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Approximating frustration scores in complex networks via perturbed Laplacian spectra
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Systems of many interacting components, as found in physics, biology, infrastructure, and the social sciences,
are often modeled by simple networks of nodes and edges. The real-world systems frequently confront outside
intervention or internal damage whose impact must be predicted or minimized, and such perturbations are then
mimicked in the models by altering nodes or edges. This leads to the broad issue of how to best quantify changes
in a model network after some type of perturbation. In the case of node removal there are many centrality metrics
which associate a scalar quantity with the removed node, but it can be difficult to associate the quantities with some
intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application of network the-
ory: real-world utility networks are rarely altered according to theoretic principles unless the kinetic impact on the
network’s users are fully appreciated beforehand. In pursuit of a kinetically interpretable centrality score, we dis-
cuss the f-score, or frustration score. Each f-score quantifies whether a selected node accelerates or inhibits global
mean first passage times to a second, independently selected target node. We show that this is a natural way of
revealing the dynamical importance of a node in some networks. After discussing merits of the f-score metric, we
combine spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which can
otherwise be expensive to compute. Following tests on both synthetic and real medium-sized networks, we report
f-score runtime improvements over exact brute force approaches in the range of 0 to 400% with low error (<3%).
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I. INTRODUCTION

Systems in the physical, social, and biological sciences
are composed of many interacting units which collectively
give rise to complicated, global dynamics [1–5]. Yet these
emergent behaviors can also be modeled by random walks over
simple network models [6]. In such models direct probability
flow is permitted between nodes connected by an edge, the
absence of an edge between nodes means probability can
travel between them only indirectly, and nodes (V ) and edges
(E) collectively constitute the network H(V,E) as a closed
system and induce its behavior. Network models have flexibly
modeled disease propagation [7], neuronal dynamics [8],
router communication [9], protein folding pathways [10],
utility grids [11], collaboration histories [12], and other phe-
nomena at wide-ranging spatial and temporal scales [13,14].
Importantly, real-world systems like these frequently confront
outside intervention or internal damage whose impact must be
predicted or minimized [15,16]. Quantifying this vulnerability
in the face of targeted or random attacks motivates a more
general network science question that is the principal issue
of this study: Which network nodes are important or central
to the entire graph [17–21]? This question is open because
a quantitative definition of important and central is still
required [22].

To illustrate this issue, consider transition network models
of protein folding, where different protein geometries are mod-
eled by distinct nodes and observed conformational transitions
are modeled by distinct edges. In such a network, a node might
be important if it represents the folded protein conformation
which is known to perform a biochemical function. Such a
node is likewise central in the sense of providing a connectivity
hub for many other possible geometries [23]. But, knowing in
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advance about the folded conformation node, we might then
be interested in other nodes that funnel or alternately block
the transition to the central node [24,25]; these nodes are
called bottlenecks and traps, respectively. An interest in these
secondary nodes is natural whenever a network contains a node
of more a priori relevance than others [26] (such a node, e.g.,
the folded state, is a target node, nt ). For these networks, our
principal question has changed to: Which nodes are important
given our preselected target node nt ; i.e., what happens at
nt when perturbations are made elsewhere? It is this set of
perturbed nodes, denoted np ∈ Np, for which we desire some
individual quantification of importance in light of our inherent
focus on dynamic behavior at nt . An epidemiological analog
is to ask how the infection risk faced by a particular individual
nt changes in response to vaccination of a second individual
np [13,27]. A metric that encapsulates this relationship must
necessarily consider three entities: target node nt , perturbed
node np (whose quantification of importance is desired), and an
overall network topology or structure H = H(V,E) in which
both these nodes live [Fig. 1(a)].

Node importance more generally can be quantified by
many spectral techniques and graph theoretic principles.
Such centrality scores may be based on the intact network
topology or, additionally, on the changes observed in network
characteristics after a node or edge is altered [28–32]. Useful
interpretability of these quantities in either approach depends
on the formulation of the centrality measure chosen and
the physical or social system modeled by the network.
For example, the subgraph centrality and communicability
measures provide predictions of protein lethality and diffusion
for networks of protein interactions or harmonic oscillations,
respectively [33,34]. Some other interpretable metrics, such as
synchronization [35], diffusion [36], and relaxation rates [28],
measure global quantities and have no inherent nt dependence.
In our analogy this means these metrics tell us only about
averages across all potential patients and not the particular
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FIG. 1. (Color online) F-scores quantify the strength of bottlenecks in an example complex network. (a) Example network H with 49
nodes; node widths indicate total degree sn including self-loops. Target node nt is shown in green. F-scores, fnp

, are computed separately for
two nodes, n1 (orange) and n2 (purple), by removing them from H and observing changes in MFPTs to nt (green). (b) A histogram of mean first
passage times (MFPTs), τn→nt

, where the mean first passage time is time required for a random walker from each node in network H to arrive at
target node nt . Solid gray histogram, intact graph H; unmarked orange line, Hp = H\n1; dotted purple line, Hp = H\n2. Dashed vertical lines
indicate the average MFPTs over all nodes, the trapping time. F-scores, fnp

, are computed from the relative change in trapping time [Eq. (5)].
(c) A comparison of MFPTs and f-scores. In the intact graph H, n1 and n2 have identical mean first passage times to nt , but they impact
graph dynamics differently when removed. Node n1 minimally impacts transit times to nt when it is removed from the graph (fn1 = −0.1). In
contrast, n2 is a more important bottleneck between the graph and nt , so removing it has a greater impact on MFPTs (fn2 = 7.6), seen in the
shift of the purple histogram (dotted line) to longer (slower) transit times (b).

individual, nt , whose infection risk changes when someone
else, np, is vaccinated. An additional consideration is that
many such metrics are strongly correlated and provide dupli-
cate information [37]. In light of these issues we therefore ask:
What interpretable metric can quantify the importance of each
perturbed node np vis-à-vis the target node nt?

Our choice is called an f-score [25,38], fnp
, and is based

on the concept of trapping time, the average time required by
a Markov chain or random walk to arrive at the target node
nt from any other node (start node) in the network [26,39].
Trapping time is the weighted average of mean first passage
times (MFPTs, equivalent to hitting times [40] or transit times)
to nt over every node. An individual MFPT value itself, τn→m,
gives the average time required for a random walk starting
at node n to arrive at m [41]. As opposed to the shortest
path distance, a MFPT value τn→m(H) reflects the influence
of all possible paths between nodes n and m in graph H.
Whereas MFPTs are necessarily a function of two specified
endpoints (n and m), in this work concern is restricted to
those transition paths that terminate at the user-selected target
node nt , and trapping time is then the average over all start
nodes: τ̄nt

= 1
N−1

∑N
n�=nt

τn→nt
, where there are N nodes in

the intact network H [Fig. 1(a)]. We then ask how much the
trapping time τ̄nt

changes in response to individual excision of
nontarget nodes np from the network [Fig. 1(a)]. In agreement
with intuition, bottleneck nodes when removed will increase
the trapping time (random walkers must find detours to nt )
and kinetic traps when removed will decrease the trapping
time (random walkers don’t get “stuck” far away from nt )
[Fig. 1(b), dashed lines]. The resulting quantity for excised
node np, denoted f (np,nt ,H), therefore tells us the mean
relative change, or frustration, in all paths to nt as a result
of node np [Fig. 1(c)]. Whereas frustration has been defined
in various synchronization contexts [42,43], here the word
captures the propensity of a single node to accelerate or inhibit
transition paths to nt due to its topological context (location in

the network). Formally,

f (np,nt ,H) = fnp
=100

[
1

N − 2

N∑
n�=nt ,np

τn→nt
(Hp) − 1

N − 1

×
N∑

n�=nt

τn→nt
(H)

]/[
1

N − 1

N∑
n�=nt

τn→nt
(H)

]
,

(1)

where Hp is identical to H except node np has been
excised, i.e., Hp = H \ np; the total number of computed
MFPTs in Hp is N − 2 since τnt→nt

is ignored. Equation (1)
includes a scaling coefficient to emphasize that f-scores convey
percentages, and unless explicit dependencies are required,
we often abbreviate f (np,nt ,H) as fnp

or f . In summary, an
f-score tells us precisely how much all paths to nt are inhibited
(fnp

< 0) or accelerated (fnp
> 0) as a result of node np in the

intact graph H (Fig. 1).
The intuition behind fnp

values and their comparison to
MFPT values can be further clarified via a node removal task:
pruning a network such that trapping times at nt are minimized
(i.e., arrival rates at nt are maximized). This is illustrated in
Fig. 2 using two model networks (network H as introduced in
Fig. 1(a) and a second synthetic network, H500, described in
Table I). F-scores are able to make better predictions in this
regard than MFPT values. This is because MFPT values do not
reflect the topological context of the removed node [44,45],
and so the pruning procedure cannot determine if a given node
removal will have a large impact on transit times to nt across
the remaining network. F-scores, in contrast, inherently encode
the kinetic impact of each pruning candidate np; node degree
and local connectivity are inherently reflected in each fnp

’s
sign and magnitude. Kinetic interpretability of this sort is key
to a successful node metric [20].

In the following we first connect spectral theory with
MFPTs and trapping times and then propose a protocol for
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FIG. 2. (Color online) MFPTs and f-scores as graph pruning
criteria. Example networksH from Fig. 1(a) (a) andH500 from Table I
(b) are sequentially pruned according to MFPT (τnp→nt

, black, upper
curves), or f-score (fnp

, magenta, lower curves), where the trapping
time (at nt ) of the resulting network is shown at each iteration. Nodes
are removed in the order resulting from initial values in the full
network (solid) or values recalculated at each iteration (dashed).

approximating f-scores using matrix perturbation theory that
is more efficient than direct matrix inversion methods we know
of (algorithm details in appendix). Examples and tests are
conducted with synthetic and real data sets, in all cases using
sparse, nonregular, and undirected graphs.

II. METHODS

For some chosen target node nt in graph H, denominator
and subtrahend in Eq. (1) need be computed only once for any
desired set of perturbed nodes np ∈ Np. Because the topology
in H is mostly preserved for any single node perturbation,
we can therefore exploit spectral properties of H in order to
quickly approximate the first numerator term given that we
already know the second, which has no np dependence. We
begin in this direction by introducing nomenclature relevant to
mean first passage times and perturbation theory in the context
of complex networks.

Let H = H(V,E) be a weighted, undirected graph where
V is the set of vertices and E is the set of edge weights. The
vertices or nodes are indexed by n,m ∈ {1 . . . N}. Key nodes

TABLE I. Data set summary. Six networks are compared based
on node count N , edge count nnz, degree distribution exponent
α, algebraic connectivity λ2, and spectral radius λN . In HA edge
weights denote average total daily seat capacity between busiest
U.S. commercial airports. In HYST edge weights denote confidence
in functional interactions based on aggregated screening studies.
In social network HUC edges denote the symmetrized number of
communicated institutional electronic messages. Standard deviation
of estimated degree exponent α was <0.07 for all networks [46].

Name Description N nnz α λ2 λN

Synthetic networks:
H500 500 1896 2.46 5.02 1.41e+4
H1000 1000 4199 2.26 17.31 2.37e+4
H2000 2002 9725 2.13 34.46 8.20e+4

Real networks:
HA U.S. airports [2] 500 5960 1.64 0.2 1.4e+05
HYST Yeast [47] 1890 9464 1.80 0.39 1.20e+03
HUC UC Irvine [48] 1893 27 670 1.56 0.17 809.1

receive special symbols: nt for the user-selected target node;
np ∈ Np for the user-selected perturbed node [Np = {n1,n2}
in Fig. 1(a)]; ng ∈ Gn for all neighbors of some node n (n
and ng are directly connected by an edge); and nḡ ∈ Ḡn for all
foreigners of n (n and nḡ are not directly connected by an edge).
The graph Laplacian L, an N x N matrix, is defined as L =
S − A, where A, the symmetric adjacency matrix is defined
such that Anm = Amn = anm ∈ E is the nonnegative weight of
the edge connecting nodes n and m, and Amm is the weight
of self-loops for node m. Because L contains no information
of node self-loops, which are essential for modeling many
complex phenomena, our expressions often require matrix
S, whose diagonal carries node degrees, i.e., Smm = sm =∑N

n=1 Amn. A column vector of these degrees is denoted as s,
and s = sT 1 is the total edge weight in the network, sometimes
denoted vol(H) [49,50]. Perturbation of a single node amounts
to decreasing all the node’s edges, including self-transitions by
some relative amount ε ∈ [01], i.e., Lpnp,np

= (1 − ε) × Lnpnp

with corresponding values decreased at nodes Gnp
so that∑N

m=1 Lpnm
= 0∀n. Node removal occurs when ε = 1. The

matrix that encodes the ε-weighted decrease in self-transitions
and edge weights is B such that Lp = L + εB. A perturba-
tion impacts the adjacency matrix analogously, Ap = A −
(εA[np,:] + εA[:,np]), where the colon denotes indices 1 . . . N .
Subscript brackets denote index ranges.

A. Mean first passage times, trapping times, and f-scores

With these and a few additional definitions we can compute
the pairwise MFPT matrix for all nodes in a weighted,
symmetric network H. First, the fundamental matrix Z from
Markov chain literature is defined as

Z = [I − (P − P∗)]−1, (2)

where P = S−1A is the row-stochastic transition probability
matrix, I is the identity matrix, and P∗ is a matrix whose
columns are the stationary distribution �α (i.e., �α is the dominant
eigenvector of P). The traditional expression for computing all
pairwise MFPT values then is

M(H) = {τn→m(H)} = (I − Z + EZdiag)D, (3)

where Zdiag is equivalent to Z but with vanished off-diagonals,
E is a constant matrix of all 1’s, and D is also diagonal and
carries in its diagonal the inverse of the stationary distribution
(or limiting probability): Dnn = 1

αn
[41]. Trapping times τ̄nt

for some target node nt are then computed by averaging over
the appropriate column of M:

τ̄nt
= 1

N − 1

N∑
m=1�=nt

Mm,nt
, (4)

such that our exact f-score definition (1) becomes

f (np,nt ,H) = 100
τ̄nt

(Hp) − τ̄nt
(H)

τ̄nt
(H)

. (5)

Even though A is generally sparse and S, being diagonal,
is cheaply invertible, the matrix which is inverted in (2) to
produce Z is dense. As a result, each exact fnp

value desired
requires an expensive matrix inversion, and no dynamic or
topological information about H is recycled when iterating
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over user-selected {np}. We note, however, that the funda-
mental matrix for the perturbed network Zp can be estimated
from the intact graph’s Z matrix using the Sherman-Morrison-
Woodbury formula:

Zp ≈ Z + ZU(I − VZU)−1VZ,

where UV is some low-rank approximation of P∗ − P + Pp −
P∗

p [51]. This is worth exploring as an alternative to our
Laplacian-based approach, though the rank of the perturbation
will generally be equal to or larger than the number of edges
at the perturbed node, potentially quite large.

One additional alternative formulation for τ̄nt
that flexibly

allows nt to be comprised of an arbitrary set of target nodes
is presented in Ref. [24], but efficiency is an issue because
matrix exponents must be evaluated multiple times for each
np of interest. Thankfully, trapping times τ̄nt

can be computed
without explicitly calculating individual transit times τn→nt

and averaging over n as in (4). Specifically, a spectral
formulation presented in Ref. [52] permits τ̄nt

to be expressed
via Laplacian eigenvectors u1...N and eigenvalues λ1...N :

τ̄nt
= N

N − 1

N∑
k=2

1

λk

(
su2

nt k
− unt ksT uk

)
, (6)

where the first eigenpair is excluded because λ1 = 0. A related
treatment with adjacency matrix spectra is also possible [39].
Equation (6) invokes all nondominant eigenpairs, where an
eigenpair is defined as the associated quantities {uk,λk} such
that Luk = λkuk . Eigenpairs are indexed by eigenindices
j,k ∈ {1 . . . N} and sorted: λ1 = 0 � λ1 � λ2 . . . � λN . The
dominant eigenvector u1 = 1/N . Eigenvectors together form
the columns of a matrix U ∈ RN×N , where Uk or uk indicates
the kth column and Uij or uij indicates the ith element of the
j th column of U.

Across many disciplines, these Laplacian eigenvectors (U)
are used to map the topology encoded in L to an alter-
nate or lower-dimensionality basis, often to facilitate coarse
graining [53,54] or clustering [50,55], and many dynamic
measures have naturally been formulated from them [56].
For example, one may ask which link or node removals
maximally or minimally impact the algebraic connectivity λ2

or the eigenratio λ2/λN [57], both being summary measures of
dynamic synchronization [5,58,59]. One may also examine an
individual row of the eigenvector matrix, i.e., U[np,1:N], whose
elements convey the dynamical importance of node np within
each eigenfrequency [22]. Critically, most such interpretations
of U and λ relate to global behavior over the entire graph.

Part of the appeal of synchronization- and eigenratio-based
centrality measures is that only dominant and/or extreme
eigenpairs are required, meaning these centrality values even
for very large graphs are feasible with sparse eigensolvers.
Formally, Eq. (6) requires the entire spectrum and cannot
take advantage of these numerical methods. However, Eq. (6)
favorably permits us to consider each eigenpair separately, and
so we associate a symbol τ̄ k

nt
with the trapping time contribu-

tion of each distinct eigenpair k: τ̄ k
nt

= N
N−1 (su2

nt k
− unt ksT uk)

such that total trapping time is their sum: τ̄nt
= ∑N

k=2 τ̄ k
nt

. The
central concept is that the spectra of L and Lp are closely
related and therefore many τ̄ k

nt
values will be unchanged

upon network perturbation. That is, given trapping time
contributions τ̄ k

np
∀k �= 1 for the intact graph H, we can

selectively estimate only those eigenpairs in Hp (and thus
only those τ̄ k

np
values) that non-negligibly impact a node’s

associated f-score [the other variables in Eq. (6), s and s,
are known observables of Hp]. In summary, instead of an
exact fnp

we compute an estimate f̃np
by (1) identifying

free eigenindices kF that substantially alter total trapping time∑N
k=2 τ̄ k

nt
, and then (2) efficiently estimating quantities uk and

λk necessary for Eq. (6).

B. Estimating λ p

In the case of networks with very controlled or regular
structure, convenient analytic expressions for the perturbed
eigenvalues λp are known; brute force eigendecomposition
is not required [26,52]. With complex networks, however,
alternatives other than dense eigensolvers include perturbation
theory or eigenvalue bounds from interlacing formulas. In the
latter, one can bound the maximum shift of the eigenvalues
|λ − λp| given the local topology of the perturbed node
np [60–62], but in our experience these bounds are not
adequately tight and, besides, eigenvalue perturbation is more
accurate and almost as fast. Regardless, it is the estimation of
the eigenvectors Ũ that represents the largest computational
expense.

For notational clarity, tildes are assigned to approximate or
estimated quantities of the perturbed spectrum, subscript or
superscript p indicates exact quantities or indices, and, when
necessary, subscript 0 indicates unperturbed variables. A ma-
trix of estimated Laplacian eigenvectors is therefore denoted
Ũ, while dense eigendecomposition would yield Up given Lp.

Using classical first order perturbation theory, for some
eigenpair k:

λ̃k − λk = uT
k εBuk

uT
k uk

, (7)

where Lp = L + εB is the Laplacian of Hp [63]. However,
in the case that the perturbation impacts a single node np,
meaning all connected edges (and self-loops) are proportion-
ally decreased by ε, the expression can be simplified (subscript
k implied after first line):

�λk

ε
= λ̃k − λk

ε
= uT

k Buk

=
∑

n∈Gnp

un(uT Bn) + unp
uT Bnp

=
∑

n∈Gnp

Bnnu
2
n + unp

(
uT Bnp

−unp
Bnpnp

) + unp

(
uT Bnp

)

= [ − uT diag
(
Bnp

)
u + u2

np
Bnpnp

]
+u2

npnp

( − λ − Bnpnp

) + u2
npnp

(−λ)

= uT diag(Lnp
)u + u2

np

( − Lnpnp
− λ + Lnpnp

− λ
)

= (u.2)T Lnp
− 2λu2

np

⇒ λ̃k − λk = ε ∗ [(
uk.

2
)T

Lnp
− 2λku

2
npk

]
(8)
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where the notation (.2) signifies the element-wise exponent,
diag(x) is a zero matrix with x along its diagonal, Bnp

is the
npth column vector of B, Lnp

denotes the npth column of the
intact Laplacian, and a matrix with two subscripts denotes a
single element, as in Bnpnp

.

C. Estimating U p

Likewise, we can also update the eigenvectors using
standard perturbation approaches [64,65]:

ũk = uk +
N∑

j=1�=k

uT
j (Lp − Iλ̃k)uk

λ̃k − λ̃j

uj . (9)

This update step has complexity O(n2), and updating N

eigenvectors of the spectrum costs O(n3). Naively imple-
mented, this would constitute a profligate linear estimate
to the eigenbasis when exact, direct eigensolvers have the
same approximate cost, sparse solvers being cheaper still.
In practice, however, the perturbations here require only the
subset kF of the spectrum to be updated for accurate estimates,
and the corrections themselves are small and vanish rapidly.
As we will show, the set of selected eigenpairs are often
nonextreme and nonadjacent, and most efficient eigensolvers
are not traditionally amenable to updating simultaneously
noncontiguous eigenpairs [66]. It is for this reason that we
choose to iteratively update Ũ using the method least efficient
in traditional implementation but well suited to the specific
perturbation structure B and stopping criterion |�f̃np

| < f ∗.

D. A heuristic for kF

As mentioned, we accelerate Eq. (9) by limiting the
summation to selected eigenindices kF . We identify this set
of indices by observing that when a local perturbation is
made in a network, some Laplacian eigenpairs are impacted
more than others. Efficient computation of the perturbed
spectrum should ignore unimpacted eigenpairs, and we can
discriminate between eigenpairs further by considering only
those whose contributions to trapping time at nt change
substantially upon the perturbation, that is, |�τk

nt
| > τ ∗

0 . In
order to effectively classify eigenpairs into a free class, kF and
a locked class, kL, we need a heuristic for |�̃τ k

nt
| that avoids

direct eigendecomposition. Our choice is∣∣�̃τ̄ k
nt

∣∣ = ˜̄τ k
nt

(Hp) − τ̄ k
nt

(H), (10)

where

˜̄τ k
nt

= 1

λ̃k

(
N

N − 1

)(
spũ2

nt k
− sT

p ũkũnt ,k

)
. (11)

Vector ũk is a column of Ũ, itself equal to U with the
exception of rows corresponding to the perturbed node np and
its neighbors Gnp

. Specifically,

Ũ[npg,:] = U[npg,:] − 2
(
Lp [npg,:]

U − U[npg,:]I
�̃λ)

, (12)

where npg = {np ∪ Gnp
}, �̃λ is a vector of currently estimated

eigenvalues, and the colon denotes indices 1 . . . N . Changes
in the elements of the approximation vectors Ũ correspond to
the gradient of the Rayleigh quotient [67] evaluated only at np

and Gnp
since the gradient at all other nodes will be negligible.

Tildes over returned values emphasize that (11) and (12) are
not exact but still provide a convenient heuristic for selecting
the initial free eigenindices:

kF = findk

(∣∣�̃τ̄ k
nt

∣∣ > τ̄ ∗
iter

)
. (13)

Intuitively, Eq. (12) tells us about the impact of the
perturbation given (1) the network H and (2) the perturbed
node np, whereas Eq. (11) tells us about the impact of the
perturbation given all three involved entities: graph H, node
np, and target node nt . Together, the expressions reveal which k

eigenindices give rise to large predicted |�τ̄k| values. We only
employ this routine at iter = 0, before vectors UkF

have been
updated with linear estimate Eq. (9). Subsequently, provided
with Ũiter>0, we can utilize the observed changes in trapping
time contributions |τ̄ k

nt
| to select kF for the next iteration

(Fig. 3).

E. Algorithm thresholds

There are two user-selected parameters that control the
trade-off between speed and accuracy within the procedure.
The first, τ̄ ∗

iter, controls whether a given eigenvector Uk∈kF

remains free and in kF after an iterative update or gets locked
and moved into the set kL. Presently, τ̄ ∗

iter is set so that kF

after each iteration includes those eigenvectors that contribute
99.5% of the total change in τ̄ . Iteration histories of |kF | with
this threshold are shown for two synthesized networks in Fig. 3.

The second user parameter, f ∗, determines when the
algorithm terminates. Once f̃np

proportionally changes less
than f ∗ per iteration, the algorithm terminates. A threshold
of f ∗ = 0.01 in our experience produces good accuracy
correlations.

F. Methods summary

Our protocol works by perturbing node np by a small
amount ε ∼ 10e−4 and iteratively correcting eigenvectors
U from the intact graph H to approximate the basis of
the altered graph, Hp. However, we choose to update only
vectors that make significant (>τ̄ ∗) contribution to the trapping
time, τ̄nt

, given the user-chosen target node nt . That is, we
choose to permit small nonorthogonalities in the updated
spectrum as long as the estimated frustration score f̃np

stabilizes. Specifically, at each iteration the set of vectors
that gets updated is denoted kF ⊂ {2 . . . N}, and this set is
nonincreasing with each iteration. Those eigenvectors that
are already converged are called locked and denoted kL such
that kL ∩ kF = ∅. (Moreover, when iter = 0, most eigenvector
elements do not change, so we can restrict the update to
elements corresponding to nF , that is, free elements rowwise
of the current eigenvectors U. In subsequent iterations, when
iter > 0,nF = {1 . . . N}. See appendix pseudocode lines 14
and 23). Boxed pseudocode is given in the Appendix. All
computations were performed with Matlab [68]. Network
visualizations were produced with Gephi [69].

III. NUMERICAL RESULTS

We tested our algorithm on six small to medium networks,
both synthesized and naturally occurring (Table I). Symmetric
synthesized networks H500, H1000, and H2000 were first
generated with complex networks [70] and then self and
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FIG. 3. (Color online) The number of free eigenindices |kF |
decreases each iteration. (a) Free eigenindices per iteration are shown
for representative perturbed np and target nt nodes in H500 (left) and
H2000 (right). (b) Convergence of kF shown for large set of test target
nodes Np . Convergence for target node np from row (a) shown in red
(print version, gray). Vertical axis gives proportion of total spectrum.
(c) Absolute accuracy of f̃ at each iteration. Dashed lines show
accuracy change with only the eigenvalue update λ̃ [Eq. (8)], which
is performed only once and only before the first eigenvector update
which occurs at Iteration 0 (see Appendix pseudocode line 11). Red
(gray) curves as in (b). Algorithm terminates when f̃ changes by less
than f ∗.

non-self weights were assigned randomly but symmetrically to
existing edges. Visualizations for H1000 and HA are provided
in Fig. 4. To illustrate the relationship between (1) the free
eigenspectrum kF and (2) f-score predictions as the algorithm
progresses for the synthetic networks, we randomly chose a
nt in each synthetic network and charted algorithm execution
for multiple representative nodes {np} (Fig. 3). Specifically,
convergence properties for one example node np are shown
in red while other selected np are shown with black curves
[Figs. 3(b) and 3(c)].

Convergence for a single representative np is illustrated
in Fig. 5. Qualitatively, convergence behavior was consistent
among all tested networks. We observed that the size of the

FIG. 4. (Color online) F-scores for H1000 and HA. A represen-
tative target node (nt , green) for each network was selected and
f-scores for all other nodes were computed and shown by color scale.
Node widths reflect total edge weight including self-loops for each
node, and the spatial arrangement results from the Gephi Force Atlas
algorithm [69] (left), or geographical location (right). Edge weights
are not depicted. (Right) Most major airports are densely connected
throughout the network and by their presence retard average transit
times of a random walk to nt , Denver International Airport. One major
airport, Miami’s (white arrow), however, has a substantial positive
f-score, meaning average MFPTs to Denver would in fact drop by
10.3% if MIA were removed from the network (cf. Ref. [71]). F-score
ranges were −3.8 to 12.3 (H1000) and −8.0 to 10.3 (HA).

free eigenspectrum |kF | decreases quasilinearly each iteration
[Fig. 3(b)] given a selection threshold τ ∗ = 0.995, and that f̃

convergence is attained within three iterations for H500 and
four iterations for H2000 [Fig. 3(c)]. The free eigenpairs were
distributed throughout the spectra, consistent with our claim
that changes in trapping time cannot be fully recovered by
extreme eigenpairs alone [Fig. 5(c)]. Some pairs remain free
through several iterations, but only free eigenpairs can remain
free and once locked an eigenpair will not be updated further.

Even though |kF | apparently decreases, it is not the case that
estimated f-scores likewise converge monotonically toward
the true fnp

, and in fact they often get worse during the
first iteration, iter = 0 [Figs. 3(c) and 5(b)]. That is, a single
iteration of eigenvector update [Eq. (9)] often produces worse
f predictions than scores estimated with only approximated
eigenvalues [Fig. 3(c), dashed lines]. This illustrates that
transit or trapping times are many-to-one indirect functions
of the spectrum; the objective formally being minimized in
Eq. (9) (and pseudocode line 16) is not f̃ but the gradient
of the Rayleigh quotient (at nodes nF ). Consequently, as free
eigenpairs adjust to the graph structure in Hp our estimates
f̃ can temporarily suffer. However, as kF diminishes and
trapping time contributions (τ̄ k) stabilize the predicted f-score
f̃ generally approaches the true value [Fig. 3(c)]. A final
prediction error |f − f̃iter>0| worse than starting prediction
error |f − f̃iter=0| suggests either a failed kF selection heuristic
(pseudocode lines 4–8) or overly permissive convergence
thresholds f ∗ and τ ∗.

When altering a physical network such that nt trapping
times are impacted, f-score accuracy rather than eigenvector
convergence is the more relevant statistic. While f-scores
are often close to zero for nodes distant from nt , nodes
that are first and second degree neighbors of nt often have
appreciable fnp

values, up to 10% for the networks tested
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FIG. 5. (Color online) Procedure visualization for nt = 498,
np = 438 ∈ H500 over three iterations. (a) Preprocedure eigenvalue
error, λp − λ0. (b) F-score estimate f̃ , black (open circles). True
value, f , shown as dashed blue line. (c) Eigenvector update �U
[Eq. (9) and Appendix line 16); rows are nodes (n), columns are
eigenindices (k). Black squares positioned along the top horizontal
axis of �U indicate free eigenindices kF [Eq. (13)]. (d) Magnitudes
of eigenvector update displayed at each node n, ‖�U[n,1:N]‖2. Only
a subset of H500 is shown to illustrate changes in relative update
magnitude. Target node nt = 498, green; perturbed node np = 438,
black (indicated by arrow). The magnitude of the updates decreases
approximately two orders of magnitude each iteration. (e) Error of
predicted eigenvalues (λ̃ − λp) after one iteration, shown using the
same axes as in (a). Eigenvalue predictions are only updated once
[Eq. (8)]. (f) Aggregate runtime.

(Fig. 4). Figure 6 compares predicted and exact fnp
values for

neighbor nodes and randomly selected non-neighbor nodes
of nt = 498 ∈ H500. In the upper panels, direct neighbors of
nt are designated with diamonds while foreigners are filled
circles. F-scores predicted using the full procedure are denoted
f̃ λ̃,Ũ [Fig. 6(a)], whereas those predicted using only updated
eigenvalues are denoted f̃ λ̃,U0 [Fig. 6(b)]. As is apparent from
the low correlation in Fig. 6(b), both λ and U must be estimated

FIG. 6. (Color online) Both perturbed eigenvalues and eigenvec-
tors must be estimated for accurate f-score prediction. (a) F-score
scatter plot for representative target node nt = 492 in network
H500. Vertical axis is the exact f-score f , horizontal axis is the
predicted f-score f̃ , for all nodes np �= 492 ∈ H500. Diamonds denote
neighbors of nt (np ∈ Gnt

), dots foreigners (np ∈ Ḡnt
). (b) Estimated

f-scores f̃ computed from unperturbed eigenvectors U0 and estimated
eigenvalues λ̃; axes as in (a). (c) and (d) The distribution of prediction
accuracy for all target nodes in H500; f-scores are computed using
both perturbed (c) and unperturbed (d) eigenvectors U. A correlation
of ρ = 1.0 means perfect prediction accuracy. Accuracy over only
neighbors of each nt is labeled ρG, accuracy for foreigners of each
nt is labeled ρḠ, and correlation over all perturbed nodes is labeled
as ρ. Box limits indicate upper and lower quartiles; whiskers show
complete data range.

in response to node removal if we want to accurately model
f-scores for neighbors of nt . This point should be emphasized
because many centrality metrics are based only on perturbing
eigenvalues and not eigenvectors [59,72]. Figures 6(a) and 6(b)
illustrate this point specifically for a single chosen nt , but
Fig. 6(c) shows that this discrepancy is consistent across many
target nodes: correlation ρ suffers unless both λ̃ and Ũ are
estimated with perturbation theory.

Figure 7 illustrates f-score accuracy and efficiency across
the six tested networks. In all panels the horizontal axis gives
the relative degree of nt ; this allows us to observe that high
correlations (ρ), low normalized root mean squared error
(NRMSE), and modest speedup values are all consistent for
highly-to-lowly connected target nodes. Each data point in
Fig. 7(b) specifically is defined:

NRMSE =
√

1
|Np |

∑
np∈Np

(
f̃np

− fnp

)2

∣∣ max fnp
− min fnp

∣∣ . (14)
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FIG. 7. (Color online) F-score accuracy and efficiency for syn-
thetic and real networks. Synthetic networks left, real networks right.
Horizontal axis in all panels denotes the weighted degree of nt as
a percentage of the maximally weighted node, maxnt

snt ∈H. Target
nodes nt were selected by binning all nodes into 20 equal bins
according to degree and then randomly selecting 10 target nodes
equally spaced across nonempty bins. (a) Accuracy as determined by
correlation of predicted f-scores, f̃ , with ground truth f-scores, f ,
denoted ρ. (b) Normalized root mean squared error [Eq. (14)]. (c)
Run-time improvement against direct method, where whiskers show
maximum and minimum values. (d) Weighted degree distributions
for all nodes n. Colors indicate network selection. See Table II for a
summary of these results.

Regarding efficiency, our procedure is about as fast as using
brute force matrix inversion for networks with N < 500, but
for larger networks we see a consistent algorithmic advantage
[Fig. 7(c)].

A summary of efficiency and accuracy statistics is provided
in Table II. Because ground truth fnp

values are often near zero,
we ask as a control what accuracy is obtainable if λ or U are not
updated. Table II therefore provides the average normalized
room mean squared error when U is not updated but λ is
(NRMSEλ̃,U0

), and the same statistic is given for when all f̃np

are assumed to be zero (NRMSEλ0,U0 ). Again it is clear that
both λ and U must be updated to ensure good fnp

accuracy.

IV. CONCLUSIONS

Graph-spectra-derived centrality measures have proven
useful for many network modeling tasks [73–76]. At least
for Markov-type networks that evolve temporally, we think
a concrete interpretation of centrality is provided by the
spectral formulation of mean first passage times. Indeed,
Eq. (6) formulates squared row vectors of U into a convenient
quantity τ̄nt

where we do not need to inspect individual
eigenfrequencies in order to assess the topological importance
of np [22]. That is, individual elements of U[np,1:N] may
ambiguously increase or decrease upon network perturbation,
but we can always interpret an f-score to signify that node
np helps (fnp

> 0) or hinders (fnp
< 0) graph transitions

to nt . Interestingly, these small changes in transit times
manifest themselves in various and discontiguous regions of
the Laplacian spectrum [Figs. 3(a) and 5(c)], precluding use
of many traditional sparse eigensolvers.

However, our primary focus has been to show that, algorith-
mically, careful selection of eigenpairs kF can produce a less
expensive approximation f̃ that avoids the fundamental matrix
Z. This selection cannot be made by comparing the intact and
perturbed spectra (since it would require directly computing
the latter), but we can guess that nodes with large Rayleigh
quotient gradients (Appendix line 5) will reveal eigenpairs that
either (1) will move substantially upon node perturbation (kF )
or that (2) will remain stationary (kL). Iterative application of
first-order perturbation theory to both λ̃ and Ũ for only this

TABLE II. Accuracy and efficiency of predicted f-scores. Algorithm accuracy evaluated with correlation ρ, Spearman rank correlation ρs ,
and root mean squared error normalized by the range of exact scores, NRMSE. As controls we also show accuracies for f-score estimates
derived without eigenvector updates, NRMSEλ̃,U0

and those derived from the intact spectrum, NRMSEλ0,U0 (which equates to f̃np
= 0). The

overline indicates weighted average over all tested nt ’s, i.e., over all NRMSE values in Fig. 7(b). Some np nodes are tested more than once
with different target nodes nt , so total np count can exceed the network size.

Total nt Total np ρ ρs NRMSEλ̃,Ũ NRMSEλ̃,U0
NRMSEλ0,U0 Average speedup

H500 10 607 0.99 0.98 0.027 0.181 0.192 1.05
H1000 10 837 0.99 0.98 0.026 0.173 0.200 1.82
H2000 10 1880 0.99 0.99 0.021 0.108 0.144 3.38
HA 10 880 0.99 0.99 0.012 0.102 0.109 1.28
HYST 10 550 1.00 0.99 0.009 0.174 0.234 4.27
HUC 10 1117 0.99 0.97 0.016 0.096 0.127 2.83
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selected subspace (kF ) then provides an approximate perturbed
spectrum faster than dense eigendecomposition [Fig. 7(c)].

Because f-scores are usually linear functions of the pertur-
bation magnitude ε ∈ [0,1], it is not necessary to completely
remove node np from the graph and problematically decrement
the rank of U. Instead, we chose a very small ε so that the
eigenvector shifts are small and linear estimates are accurate.
This approach has the additional advantage that nodes are
never disconnected from the primary graph component when
a strict bottleneck node is perturbed. In these situations the
f-score cannot fairly be viewed as the change in transit times
were np to be removed since some paths to nt would become
impossible. The interpretation in these cases should be that
fnp

represents changes in transit times were np to be almost
completely removed from the network.

There are many ways of describing what happens to a net-
work when it is damaged or altered [57,77,78]. F-scores con-
tribute to this discussion as well because it is sometimes robust-
ness at some target node that is more important than global net-
work stability, and f-scores reveal exactly that. Though many
networks in the biological and social sciences surpass in size
those considered here, coarse-graining methods [53] can be ap-
plied so that the resultant network is amenable to our method.
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APPENDIX A: FAST F-SCORE ESTIMATION

INPUT : Laplacians L and Lp of network H, target node index nt , and perturbed node indices Np

OUTPUT :f̃ (np,nt ,H)∀np ∈ Np .
1: (U0,λ) ← eig(L) �Direct eigendecomposition
2: U ← U0

3: τ̄ k
nt

← (
N

N−1

)[ su2
knt

−(sT uk)uknt

λk

]
∀k �= 1

Predict free/locked modes, kF ,kL, by estimating �τ̄k
nt

4: for np ∈ Np do
5: U[np∪Gnp ,2:N] ← U[np∪Gnp ,2:N] − ∇r(U[np∪Gnp ,2:N]) �see main text Eq. (12)

6: Uk = Uk/‖Uk‖ �Normalize all columns of U

7: �̃τ̄ k
nt

← (
N

N−1

)[ spu2
knt

−(sTp uk)uknt

λk

]
− τ̄ k

nt
,∀k �= 1

8: kF ← findk(|�̃τ̄ k
nt

| > τ̄ ∗),kL ← {2 . . . N} \ kF �Select free/locked eigenpairs

Estimate perturbed eigenvalues
9: Select ε ∼ 10−4

10: U ← U0

11: λ̃k ← k + ε ∗ [(Uk.
2)T Lnp

− 2λku
2
kk]∀k �= 1

12: Generate matrix of update weights: �ij = (λ̃i − λ̃j )
−1

,�ii = 0,i,j ∈ {2 . . . N}
Update U iteratively until f̃ (np,nt ,H) converges

13: iter ← 0
14: Store free node indices: nF = {np ∪ ng} �only np and neighborhood eligible for update
15: while converged == 0 do �Begin iteration for f̃np

16: �U[1:N,kF ] ← U[1:N,kF ]{UT
[nF ,kF ](Lp [nF ,1:N]U[1:N,kF ] − U[nF ,kF ] ∗ Iλ̃kF

). ∗ �[kF ,kF ]} �see Eq. (9)

17: Ũ ← U + �U

18: ˜̄τ k
nt

← (
N

N−1

)[ spũ2
knt

−(sTp ũk)ũknt

λ̃k

]
, ∀k ∈ kF �Compute updated ˜̄τ k

nt

19: f̃iter(np,nt ) ← (1/ε) ∗
∑N

k=2
˜̄τk−∑N

k=2 τ̄ k∑N
k=2 τ̄ k

�Estimate new fnp

20: converged ← |f̃iter − f̃iter−1|/|f̃iter−1| < f ∗

21: if !converged then
22: kF ← find(|�̃τ̄ kF

nt
| > τ̄ ∗)

23: nF ← {1 . . . N} �All nodes now eligible for update
24: U ← Ũ
25: iter ← iter + 1
26: end if
27: end while
28: end for
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