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Extreme fluctuations in stochastic network coordination with time delays
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We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and
coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations
at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of
the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and
compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not
too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge
to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly
correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of
nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
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I. INTRODUCTION

Synchronization and coordination involve a system of
coupled, autonomously interacting units or agents attempting
to achieve a common goal [1–4]. Synchronization of a system
emerges from the cumulative efforts of the individual entities,
each regulating themselves based on the information they
can gather from their neighbors on the system’s local state.
The difficulties in synchronization or coordination problems
are often compounded by stochastic effects and time delays
[5–11], preventing global coordination or consensus. Time
delays between the state of the system and the reaction to
that information (due to, e.g., transmission, cognition, or
execution) can pose significant challenges. Critical aspects of
the underlying theory of delays have been long established
in the context of macroeconomic cycles as far back as
1935 [12,13]. In such cases, the description of the complex
system can be reduced to a single stochastic variable [14–16].
Recent interest in the application of time delays to complex
networks [1,17,18] provides fresh insights extending these
older results. Understanding the dynamics across a complex
network offers the possibility to optimize synchronization
[2,19–22], including weighted graphs [3,23–25]. Synchroniza-
tion and coordination with delays has been studied in the stock
market [26], ecological systems [27–30], population dynamics
[31–33], postural sway and balance [34–37], and the human
brain [9–11,38]. It is also important to understand critical
functions of autonomous artificial systems, such as conges-
tion control in networks [1,3,24,39–41], massively parallel
[42,43] and distributed computing [44,45], and vehicular
traffic [40,46–48]. The aim of this paper is to explore the
effects of noise and delays on the dynamics in complex and
random networks [49–53], specifically on the extreme fluc-
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tuations. Extreme fluctuations can have critical implications
in synchronization, coordination, or load-balancing problems,
since large-scale or global system failures are often triggered
by extreme events occurring on an individual node [54–56].
In order to show the implications of the general theoretical
results, we will cover the implications for typologically distinct
networks.

The scaling behavior of extreme fluctuations in the case
of zero time delay has been investigated previously for
small-world (SW) [54,55] and scale-free (SF) networks [45],
as well as low-dimensional regular topologies [45]. Despite
having more complex interaction topologies, coordination and
synchronization phenomena of the former systems (as far as
critical behavior is concerned) actually tend to be simpler than
those of their low-dimensional regular-topology counterparts.
This is because fluctuations of the relevant field variables
at the nodes are weakly correlated in complex networks
[45,54,55]. Hence, standard extreme-value limit theorems
apply to the statistics of the extremes (as well as to those of the
system-averaged fluctuations, i.e., the width) [55]. In contrast,
fluctuations in one-dimensional regular lattices are strongly
correlated, and the applicability of traditional extreme-
value limit theorems immediately break down [45,57–59]
(as well as limit theorems for the sum of local variables
[60]).

While extreme-value theory for the scaling properties
and universal limit-distributions of uncorrelated (or weakly
correlated) random variables is well established [61–63], only
a few results are available on statistical properties of the
extremes of strongly correlated variables [57,58]. Majumdar
and Comtet obtained the distribution of extreme fluctuations
in a correlated stochastic one-dimensional landscape only
recently [57] (with no time delays). In coupled interacting
systems with no delays, possible divergences of the width
and the extremes are associated with the small-eigenvalue be-
havior of the Laplacian spectrum (e.g., with long-wavelength
modes in low-dimensional systems or low connectivity in
complex networks) [45,55,57–59]. In the presence of time
delays, however, singularities and instabilities can also be
governed by the largest eigenvalues when the system is close
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to the synchronizability threshold [5,7]. To that end, we
investigate finite-size effects and the universality class of the
extreme fluctuations in complex networks stressed by time
delays.

In parallel to the sum of a large number of uncorrelated (or
weakly correlated) short-tailed random variables approaching
a Gaussian distribution (governed by the central-limit theo-
rem), the largest of these (suitably scaled) variables converges
to the Fisher-Tippett-Gumbel (FTG) [61–63] (cumulative)
distribution,

P <
max(x̃) � e−e−x̃

, (1)

where x̃ = (xmax − aN )/bN is the scaled extreme [64], with
mean 〈x̃〉 = γ (γ = 0.577 . . . being the Euler constant)
and variance σ 2

x̃ = 〈x̃2〉 − 〈x̃〉2 = π2/6. The expected largest
value of the original variables (e.g., for exponential-like tails
[64]) scales as

〈xmax〉 = aN + bNγ �
(

ln N

c

)1/δ

. (2)

Note that corrections to this scaling are of O(1/ ln N ),
which can be noticeable in finite-size networks that are
computationally feasible in our investigations. For comparison
with numerical data, it is often convenient to employ the
extreme-value limit distribution of the variable scaled to zero
mean and unit variance, y = (xmax − 〈xmax〉)/σxmax ,

P <
max(y) = e−e−(ay+γ )

, (3)

where a = π/
√

6. The corresponding FTG density then
becomes

p<
max(y) = ae−(ay+γ )−e−(ay+γ )

. (4)

We hypothesize that the FTG limit distributions of the
extreme fluctuations in stochastic network synchronization
will also be applicable to the case of nonzero time delays,
provided that the large but finite system is in the synchronizable
regime. Although the fluctuations at the nodes will, of course,
depend on the delay, the system can be considered as a col-
lection of a large number of weakly correlated components. In
contrast, in the case of a one-dimensional regular lattice (ring)
with delayed coupling, we expect that the limit distribution
of the extreme fluctuations approaches the Airy distribution
[45,57,58,65].

Thus, provided that the system is synchronizable, the
scaling with the system size and the shape and class of the
respective extreme-value limit distributions will be the same
as those of a network without time delays. To put it simply, time
delays will impact the “prefactors” (within the syncronizable
regime), but not the extreme-value universality class. The focus
of this paper is to test the above hypotheses.

II. EIGENMODE DECOMPOSITION, FLUCTUATIONS,
AND THE WIDTH

In the simplest linear synchronization or coordination
problem in networks with delay, the relevant (scalar) variable

at each node evolves according to

∂thi(t) = −
N∑

j=1

Cij [hi(t − τ ) − hj (t − τ )] + ηi(t)

= −
N∑

j=1

	ijhj (t − τ ) + ηi(t), (5)

where Cij is the coupling matrix and 	ij = −Cij + δij

∑

 Ci


is the (symmetric) network Laplacian. Here, we consider
unweighted graphs, thus Cij is just the adjacency matrix
and

∑

 Ci
 = ki is the degree of node i. The noise ηi(t)

is Gaussian with zero mean and correlations 〈ηi(t)ηj (t ′)〉 =
2Dδij δ(t − t ′)〉. In our simulations, without loss of generality,
we set D = 1. We have previously studied the behavior of the
average size of the fluctuations about the mean for a network
with noise and time delays [5,7], i.e., the width

〈w2(t)〉 =
〈

1

N

N∑
i=1

[hi(t) − h̄(t)]2

〉
, (6)

where h̄(t) = N−1 ∑
i hi(t) is the mean at time t and 〈·〉

indicates averaging over different realizations of the noise.
In the present paper, we are interested in the extremes of the
fluctuations in the system at a given time. Because of the
symmetry about the mean of the relaxation term in Eq. (5), the
distribution of extreme fluctuations above and below the mean
are identical, so we will reduce the presentation of results to
those of the maximum of a snapshot, given by

�max(t) = max
i

{�i(t)}, (7)

where �i(t) = hi(t) − h̄(t) is the fluctuation about the mean
of an individual node.
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FIG. 1. (Color online) The typical behavior of the steady-state
average width and the expected extreme as a function of the delay τ

for an ER and a BA network with N = 1000 and 〈k〉 ≈ 6.
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FIG. 2. (Color online) Individual node distributions of representative degrees in a BA network with N = 1000 and 〈k〉 ≈ 6 for fractions q

of the critical delay of (a) q = 0, (b) q = 0.90, and (c) q = 0.99 (q = τ/τc).

Diagonalizing 	 from Eq. (5) gives N independent modes
h̃k(t), each of which obey an equation of the form

∂t h̃k = −λkh̃k(t − τ ) + η̃k(t), (8)

where λk is the corresponding eigenvalue for mode k. Organiz-
ing the labels of the modes such that 0 � λk � λk+1, a network
with positive, symmetric couplings and a single connected
component has a single (and uniform) mode associated with
λ0 = 0, which does not contribute to fluctuations about the
mean and so does not impact either the width or the extremes,
as both are measured from the mean. The condition for the
average fluctuations 〈h̃2

k〉 to remain finite in the steady-state
for Eq. (8) is known exactly [5,13,14,40,66],

λkτ < π/2. (9)

Hence, for the network to remain synchronizable, the above
must hold for all k > 0, or equivalently,

τ < τc ≡ π/2λmax. (10)

This condition guarantees that the system avoids delay-
induced instabilities and that both the width and the extremes
will have a finite steady-state value. Further, for the simple
stochastic differential equation with delay in Eq. (8), the
steady-state variance of the corresponding stochastic variable
is also known exactly [14],

〈
h̃2

k

〉 = Dτf (λkτ ) ≡ Dτ
1 + sin(λkτ )

λkτ cos(λkτ )
= D

1 + sin(λkτ )

λk cos(λkτ )
.

(11)

Hence, given the eigenvalues of the Laplacian for a given
network, one has an exact expression for the average
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FIG. 3. (Color online) (a) Average size of the fluctuations at the nodes as a function of their degree for a BA network with N = 1000 and
〈k〉 ≈ 6. Open symbols correspond to results based on exact numerical diagonalization of the Laplacian and employing Eqs. (14) and (15). Plus
symbols (of matching colors) correspond to the direct numerical integration of the stochastic delay-differential Eq. (5) with �t = 5×10−6. The
connecting lines are the average of the degree class from these numerical integrations. (b) Same data as in (a) but on smaller vertical scales.
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FIG. 4. (Color online) Finite-size behavior of the distribution of the extreme fluctuations for BA networks with 〈k〉 ≈ 6 and relative delays
(a) q = 0.5 and (b) q = 0.9 obtained by numerically integrating Eq. (5) using �t = 5×10−6. The dotted curves in both panels correspond to
the scaled FTG density, Eq. (4).

steady-state width as well [5,7],

〈w2〉 = 1

N

N∑
i=1

〈
�2

i

〉 = 1

N

N−1∑
k=1

〈
h̃2

k

〉 = Dτ

N

N−1∑
k=1

f (λkτ ). (12)

Of course, for a typical large complex network one does
not have the eigenvalues explicitly in hand. Nevertheless,
one can obtain them through numerical diagonalization.
Hence, employing Eq. (12) provides an alternative to direct
simulations of the coupled stochastic differential equations
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FIG. 5. (Color online) (a) Extreme fluctuation distributions and (b) rescaling of the same for several delays for SW, ER, and BA networks
with N = 1000 and 〈k〉 ≈ 6. The various curves correspond to the same delay fraction q for both (a) and (b). Lines are predictions based on
exact numerical diagonalization and employing Eqs. (14), (15), and (19). Symbols correspond to the numerical integration of the stochastic
delay-differential equations Eq. (5) with �t = 5×10−6. The dotted curves in all panels correspond to the scaled FTG density, Eq. (4).
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FIG. 6. (Color online) Scaling of the expected maximum fluctuations 〈�max〉 with system size N for ensembles of (a) ER and (b) BA
networks (1000 realizations). Open symbols correspond to simulating the stochastic delay-differential equations Eq. (5) with �t = 0.001.
Solid curves show predictions based on exact numerical diagonalization and employing Eqs. (14), (15), and (19).

with delay Eq. (5). Equation (12), after Taylor expansion of
τf (λkτ ) in the variable τ in Eq. (11), also allows one to obtain
the approximate behavior of the steady-state width (within the
synchronizable regime τ < τc),

〈w2〉τ = D

N

N−1∑
k=1

τf (λkτ )

= D

N

N−1∑
k=1

1

λk

+ D

N

N−1∑
k=1

τ + D

N

N−1∑
k=1

τ 2

2
λk + O(τ 3)

= 〈w2〉τ=0 + D
N − 1

N
τ + D〈k〉

2
τ 2 + O(τ 3)

� 〈w2〉τ=0 + Dτ + D〈k〉
2

τ 2, (13)

for large networks (1/N 	 1). In obtaining the above expres-
sion we exploited that the trace is invariant under basis transfor-
mation, hence,

∑N−1
k=1 λk = ∑N

i=1 	ii = ∑N
i=1 ki = N〈k〉 for

an unweighted graph. The first term above is the width for
the network with no delay, which depends strongly on the
detailed structure of the graph through its Laplacian spectrum,
〈w2〉τ=0 = D

N

∑N−1
k=1 λ−1

k [24]. The first-order correction in
a network with delays is completely independent of any
structural characteristics of the network. The second-order
correction only depends on the average degree (average
connectivity), but is independent of the local connectivity
of the nodes, or the specific shape and heterogeneity of the
degree distribution. The behavior of the width as a function
of the delay for a Barabási-Albert (BA) scale-free network
[50] and an Erdős-Rényi (ER) [53] graph is shown in Fig. 1,
indicating an approximately linear behavior for a significant
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FIG. 7. (Color online) Contribution of a few selected degree classes for a BA network (including kmin = 3 and kmax = 116) with N = 1000
and 〈k〉 ≈ 6 for (a) q = 0.0, (b) q = 0.9, and (c) q = 0.99. Results are obtained from numerical integration of the stochastic delay-differential
equations Eq. (5) with �t = 5×10−6. The numbers in brackets in the legends indicate the number of nodes in the corresponding degree class.
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FIG. 8. (Color online) (a) Extreme fluctuation distributions and (b) scaled version of the same data for several delays for a regular
one-dimensional lattice with N = 1000. Symbols are the results found by numerically integrating Eq. (5) using �t = 5×10−6. The solid line
corresponds to the predicted asymptotic Airy limit distribution [57,58].

portion of the synchronizable regime, in accordance with the
above prediction [Eq. (13)]. For comparison, the analogous
behavior of the largest fluctuations is also shown, indicating

(as expected) that the steady-state width 〈w2〉 and the extreme
fluctuations 〈�2

max〉 will diverge at the same critical delay
[Eq. 10].
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FIG. 9. (Color online) (a) Finite-size behavior of the scaled width distribution for one-dimensional lattices for fixed time delay τ = 0.25.
The solid line corresponds to the predicted asymptotic FORWZ limit distribution [60]. (b) Finite-size behavior of the scaled extreme fluctuation
distribution for regular one-dimensional lattices for the same system sizes and delay as in (a). The solid line corresponds to the predicted
asymptotic Airy limit distribution [57,58]. (c) Finite-size behavior of the average width for the same system sizes and delay as in (a). The
dashed line is to guide the eyes, corresponding to the asymptotic theoretical prediction, 〈w2〉 ∼ N . (d) Finite-size behavior of the extreme
fluctuations for the same system sizes and delay as in (b). The dashed line is to guide the eyes, corresponding to the asymptotic theoretical
prediction, 〈�max〉 ∼ N 1/2.
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FIG. 10. (Color online) Finite-size behavior of the scaled width distribution for one-dimensional lattices with nonlinear coupling ν [Eq. (21)]
and relative time delay q = τ/τc. (a) ν = 0.0, q = 0.0; (b) ν = 0.1, q = 0.0; (c) ν = 0.0, q = 0.1; (d) ν = 0.1, q = 0.1. The solid line
corresponds to the predicted asymptotic FORWZ limit distribution [60].

III. EXTREME FLUCTUATIONS

With an understanding of the typical fluctuations of
the underlying modes, we may now proceed to consider the
extreme fluctuations in a network. Consider the covariance
matrix of fluctuations at the nodes (i.e., the steady-state
equal-time correlations), σ 2

ij ≡ 〈�i�j 〉, and that of the modes,
σ̃ 2

k
 ≡ 〈h̃kh̃
〉 = δk
σ̃
2
k (where the single subscript denotes the

diagonal elements). The distribution of a single mode follows
a zero-mean normal (Gaussian) distribution with a variance
given by Eq. (11),

σ̃ 2
k = 〈

h̃2
k

〉 = Dτf (λkτ ). (14)

In turn, the fluctuations from the modes translate back to
those at the nodes according to σ 2 = Sσ̃ 2S−1, where S is an
orthogonal matrix with columns composed of the normalized
eigenvectors of the network Laplacian (i.e., 	 = S�S−1,
where � is a diagonal matrix of the eigenvalues). Since
σ̃ 2 is diagonal, this transformation can be written simply
as

〈
�2

i

〉 = σ 2
i =

∑
k

S2
ikσ̃

2
k . (15)

The marginal distributions of the fluctuations at the nodes
(x = �i) are Gaussian,

pi(x) = 1√
2πσ 2

i

e
− x2

2σ2
i , (16)

with zero mean and variance σ 2
i [Eq. (15)]. The effects of

several delays on the spread of the distributions for a few
representative degree classes are shown in Fig. 2. Each panel
shows the distributions for a distinct delay τ , which can be
expressed in terms of the fraction relative to the critical delay
q ≡ τ/τc.

For zero or small delays the size of the fluctuations (the
width of the distributions) at a node decreases monotonically
with the node’s degree, i.e., the larger the degree the narrower
the distribution [Figs. 2(a) and 2(b)]. For a sufficiently large
delay, however, the trend changes, and the node with the largest
degree can exhibit the largest fluctuations [Fig. 2(c)]. This
can be understood by noting that in a mean-field sense, the
effective coupling at each node is its degree ki [3,24]. Thus,
the fluctuations at each node are approximately proportional
to f (kiτ ) (where the scaling function is known exactly
[Eq. (11)]), and it is nonmonotonic in its argument [5,7].
This trend is also illustrated in Fig. 3. For zero (or small)
delay the average fluctuations at a node decay as 〈�2

i 〉 ∼ 1/ki
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FIG. 11. (Color online) Finite-size behavior of the scaled distribution of the extreme fluctuation above the mean for regular one-dimensional
lattices with nonlinear coupling ν [Eq. (21)] and relative time delay q = τ/τc. (a) ν = 0.0, q = 0.0; (b) ν = 0.1, q = 0.0; (c) ν = 0.0, q = 0.1;
(d) ν = 0.1, q = 0.1. The solid line corresponds to the predicted asymptotic Airy limit distribution [57,58].

[3,24]. In contrast, the average size of the fluctuations as a
function of the degree becomes nonmonotonic for large delays
[Fig. 3]. The fluctuations at the low-degree nodes remain
largely unaffected, while fluctuations at the large-degree nodes
increase significantly.

For networks with no delays it has been established that
the nodes with the smallest degree typically contribute most
to the extremes [24,45], which is still valid in the case of
small delays (τ/τc 	 1). For scale-free (SF) networks with
power-law degree distributions, such as BA networks [50],
the low-degree nodes can still dominate the distribution of
extreme fluctuations at higher delays (but τ < τc) since they
are more numerous, even though the typical fluctuations for
the highest degree node are larger than for a single low degree
node. So long as the highest degree node’s fluctuations do
not dominate the extremes of the network, the large set of
lowest degree nodes will lead to the familiar FTG distribution
for the network’s extremes [Fig. 4(a)]. Note that the approach
to the FTG limit distribution can be very slow due to the
slowly vanishing corrections for Gaussian-like individual
variables [64]. Further, for larger delays, the convergence to
the FTG density may not be monotonic due to the larger
effect of the largest-degree node for small system sizes
[Fig. 4(b)].

Note that the largest eigenvalue of the network Laplacian
varies among individual realizations of a random network
ensemble. Therefore, to simulate “similar” synchronization
dynamics in a network random ensemble (e.g., of 1000
networks of size N ), we kept q, the fraction of the delay relative
to the critical delay, fixed in the individual network realizations
(i.e., an individual network realization 
 has a delay τ (
) =
qτ (
)

c ). Further, also note that the largest eigenvalue of the
Laplacian diverges with the largest degree in a graph [67,68],
hence it diverges with the network size N in complex networks,
e.g., in a power-law fashion for SF networks [69,70] and
logarithmically for ER and SW networks [5,7].

We found similar behavior for other prototypical networks
[SW, ER, and BA], namely for τ < τc the scaled distributions
of the extreme fluctuations converge to the FTG density
[Fig. 5]. Also, our results for ER and BA networks indicate
that the extreme fluctuations 〈�max〉 asymptotically approach a
logarithmic scaling with the system size N [Fig. 6], consistent
with being governed by the FTG density.

To provide further insights to the source of the extreme
fluctuations in BA networks, we also analyzed the distribution
of the extremes within each degree class. We have already seen
that the average size of fluctuations are the largest for small
degrees, except for near-critical delays [Fig. 3]. When the delay
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FIG. 12. (Color online) Finite-size behavior of the scaled distribution of the extreme fluctuation below the mean for regular one-dimensional
lattices with nonlinear coupling ν [Eq. (21)] and relative time delay q = τ/τc. (a) ν = 0.0, q = 0.0; (b) ν = 0.1, q = 0.0; (c) ν = 0.0, q = 0.1;
(d) ν = 0.1, q = 0.1. The solid line corresponds to the predicted asymptotic Airy limit distribution [57,58].

approaches the critical value for a given graph, the average
size of the fluctuations becomes a nonmonotonic function of
the degree (in a mean-field sense, this behavior is naturally
related to U-shape scaling behavior of the fluctuations with
the effective coupling [5,7]). In fact, there is a regime where
the fluctuations at the largest degree node are finite and are the
largest in the network. In parallel with the above observation,
sufficiently below the critical delay of a given graph, the
extreme fluctuations will almost always originate in the class
of nodes with the smallest degree: not only the average size of
the fluctuations is the largest here, but also this degree class has
the largest population (as given by the degree distribution). In
this regime, it is thus expected that the global distribution of the
extreme fluctuations will essentially overlap with the extremes
within the class of the minimum degree. Our simulations
confirm this in Figs. 7(a) and 7(b). Further, as the delay
approaches its critical value in the given graph, the (single)
node with the largest degree will often give rise to the largest
fluctuations in the network. This is demonstrated in Fig. 7(c),
showing that the tail of the global extremes coincides with
the (Gaussian) fluctuations at a (single) node with the largest
degree.

When the delay in a given network is not too close to
the critical delay, one can assume that the fluctuations at

the nodes decouple. This assumption works fairly well for
complex networks with no delays [45,54,55]. (Note that such
assumption is ill-fated for low-dimensional spatial graphs
where a large correlation length governs the scaling.) Now
we test this hypothesis for complex networks with delays and
predict the extreme limit distribution of the fluctuations. The
cumulative distribution of the fluctuations at a particular node
i (with x = �i) can be expressed in terms of the error function,

P <
i (x) =

∫ x

−∞
dx ′pi(x

′) =
∫ x

−∞
dx ′ e

−x ′2/2σ 2
i

σi

√
2π

= 1

2

{
1+ 2√

π

∫ x/σi

√
2

0
dte−t2

}
= 1

2

{
1 + erf

(
x

σi

√
2

)}
.

(17)

Assuming independence of the nodes in determining the
extremal fluctuations, the cumulative distribution for the
maximum fluctuation during a given snapshot is

P <
max(x) �

N∏
i=1

P <
i (x). (18)
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FIG. 13. (Color online) Scaling of the average width w ≡
√

〈w2〉 and the expected extreme fluctuations �max and �min (the expected
largest fluctuations above and below the mean, respectively) with the system size in regular one-dimensional lattices with nonlinear coupling
ν [Eq. (21)] and relative time delay q = τ/τc. The dashed lines are to guide the eyes, corresponding to the scaling ∼ N1/2. Note the log-log
scales. (a) ν = 0.0, q = 0.0; (b) ν = 0.1, q = 0.0; (c) ν = 0.0, q = 0.1; (d) ν = 0.1, q = 0.1.

The corresponding density from Eqs. (17) and (18) is then

p<
max(x) = d

dx
P <

max(x) �
N∑
i

pi(x)
∏
j �=i

P <
j (x)

= 21/2−N

√
π

N∑
i=1

⎧⎨
⎩e−x2/2σ 2

i

σi

∏
j �=i

[
1 + erf

(
x

σj

√
2

)]⎫⎬
⎭.

(19)

The results based on the above approximation (together with
those given by the actual numerical simulations) are shown
in Fig. 5 for the distribution and in Fig. 6 for the average of
the extremes. Note that the validity of this approximation can
break down when the delay is sufficiently close to the critical
delay so that fluctuation at the few highest degree nodes can
completely dominate the extremes.

Also, note that the fluctuations of the mode associated with
the largest eigenvalue assumes large oscillatory components
for λmaxτ > 1/e [5,7]. This manifests with the greatest
amplitude at the largest degree node with strong oscillatory

components. Once the delay is sufficiently close to the critical
delay so that these large-amplitude oscillations dominate the
extremes, an additional feature emerges in the distribution
of �max. Here, there is a broader nonuniversal tail, which
originates from the finite but very large fluctuations at the
node with the largest degree [Fig. 7(c)]. The suppression
of the contribution from low degree nodes is compounded
if more than one node has the network’s maximum degree.
Periodically, when the oscillatory behavior of this node brings
it back near the mean h̄(t), the global extremes can still
be dominated by the FTG-distributed extremes among the
lowest-degree nodes.

IV. THE WIDTH AND THE EXTREMES
ON REGULAR LATTICES

Finally, it is worthwhile to contrast the steady-state
scaling behavior of the extremes and their distributions in
complex networks to those on regular lattices. For regular
d-dimensional lattices the largest eigenvalue of the Laplacian
is independent of the system size. Thus, for a fixed delay τ ,
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FIG. 14. (Color online) Extreme fluctuation distribution (in the quasistationary period) in ER networks with N = 100, 〈k〉 ≈ 6, nonlinear
coupling ν = 0.1 [Eq. (20)], and various relative time delays q = τ/τc. (a) Distributions of the extreme fluctuations above the mean, �max =
hmax − h̄; (b) scaled distributions of the extreme fluctuations above the mean (with zero mean and unit variance); (c) distributions of the extreme
fluctuations below the mean, �min = h̄ − hmin; (d) scaled distributions of the extreme fluctuations below the mean (with zero mean and unit
variance). The solid line in (b) and (d) corresponds to the FTG limit distribution [Eq. (4)].

if the system is synchronizable for a particular system size,
it is synchronizable for all system sizes, λmaxτ < π/2, and
the usual N → ∞ thermodynamic limit can be considered
with no delay-induced instability. Further, as N → ∞, the
arbitrarily small eigenvalues of the Laplacian (λmin ∼ N−2/d )
will dominate the sum in Eq. (12), just like they do in systems
with no delay. Hence, one can expect that the scaling of the
width, the extremes, and their asymptotic limit distribution in
the synchronizable regime will be identical to those with no
delay, governed by diverging correlations and long-wavelength
modes (associated with the arbitrarily small eigenvalues of the
Laplacian). For illustration, we considered one-dimensional
lattices (with nearest-neighbor coupling) with delays [Fig. 8].
For completeness, we studied the detailed finite-size behavior
of both the steady-state width distribution P (w2) and the distri-
bution of the extremes P (�max). The results of the numerical
integration of the systems with delays (but within the syn-
chronizable regime, λmaxτ < π/2) show that the asymptotic
limit distributions of the width and the extreme fluctuations
approach those of the delay-free systems, the FORWZ dis-
tribution [60], and the Airy distribution [57,58], respectively
[Fig. 9].

V. EXPLORING THE EFFECTS OF
NONLINEAR COUPLINGS

While in our current work the focus has been to understand
the effects of time delays on stochastic systems with liner
couplings, we performed some explorations on the nonlinear
effects. We considered the stochastic equation

∂thi(t)=−
N∑

j=1

Cij (hi −hj )

+ ν

N∑
j,k=1(j<k)

CijCik(hj −hi)(hk−hi) + ηi(t), (20)

where the effects of time delays are captured, as before, by
replacing {hl(t)}Nl=1 by {hl(t − τ )}Nl=1 in the right-hand side
of the above stochastic differential equation. Such nonlinear
terms can be motivated by, for example, coarse-graining local
growth processes in networks [21,43–45,71] (e.g., where only
local network-neighborhood minima can progress). Note that
in one dimension, the above stochastic equation reduces to

∂thi(t) = −(2hi − hi+1 − hi−1)
+ ν(hi+1 − hi)(hi−1 − hi) + ηi(t). (21)
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FIG. 15. (Color online) Extreme fluctuation distribution (in the quasistationary period) in SW networks with N = 100, 〈k〉 ≈ 6, nonlinear
coupling ν = 0.1 [Eq. (20)], and various relative time delays q = τ/τc. (a) Distributions of the extreme fluctuations above the mean, �max =
hmax − h̄; (b) scaled distributions of the extreme fluctuations above the mean (with zero mean and unit variance); (c) distributions of the extreme
fluctuations below the mean, �min = h̄ − hmin; (d) scaled distributions of the extreme fluctuations below the mean (with zero mean and unit
variance). The solid line in (b) and (d) corresponds to the FTG limit distribution [Eq. (4)].

The above equation is just a (somewhat unconventional)
discretization of the well-known KPZ equation [72,73],

∂th(x,t) = ∇2h − ν(∇h)2 + ηi(t), (22)

which can be easily seen by taking the naive continuum limit in
Eq. (21), hi±1(t) = h(x,t) ± ∂h/∂x + · · · , and keeping only
the leading-order derivatives.

First, we studied one-dimensional regular lattices (with
nearest-neighbor connections and periodic boundary condi-
tions). In what follows, we parameterized the delay relative to
the critical delay of the linear system for reference, q ≡ τ/τc.
Numerically integrating the time-discretized version of the
stochastic differential equation, Eq. (21) (see Supplemental
Material for more details [74]), we have found that for
sufficiently small values of the nonlinear coupling ν and time
delays, the system reaches a steady state with a finite width
for finite systems. The width distribution [Fig. 10] and the
distribution of the extremes for both above [�max = hmax − h̄,
Fig. 11] and below the mean [�min = h̄ − hmin, Fig. 12]
approach the FORWZ and the Airy distribution, respectively,
similar to the case of pure linear couplings. Further, the average

width and the extremes (both above and below the mean height)
scale as N1/2 with the system size [Fig. 13].

Investigating the behavior of the width for larger values
of the nonlinear coupling, it is clear the synchronization
profile can diverge (the system becomes unstable), even
for zero time delay (see Supplemental Material [74]). We
checked and tested that this instability is not an artifact of
the finite time difference �t , but rather it is the result of
the nonlinear term on discrete lattices in Eq. (21). Indeed,
it has been well documented [58,75–79] that even conven-
tional lattice discretization schemes of the KPZ nonlinearity
can give rise to instability in a noisy environment (even
though its spatial continuum limit is stable and the nonlinear
term, in fact, exactly cancels by symmetry in the stationary
state [72,73,80]). Our observed behavior, induced by the
nonlinear KPZ term in Eq. (21), is just another example
for such instability, intrinsic on discrete structures, such as
lattices.

In networks, we found similar behavior. For example, in
ER networks, we found that the nonlinear term in Eq. (20)
gives rise to a diverging width even for our smallest value
of the nonlinear coupling strength ν, even in the absence
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of time delays (see Supplemental Material [74]). We again
checked and confirmed that the lack of stability in the presence
of nonlinear couplings is not the result of insufficient time
discretization of the stochastic differential Eq. (20) (see
Supplemental Material [74]). For small values of the nonlinear
coupling ν, there exist, however, a long “quasistationary”
period before fluctuations begin to diverge, where we analyzed
the statistical properties of the extremes. We have found that
during this quasistationary period, the scaled distributions of
the extremes are reasonably well-described by the FTG limit
densities [Fig. 14].

For SW networks, while the fluctuations (and the width)
are smaller than those than on one-dimensional lattices (at
least during the quasistationary period), the synchronization
landscape eventually becomes unstable for sufficiently strong
nonlinear coupling, with or without delays (see Supplemental
Material [74]). We also observe that the average width
in the quasistationary period is decreasing with increasing
average degree 〈k〉, but at the same time, the duration
of the quasistationary period is decreasing with increasing
〈k〉 (see Supplementary Material [74]). Nevertheless, in the
stationary (or quasistationary) state, the scaled distributions
of the extremes are well-described by the FTG limit densities
[Fig. 15].

It is clear that we have only begun to scratch the surface
of the complexity of the behavior as a result of nonlinear
couplings in the stochastic delay differential equations in
networks. Among the important questions that one shall inves-
tigate are the effects of the strength of nonlinear coupling, time
delay, and network size on the length of the quasistationary
period. It is also clear from our explorations that uncontrolled
expansions of local growth processes (i.e., naive coarse grain-
ing) may result in nonlinear terms in the resulting stochastic
differential equations (with or without delays), which give rise
to instability and diverging width in the synchronization land-
scape. This instability is “real” (i.e., not an artifact of time dis-
cretization) as far as the numerical integration of the stochastic
differential equation is concerned, but may not be present in
the actual physical systems with the original microscopic rules
[21,43–45].

VI. SUMMARY

We have demonstrated that the extreme fluctuations in
stochastic coordination or synchronization problems with time
delays (with short-tailed node-level noise and within the
linearized approximation) can fall in two main classes. In
complex or random networks (e.g., ER, SF, or SW graphs),
if the system is sufficiently large but synchronizable (λmaxτ <

π/2), the distribution of the extremes is governed by the FTG
distribution, while the average size of the largest fluctuations
does not grow faster than logarithmic. This type of scaling
behavior can be understood as the fluctuations at the nodes
are only weakly correlated, hence traditional extreme-value
limit theorems apply. In contrast, in spatial graphs, fluctuations
at the nodes are strongly correlated. As demonstrated on
one-dimensional regular rings, the distribution of the extremes
approaches the Airy limit distribution, while the average size
of the largest fluctuations will scale as the width itself, e.g., as
a power law in one dimension.

Finally, we have performed some explorations on the effects
on nonlinear couplings in the stochastic delay differential
equations in networks. Our results indicate the generalized
KPZ nonlinearity in discrete structures (networks) can ulti-
mately give rise to instability. Even in that case, however,
during a quasistationary period (before the width diverges),
the statistics of the extreme fluctuations are well-described by
the Airy and FTG densities, in one dimension and in random
ER/SW graphs, respectively. Clearly, future investigations are
needed to precisely characterize the stability conditions in the
presence of nonlinear couplings in networks with (and without)
time delays.
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