locations (Fig. 18).

(iii) There can be several speed maxima within the distur-
bance whose locations are also change randomly (Fig. 18).

FIG. 16. Simulations of overacceleration effect that leads to
S → F instability, i.e., to the growing speed wave of increase in
speed within synchronized flow at on-ramp bottleneck: (a) Fragment
of vehicle trajectories in space and time related to Figs. 12(b)–12(d).
[(b)–(e)] Microscopic vehicle speeds along trajectories as road
location functions [(b) and (c)] and time functions [(d) and (e)] labeled
by the same numbers as those in (a).

This complex dynamics of the permanent speed disturbance
at the bottleneck is explained as follows. As in the fully
developed synchronized flow [Fig. 8(a)], within the permanent
speed disturbance there is a sequence of speed peaks that occur
randomly at the downstream front of the permanent speed
disturbance [labeled “speed peak 1” and “speed peak 2” in
Figs. 18(a) and 18(c)]. The physics of these speed peaks is the
same as that already explained in Sec. II B.

Due to the speed peaks, regions of increase in speed appear
propagating upstream within the disturbance. Within the
regions of speed increase, the overacceleration effect occurs
that prevents the upstream propagation of the upstream front
of synchronized flow due to the speed adaptation. Examples
of the overacceleration effect are shown in Fig. 19. Vehicle
63 accelerates first and then begins to decelerate strongly
[Fig. 19(a); see also speed peak 1 shown in Fig. 18(a)].
However, the following vehicle, vehicle 64, continues to
accelerate even when vehicle 63 decelerates strongly [labeled
“overacceleration” in Fig. 19(a)]. In another example, the
following vehicle 66 begins to accelerate when the preceding
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FIG. 17. Simulations of dynamics of permanent disturbance at
on-ramp bottleneck: [(a) and (b)] Speed in space and time (a) and the
same speed data presented by regions with variable shades of gray
(in white regions the speed is equal to or higher than 100 km/h, and
in black regions the speed is equal to 20 km/h) (b) for a short time
interval related to t < T

(B)
1 in Fig. 10 (a). (c) Fragment of vehicle

trajectories in space and time. (d) Microscopic vehicle speeds along
trajectories as time functions labeled by the same numbers as those
in (c).

vehicle 65 starts to decelerate [labeled “overacceleration” in
Fig. 19(b)].

These overacceleration effects can be considered short time
S → F instabilities that increase the speed within the perma-
nent speed disturbance. These short time S → F instabilities
prevent a continuous propagation of the upstream front of
the permanent speed disturbance, i.e., they prevent traffic
breakdown at the bottleneck. Therefore, rather than traffic
breakdown [Figs. 11(a) and 11(d)] resulting in the formation of
WSP1 [Fig. 10(a)], the permanent speed disturbance persists at
the bottleneck [Figs. 17(a) and 17(d)]. Thus, the competition
between speed adaptation and overacceleration determines
a random time delay of traffic breakdown at the bottleneck
independent on whether sequences of F → S → F transitions
(Sec. IV B) can be distinguished or not within the permanent
speed disturbance at the bottleneck.

V. GENERAL CHARACTER OF EFFECT OF S → F
INSTABILITY ON NUCLEATION NATURE

OF TRAFFIC BREAKDOWN

In Sec. IV, we have found that an S → F instability is
the origin of sequences of F → S → F transitions at the
bottleneck. In its turn, the F → S → F transitions is the reason

FIG. 18. Simulations of the occurrence of speed peaks and their
evolution within a permanent disturbance at on-ramp bottleneck:
[(a)–(e)] Microscopic vehicle speeds along trajectories as road
location functions labeled by the same numbers as those in Fig. 17(c).

of the nucleation nature of traffic breakdown. In other words,
the S → F instability governs the nucleation character of traffic
breakdown at the bottleneck.

However, when the on-ramp inflow rate qon increases
considerably, no S → F instability is observed within con-
gested patterns (WSPs) that emerge after traffic breakdown
has occurred at the bottleneck [Figs. 20(a)–20(d)] [112]. This
is in contrast with the WSPs shown in Fig. 10.

FIG. 19. Simulations of overacceleration within a permanent
disturbance at on-ramp bottleneck: [(a) and (b)] Microscopic vehicle
speeds along trajectories as road location functions labeled by the
same numbers as those in Fig. 17(c).
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FIG. 20. Random time delay of traffic breakdown (F → S tran-
sition) at on-ramp bottleneck at a larger on-ramp inflow rate qon =
480 vehicles/h than that in Fig. 10: [(a)–(d)] Speed in space and
time for four different simulation realizations (runs) presented by
regions with variable shades of gray (in white regions the speed is
equal to or higher than 110 km/h, and in black regions the speed
is zero). (e) Speed in space and time presented by regions with
variable shades of gray illustrating F → S → F transitions during
time delay of traffic breakdown related to realization 1 in (a). Time
delays of traffic breakdown T (B) in different simulation realizations
1–4 are T

(B)
1 = 16 min (a), T

(B)
2 = 11 min (b), T

(B)
3 = 6 min (c),

and T
(B)

4 = 20 min (d). The flow rate in free flow upstream of the
bottleneck is the same as that in Fig. 10: qin = 1406 vehicles/h.

Due to the increase in qon, the mean speed of synchronized
flow in WSPs shown in Figs. 20(a)–20(d) that emerge at
the bottleneck after traffic breakdown has occurred becomes
smaller than the mean speed of synchronized flow in WSPs
shown in Figs. 10(a)–10(d). We have found that also in the
case of the WSPs shown in Figs. 20(a)–20(d) there are many
random speed peaks at the downstream front of synchronized
flow; the speed peaks (not shown) are qualitatively the same
as those in Fig. 8. However, due to a smaller mean speed of
synchronized flow in the WSPs, no S → F instability can be
initiated by these speed peaks during the whole time of the
observation of traffic flow Tob = 30 min in Fig. 20: The speed
peaks initiate only dissolving speed waves in synchronized
flow (not shown) that are qualitatively similar to those shown
in Figs. 8(b) and 9 found for a smaller on-ramp inflow rate.

Although there are no S → F instabilities within the WSPs,
we have found random time delays of traffic breakdown at the
bottleneck [Figs. 20(a)–20(d)] that exhibit the same features
as those in Figs. 10(a)–10(d). We have also found that there
are sequences of F → S → F transitions that are the reason
for the existence of a random time delay of traffic breakdown.
Each of the sequences of F → S → F transitions [one of them
is denoted by dashed-dotted curves in Fig. 20(e)] exhibits
qualitatively the same physical features as those found out
in Sec. IV B.

In other words, the result of this article that the S → F
instability governs the metastability of free flow with respect to
traffic breakdown at the bottleneck exhibits a general character.
The physics of this general result is as follows.

(i) There are sequences of F → S → F transitions at the
bottleneck (Sec. IV B). On average, the F → S → F transi-
tions cause a permanent speed disturbance, i.e., a permanent
decrease in speed in free flow localized at the bottleneck.
The permanent speed disturbance exhibits a complex dynamic
behavior in space and time.

(ii) When a decrease in speed within the permanent speed
disturbance in free flow becomes randomly equal to or larger
than some critical decrease in speed, the resulting F → S
transition, i.e., the upstream propagation of the upstream
front of the synchronized flow cannot be suppressed by the
S → F instability. In this case as considered in Sec. IV A,
rather than a sequence of F → S → F transitions, a congested
pattern emerges at the bottleneck (WSPs in Figs. 10 and 20).
Otherwise, when the local decrease in speed in free flow at the
bottleneck is smaller than the critical one, the S → F instability
interrupts the development of the F → S transition: Rather
than the congested pattern, a sequence of the F → S → F
transitions occurs at the bottleneck.

(iii) There can be a time interval during which any decrease
in speed within the permanent speed disturbance in free flow
at the bottleneck is smaller than the critical one. In this case,
the S → F instability interrupts the development of each of the
F → S transitions. This time interval is the time delay T (B) of
traffic breakdown (Figs. 10 and 20).

(iv) The time delay of traffic breakdown [Figs. 10
and 20(a)–20(d)] is a random value because the S → F
instability exhibits the nucleation nature: The S → F insta-
bility occurs only if a large enough initial increase in speed,
which is equal to or larger than a critical increase in speed,
appears randomly within the emergent synchronized flow at
the bottleneck.

(v) The critical increase in speed in synchronized flow, at
which an S → F instability occurs, depends on the critical
decrease in speed within the permanent speed disturbance in
free flow at the bottleneck, at which traffic breakdown occurs:
When the S → F instability cannot interrupt the development
of the F → S transition, a congested pattern is formed at the
bottleneck.

If the on-ramp inflow rate qon increases, while the flow rate
on the main road upstream of the bottleneck qin remains, we
have found the following effects:

(1) Within synchronized flow of a congested pattern at the
bottleneck, the probability of the occurrence of the S → F
instability decreases. Indeed, in contrast with the cases shown
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FIG. 21. Classical traffic flow instability (a) [1–26] versus S → F
instability of three-phase theory [(b) and (c)]: (a) Vehicle trajectories
as time functions showing the well-known growing wave of speed
reduction caused by classical traffic flow instability with simulations
of optimal velocity model by Bando et al. [18,113]. [(b) and (c)]
Vehicle trajectories as time functions (b) (taken from Fig. 7) and in
space and time showing the growing wave of speed increase caused
by S → F instability (taken from Fig. 3).

in Figs. 10(a)–10(d), there is no S → F instability within WSPs
in Figs. 20(a)–20(d).

(2) The mean time delay of traffic breakdown becomes
shorter: The mean value of the time delay of traffic breakdowns
shown in Fig. 20 is shorter than that in Fig. 10.

VI. DISCUSSION

A. Classical traffic flow instability versus S → F instability
of three-phase theory

The basic difference between the classical traffic flow
instability [1–26] and an S → F instability of three-phase
theory is as follows: The classical traffic instability is a growing
wave of local decrease in speed in free flow [Fig. 21(a)] [1–26].
In contrast, the S → F instability is a growing wave of local
increase in speed in synchronized flow [Figs. 21(b) and 21(c)].

The classical traffic flow instability [1–26] should explain
traffic breakdown through the driver reaction time (time delay

in driver overdeceleration). However, this classical traffic flow
instability leads to a phase transition from free flow to a
wide moving jam (F → J transition) [26–30]. The classical
instability has been incorporated in a huge number of traffic
flow models [26,27]. Contrary to the classical traffic flow
instability, in real field traffic data, traffic breakdown is
an F → S transition. A more detailed explanation why the
classical traffic flow instability have failed to explain real traffic
breakdown can be found in [27].

However, it should be noted that the classical traffic instabil-
ity [1–26] has also been used in three-phase theory to explain a
growing wave of local decrease in speed within synchronized
flow leading to the emergence of a wide moving jam(s) in
synchronized flow (S → J transition) [Fig. 1(d)] [29,33]. Thus
in three-phase theory, the emergence of wide moving jams is
realized through a sequence of F → S → J transitions [29,33].

B. Traffic breakdown without overacceleration

When in (4) the probability of overacceleration pa = 0,
there is no overacceleration in the KKSW CA model. In this
case, no S → F instability is realized. For this reason, we
find that congested traffic emerges at the bottleneck without
any delay. The downstream front of the pattern is fixed at
the bottleneck [Figs. 22(a) and 22(b)]. When we decrease
the flow rate on the main road, congested traffic occurs also
without any time delay; due to smaller flow rate upstream,
the upstream front of this congested traffic only propagates
slower [Figs. 22(c) and 22(d)]. Because the downstream front
of the congested traffic is fixed at the bottleneck we can call it
“synchronized flow.”

In other words, features of the synchronized flow shown
in Figs. 22(a)–22(d) contradict the nucleation nature of traffic
breakdown (F → S transition) found in real field traffic data.
Thus overacceleration is needed to simulate the nucleation
nature of an F → S transition of real traffic.

The absent of overacceleration (pa = 0) does not affect the
slow-of-start rule used in the KKSW CA model. Therefore, we
can expect that an S → J instability can occur within synchro-
nized flow leading to the emergence of a wide moving jam(s).
Indeed, when we increase the on-ramp inflow rate, so the mean
speed in synchronized flow decreases considerably, moving
jams emerge in this dense synchronized flow [Fig. 22(e)].

C. Traffic breakdown without time delay of overacceleration

The necessity of the existence of a finite time delay
in overacceleration to simulate an S → F instability and,
therefore, the nucleation features of traffic breakdown becomes
more clear if we assume that overacceleration occurs with
probability pa = 1, i.e., without any time delay.

Because such a limit case is not attained with the KKSW
CA model (2)–(12), we should make the following changes in
the model: When pa = 1, model step (c) [Eq. (4)] is satisfied
with probability 1. In step (f) [Eq. (7)], rather than Eq. (10),
the following formula is used:

r < p. (19)

We have found that when overacceleration occurs without
time delay, such overacceleration prevents speed adaptation
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FIG. 22. Simulations of traffic breakdown at on-ramp bottleneck
with the KKSW CA model in which either the probability of
overacceleration pa = 0 [(a)–(e)] (Sec. VI B) or the probability of
overacceleration pa = 1 (f) (Sec. VI C): [(a), (c), (e), and (f)] Speed
in space and time presented by regions with variable shades of gray
(in white regions the speed is equal to or higher than 130 km/h
[(a) and (c)] or 120 km/h [(e) and (f)], in black regions the speed
is equal to 30 km/h [(a) and (c)] or zero [(e) and (f)]. [(b) and
(d)] Microscopic vehicle speeds along one of the vehicle trajectories
moving within patterns in [(a) and (c)], respectively. qon = 360
[(a)–(d) and (f)] and 900 (e) vehicles/h, qin = 1800 (f), 1406 [(a), (b),
and (e)], and 1125 vehicles/h [(c) and (d)]. Other model parameters
are the same as those given in caption to Fig. 2.

within 2D states of synchronized flow. Therefore, synchro-
nized flow states are not realized. In other words, there is
no S → F instability and no time-delayed F → S transition
in this model. In general, such a model exhibits qualitatively
the same features of traffic breakdown at the bottleneck as
those of the NaSch CA model [110,111]: Traffic breakdown
is governed by the classical traffic flow instability of the GM
model class (Sec. VI A), leading to a well-known time-delayed
F → J transition [Fig. 22(f)].

D. General microscopic features of the S → F instability

Microscopic features of the S → F instability derived above
based on a study of the KKSW CA model exhibit general
character, i.e., they are independent on specific properties of
the KKSW CA model. To prove this statement, we show that
qualitatively the same features of the S → F instability can
be derived with simulations of the Kerner-Klenov stochastic
three-phase model of Refs. [42,44,49]. We use a discrete-in-
space model version of Ref. [49] for a single lane road with an
on-ramp bottleneck (Appendix).

1. Nucleation features of S → F instability

(i) As in Figs. 3(a) and 3(b), after traffic breakdown (F → S
transition) has occurred at the bottleneck, synchronized flow
emerges whose downstream front is localized at the bottleneck
[Figs. 23(a) and 23(b)]. A random sequence of speed peaks
appears at the downstream front of synchronized flow at the
bottleneck [Fig. 23(c); compare with Fig. 8(a)]. The speed
peaks are disturbances of increase in speed in synchronized
flow within which the microscopic (single-vehicle) speed is
higher than the average synchronized flow speed [Figs. 23(d)
and 23(e); compare with Figs. 4(b) and 8(c)].

(ii) As in Fig. 8(b), small speed peaks (small disturbances
of increase in speed) in synchronized flow lead to dissolving
speed waves of increase in speed in synchronized flow
[“dissolving speed wave” in Fig. 23(c)]. In this case, no S → F
instability occurs.

(iii) Only when a speed peak with a large-enough increase
in speed occurs randomly at the downstream front of syn-
chronized flow at the bottleneck does the speed peak initiate
the S → F instability: A growing speed wave of increase in
speed occurs in synchronized flow whose growth leads to
an S → F transition [“growing speed wave” in Figs. 23(c)
and 23(f); compare with Fig. 3(e)]. As shown with simulations
of the KKSW CA model in Fig. 6, simulations with the
Kerner-Klenov model confirm (not shown) that the S → F
instability occurs due to the overacceleration effect.

The behavior of disturbances of increase in speed in
synchronized flow [items (ii) and (iii)] proves the nucleation
nature of the S → F instability.

2. S → F instability as origin of nucleation nature of traffic
breakdown at highway bottlenecks

As found in Secs. IV and V based on simulations with the
KKSW CA model, simulations with the Kerner-Klenov model
show also that an S → F instability tries to prevent an F → S
transition in free flow at the bottleneck as follows (Figs. 24
and 25).

(i) When the on-ramp inflow qon is switched on [t > 0 in
Figs. 24(a) and 24(b)], vehicles that merge from the on-ramp
onto the main road cause a speed disturbance of decrease in
speed in free flow on the main road in the neighborhood of the
bottleneck. The following vehicles have to decelerate while
adapting their speed a smaller speed within the disturbance.
Due to this speed adaptation effect, synchronized flow emerges
on the main road upstream at the bottleneck. See an example of
the beginning of a such F → S transition at time instant tFS in
Fig. 24(d). The mean speed in this emergent synchronized flow
is smaller the larger the initial speed disturbance of decrease
in speed in free flow.

(ii) Within the downstream front of the emergent synchro-
nized flow, speed peaks appear. Small speed peaks cause
dissolving waves of increase in speed in the synchronized
flow [“dissolving speed wave” in Figs. 25(a) and 25(b)].
When a large-enough speed peak occurs, the peak initiates
a growing wave of increase in speed within the synchronized
flow [“growing speed wave” in Fig. 25(b)–25(f)]: At a time
instant [labeled tSF in Fig. 24(d)] an S → F instability is
realized at the bottleneck. This S → F instability destroys
the emergent synchronized flow. As a result, the region of
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FIG. 23. Simulations of speed peaks at downstream front of
synchronized flow and S → F instability at on-ramp bottleneck
on single-lane road with the Kerner-Klenov model (Tables I–V of
Appendix): [(a) and (b)] Speed in space and time (a) and the same
data presented by regions with variable shades of gray (in white
regions the speed is equal to or higher than 100 km/h, in black
regions the speed is zero) (b). (c) Speed in space and time for time
t > T (B) within synchronized flow of WSP; two of the speed peaks
in (c) are denoted by “speed peak B” and “speed peak C”. [(d) and
(e)] Microscopic (single-vehicle) speeds along vehicle trajectories
as time-functions showing speed peak B (d) leading to a dissolving
speed wave [labeled “dissolving speed wave” in (b)] and speed peak C
(e) initiating a growing speed wave [labeled “development of S → F
instability: growing speed wave” in (c)]. The physics of speed peaks
B and C is the same as that for speed peaks shown in Figs. 8(a)
and 8(c) and 4(b): Vehicles shown in (d) and (e), which begin to
accelerate at the downstream front of synchronized flow, have to
interrupt their acceleration and to decelerate due to vehicles merging
from the on-ramp onto the main road. The valies xon = 10 km and
x(e)

on = 10.3 km are, respectively, the beginning and the end of the
merging region of the on-ramp. (f) Fragment of vehicle trajectories
in space and time related to (a) and (b) (each fifth vehicle is shown);
bold dashed-dotted curves in (f) denote the development of S → F
instability in synchronized flow. F, free flow; S, synchronized flow;
and WSP, widening synchronized flow pattern. qon = 170 vehicles/h,
qin = 2278 vehicles/h. Other model parameters are given in Tables VI
and VII.

FIG. 24. Simulations of F → S → F transitions within a perma-
nent speed disturbance at on-ramp bottleneck on single-lane road
with the Kerner-Klenov model (Tables I–V of Appendix): [(a) and
(b)] Speed in space and time (a) and the same data presented by
regions with variable shades of gray (b) (in white regions the speed
is equal to or higher than 105 km/h, in black regions the speed is
equal to 0 km/h). [(c) and (d)] Speed in space and time (c) and the
same data presented by regions with variable shades of gray (d) (in
white regions the speed is equal to or higher than 100 km/h, in black
regions the speed is equal to 20 km/h) for a short time interval in (a)
and (b). (e) Fragment of vehicle trajectories in space and time related
to (c) and (d). (f) Microscopic vehicle speeds along trajectories as
time functions labeled by the same numbers as those in (e). In (d)
and (e), dashed-dotted lines denote emergent synchronized flow that
dissolves due to S → F instability (labels “downstream front” and
“upstream front” show boundaries of the synchronized flow region).
F, free flow; WSP, widening synchronized flow pattern. qon = 320
vehicles/h, qin = 2000 vehicles/h. Other model parameters are given
in Tables VI and VII.

synchronized flow dissolves and free flow recovers at the
bottleneck. In accordance with Sec. IV B, the sequence of
the emergence of the synchronized flow (the beginning of
an F → S transition) with the subsequent S → F instability
can be considered F → S → F transitions at the bottleneck
[Figs. 24(c)–24(f); compare with Figs. 12(b)–12(e)]. Due to
many sequences of F → S → F transitions, local permanent
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FIG. 25. Microscopic vehicle speeds as road location-functions
related to Fig. 24(e): Some of the vehicles moving at different times
[that increase from (a) to (f), respectively, within a time interval
between vehicles 5 and 8 shown in Fig. 24(e)] propagate through the
emergent synchronized flow that is denoted by dashed-dotted lines
in Figs. 24(d) and 24(e). Dissolving and growing speed waves of
increase in speed within the emergent synchronized flow are denoted
by bold dashed-dotted curves labeled “dissolving speed wave” and
“growing speed wave,” respectively. Vehicle 6 in (c) is the same as
vehicle 6 in Fig. 24(e).

speed disturbance is realized in free flow at the bottleneck [time
interval 0 < t < T (B) in Fig. 24(b); compare with Fig. 12(a)].

(iii) As long as F → S → F transitions occur, no traffic
breakdown (F → S transition) with the subsequent formation
of congested pattern is realized at the bottleneck [time interval
0 < t < T (B) in Fig. 24(b); compare with Fig. 12(a)] during
the time interval 0 < t < T

(B)
1 .

(iv) The S → F instability exhibits the nucleation nature.
Therefore, there can be a random time instant t = T (B)

at which no S → F instability occurs that can prevent the
development of an F → S transition. In this case, the F → S
transition leads to the formation of the congested pattern [WSP
in Figs. 24(a) and 24(b) at t > T (B); compare with Fig. 12(a)
at t > T

(B)
1 ].

Thus as with simulations with the KKSW CA model
(Secs. II–V), simulations with the Kerner-Klenov model
(Figs. 23–25) prove that small disturbances of decrease in

speed in free flow at the bottleneck are destroyed through the
S → F instability. In contrast, great-enough disturbances of
decrease in speed in free flow cannot be destroyed, resulting
in an F → S transition with the formation of the congested
pattern at the bottleneck. This explains why, through the
nucleation character of the S → F instability caused by the
overacceleration effect, free flow at the bottleneck is in a
metastable state with respect to the F → S transition and there
is a random time delay T (B) of this F → S transition.

E. Conclusions

The S → F instability exhibits the following general mi-
croscopic features, which are qualitatively identical ones in
simulations with the KKSW CA and Kerner-Klenov stochastic
traffic flow models in the framework of the three-phase theory.

1. Summary of nucleation features of S → F instability

(i) An initial speed disturbance of increase in speed within
synchronized flow (S) at the bottleneck can transform into a
growing speed wave of increase in speed (growing acceleration
wave) that propagates upstream within synchronized flow and
leads to free flow (F) at the bottleneck. This S → F instability
is caused by the overacceleration effect.

(ii) The S → F instability can occur if there is a finite time
delay in overacceleration.

(iii) Due to the S → F instability, the downstream front of
the initial synchronized flow begins to move upstream from
the bottleneck, while free flow appears at the bottleneck.

(iv) In simulations, the initial speed disturbance of increase
in speed that initiates the S → F instability at the bottleneck
occurs at the downstream front of synchronized flow. We call
the initial speed disturbance a “speed peak.”

(v) There can be many speed peaks with random amplitudes
that occur randomly over time at the downstream front of
synchronized flow. Only when a large-enough speed peak
appears does the S → F instability occur. Speed peaks of
smaller amplitude cause dissolving speed waves of increase
in speed (dissolving acceleration waves) in synchronized flow:
All these waves dissolve over time while propagating upstream
within synchronized flow. As a result, the synchronized flow
persists at the bottleneck. Thus, the S → F instability exhibits
the nucleation nature.

2. S → F instability as origin of nucleation nature of traffic
breakdown

The S → F instability in synchronized flow at the bot-
tleneck governs traffic breakdown (i.e., F → S transition),
resulting in the formation of a congested pattern at the
bottleneck as follows.

(i) A sequence of F → S → F transitions that interrupts
the formation of a congested pattern at the bottleneck. When
an F → S transition begins to develop, i.e., the upstream front
of synchronized flow begins to propagate upstream from the
bottleneck, an S → F instability can randomly occur. Due to
the S → F instability, free flow appears at the bottleneck. As a
result, the downstream front of the synchronized flow departs
upstream from the bottleneck. This results in the dissolution of
the synchronized flow, i.e., in the interruption of the formation
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TABLE I. Discrete stochastic model [49].

vn+1 = max(0, min(vfree,ṽn+1 + ξn,vn + aτ,vs,n)),
xn+1 = xn + vn+1τ ,
ṽn+1 = min(vfree,vs,n,vc,n),

vc,n =
{
vn + �n at gn � Gn,

vn + anτ at gn > Gn,

�n = max(−bnτ, min(anτ, v�,n − vn)),
gn = x�,n − xn − d ,
vfree, a, d , and τ are constants.

of a congested pattern due to the F → S transition. We call
this effect the sequence of F → S → F transitions.

(ii) Metastability of free flow with respect to traffic break-
down (F → S transition) and a random time delay to traffic
breakdown. There can be many sequences of F → S →
F transitions. Each of them interrupts the formation of a
congested pattern at the bottleneck. This explains the existence
of a time delay of traffic breakdown: Rather than the congested
pattern appears at the bottleneck, the sequences of F → S → F
transitions result in a narrow region of decrease in speed in free
flow localized at the bottleneck (called a “permanent speed
disturbance” in free flow at the bottleneck). The time delay of
traffic breakdown (F → S transition) T (B) is a random value:
There can be a time instant T (B) at which, after an F → S
transition begins to develop, there is no S → F instability
that can prevent the subsequent development of the F → S
transition. This F → S transition leads to the formation of a
congested pattern at the bottleneck.

Microscopic qualitative features of the S → F instability
exhibit general character: These features are independent on
specific properties of a stochastic traffic flow model that
incorporates hypotheses of the three-phase theory.

An empirical evidence of S → F transitions at highway
bottlenecks have been proven in Ref. [37]. However, real
field traffic data studied in Ref. [37] (as well as in all other
publications known to the author) are macroscopic traffic data.
To prove the microscopic theory developed in this article
with real field traffic data, measurements of microscopic
(single-vehicle) spatiotemporal data (e.g., vehicle trajectories)
of almost all vehicles moving in free and synchronized flows
in a neighborhood of a highway bottleneck are required.
Unfortunately, such empirical microscopic traffic data are
not currently available. Therefore, a microscopic empirical

TABLE II. Functions in discrete stochastic model I: Stochastic
time delay of acceleration and deceleration.

an = a�(P0 − r1), bn = a�(P1 − r1),

PO =
{
p0 if Sn �= 1
1 if Sn = 1,

P1 =
{
p1 if Sn �= −1
p2 if Sn = −1,

Sn+1 =
⎧⎨
⎩

−1 if ṽn+1 < vn

1 if ṽn+1 > vn

0 if ṽn+1 = vn,

r1 = rand(0,1), �(z) = 0 at z < 0 and �(z) = 1 at z � 0;

p0 = p0(vn), p2 = p2(vn) are speed functions, p1 is constant.

TABLE III. Functions in discrete stochastic model II: Model
speed fluctuations.

ξn =
⎧⎨
⎩

ξa if Sn+1 = 1
−ξb if Sn+1 = −1
ξ (0) if Sn+1 = 0,

ξa = a(a)τ�(pa − r), ξb = a(b)τ�(pb − r),

ξ (0) = a(0)τ

⎧⎨
⎩

−1 if r � p(0)

1 if p(0) < r � 2p(0) and vn > 0
0 otherwise,

r = rand(0,1); pa , pb, p(0), a(0), a(a), a(b) are constants.

study of traffic flow will be a very interesting task for further
investigations of traffic flow.
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APPENDIX: KERNER-KLENOV MODEL FOR
SINGLE-LANE ROAD WITH ON-RAMP BOTTLENECK

In this Appendix, we present a discrete version of the
Kerner-Klenov stochastic three-phase traffic flow model for
single-lane road with on-ramp bottleneck [49] used in sim-
ulations shown in Figs. 23–25 (Sec. VI D). In the model
(Tables I–V), index n corresponds to the discrete time tn =
τn, n = 0,1, . . . , vn is the vehicle speed at time step n, a is the
maximum acceleration, ṽn is the vehicle speed without speed
fluctuations ξn, the subscript � denotes variables related to the
preceding vehicle, vs,n is a safe speed at time step n, vfree is the
maximum speed in free flow, ξn describes speed fluctuations,
and vc,n is a desired speed; all vehicles have the same length
d that includes the mean space gap between vehicles within
a wide moving jam where the speed is zero. In the model,

TABLE IV. Functions in discrete stochastic model III: Synchro-
nization gap Gn and safe speed vs,n.

Gn = G(vn,v�,n),
G(u,w) = max(0,�kτu + a−1u(u − w)�),
k > 1 is constant.
vs,n = min (v(safe)

n ,gn/τ + v
(a)
� ),

v
(a)
� = max(0, min(v(safe)

�,n ,v�,n,g�,n/τ ) − aτ ),
v(safe)

n = �v(safe)(gn, v�,n)�,
v(safe)(gn, v�,n) is taken as that in Ref. [19],
which is a solution of the Gipps’s equation [11]
v(safe)τsafe + Xd(v(safe)) = gn + Xd(v�,n),
where τsafe is a safe time gap,

Xd(u) = bτ 2[αβ + α(α−1)
2 ],

α = �u/bτ� and β = u/bτ − α

are the integer and fractional parts of u/bτ ,
respectively; b is constant.
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TABLE V. Models of vehicle merging at on-ramp bottleneck that
occurs when a safety rule (∗) or a safety rule (∗∗) is satisfied.

Safety rule (∗):
g+

n > min(v̂nτ, G(v̂n,v
+
n )),

g−
n > min(v−

n τ, G(v−
n ,v̂n)),

v̂n = min(v+
n , vn + �v(1)

r ),
�v(1)

r > 0 is constant.

Safety rule (∗∗):
x+

n − x−
n − d > �λbv

+
n + d�,

xn−1 < x
(m)
n−1 and xn � x(m)

n

or xn−1 � x
(m)
n−1 and xn < x(m)

n ,

x(m)
n = �(x+

n + x−
n )/2�,

λb is constant.

Parameters after vehicle merging:
vn = v̂n,

under the rule (∗): xn maintains the same,
under the rule (∗∗): xn = x(m)

n .

Speed adaptation before vehicle merging

vc,n =
{
vn + �+

n at g+
n � G(vn,v̂

+
n ),

vn + anτ at g+
n > G(vn,v̂

+
n ),

�+
n = max(−bnτ, min(anτ, v̂+

n − vn)),
v̂+

n = max(0, min(vfree, v+
n + �v(2)

r )),
�v(2)

r is constant.

the discretized space coordinate with a small-enough value of
the discretization cell δx is used. Consequently, the vehicle
speed and acceleration discretization intervals are δv = δx/τ

and δa = δv/τ , respectively. In the model of an on-ramp

TABLE VI. Model parameters used in Figs. 23–25: Vehicle
motion in road lane.

τsafe = τ = 1, d = 7.5 m/δx,
δx = 0.01 m, δv = 0.01 ms−1, δa = 0.01 ms−2,
vfree = 30 ms−1/δv, b = 1 ms−2/δa, a = 0.5 ms−2/δa,
k = 3, p1 = 0.3, pb = 0.1, pa = 0.17, p(0) = 0.005,
p2(vn) = 0.48 + 0.32�(vn − v21),
v01 = 10 ms−1/δv, v21 = 15 ms−1/δv,
p0(vn) = 0.575 + p01 min (1,vn/v01),
a(0) = 0.2a, a(a) = a, a(b) = a;
p01 = 0.205 in Fig. 23 and 0.125 in Figs. 24 and 25.

bottleneck (Table V; see explanations of model parameters
in Fig. 16.2(a) of Ref. [29]), the superscripts + and − in
variables, parameters, and functions denote the preceding
vehicle and the trailing vehicle on the main road into which
the vehicle moving in the on-ramp lane wants to merge. Initial
and boundary conditions are the same as that explained in
Sec. 16.3.9 of Ref. [29]. Model parameters are presented in
Tables VI and VII. The physics of the model has been explained
in Ref. [49].

TABLE VII. Parameters of model of on-ramp bottleneck used in
Figs. 23–25.

λb = 0.75, vfree on = 22.2 ms−1/δv,
�v(2)

r = 5 ms−1/δv, Lr = 1 km/δx,
�v(1)

r = 10 ms−1/δv, Lm = 0.3 km/δx.
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