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Fragility of network-forming glasses: A universal dependence on the topological connectivity
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The fragilities of over 150 different network-forming glass melts are shown to conform to a common
dependence on just one parameter: the connectivity of the weakest network structure present in the associated
glass solid. This includes both nonoxide network-forming chalcogenide melts as well as a variety of alkali oxide
glasses, and spans a broad range of connectivity, φ, from polymeric structures (φ = 2) to overconstrained random
networks with connectivities well in excess of the rigidity threshold (φC = 2.4). A theoretical framework for the
origin of this universal pattern is offered within the context of entropic models of the glass transition.
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I. INTRODUCTION

Advanced uses for amorphous solids include metallic
glasses [1], semiconductor devices [2], solid state elec-
trolytes [3], nuclear waste encapsulation [4], and bone replace-
ment therapy [5]. Yet, in spite of a century of investigation,
the glass transition through which most of these materials are
formed remains an unsolved problem of condensed matter
physics [6–8]. According to many [7–9], the key challenge
of the glass transition lies in understanding the mechanism
by which a supercooled liquid (SCL) solidifies without
ordering—a mechanism in which both thermodynamics and
kinetics appear to be intertwined. Unlike crystallization in
which a fixed amount of entropy is removed in a first
order transition, the SCL avoids ordering by virtue of an
enormous increase in viscosity, η, while a comparable amount
of entropy is lost gradually with cooling. This gradual loss of
excess entropy (Sex , the entropy in excess of the vibrational
content present in the crystal) represents a steady decrease in
accessibility of phase space that is limited by the viscosity.

In the potential energy landscape (PEL) picture that has
become popular for describing protein folding [10–12] as well
as the thermodynamics of SCLs [13–17], this inaccessibility
is readily understood. The potential energy landscape is a
representation of the potential energy surface as a function
of the 3N coordinates of the N atoms, that is characterized by
hills and valleys separated by saddle points. As the system is
cooled toward the glass transition point, it becomes trapped
into ever smaller basins of the PEL and becomes unable to
explore the configurations of neighboring basins owing to
the intervening energy barrier [16,17]. The accessibility of
phase space is, thus, also limited by the molecular relaxation
time of the SCL that limits the likelihood for transitions over
these barriers. The relaxation time scales with the viscosity
and, in the Adam-Gibbs model [18], can be expressed in terms
of the excess entropy as

η = ηo exp(B/T Sex), (1)

where ηo and B are constants. Although other models [8,19,20]
have been proposed for the temperature dependence of the
viscosity, the Adam-Gibbs model is most often cited and is
supported by experiment [21,22]. In this model the kinetic
slowdown of the SCL is effectively driven by the decreasing
entropy [23] and the divergence of the relaxation time is
choreographed to coincide with the final loss of excess entropy,

narrowly averting a potential “entropy catastrophe” [24]
(where Sex < 0) by enforcing a loss of ergodicity for all
observers. In actual practice, the loss of ergodicity occurs
when the relaxation time exceeds common laboratory time
scales (�minutes) at the glass transition temperature Tg where
one observes a steplike decrease in specific heat arising from
the abrupt change in dSex/dT [25,26].

For more than 40 years, fragility [25] has served as
the dominant means of classifying different glass-forming
materials and has guided most theoretical efforts to connect
glass-forming properties to structural bonding. The fragility
is commonly quantified by the fragility index defined by the
steepness of the viscosity in a scaled Arrhenius plot [25],

m = dlog10η

d(Tg/T )

∣∣∣∣
T →Tg

. (2)

Fragile glasses (60 < m < 150) are largely populated by
molecular liquids and polymers that owe their cohesive
strength to van der Waals or ionic interactions that are long
range and nondirectional [27]. By contrast, strong glasses
(17 < m < 30) are typically network-forming oxides (e.g.,
SiO2) that develop as a result of highly directional covalent
or hydrogen [28] bonds that obey strict rules [29] regarding
the numbers of bonds per atom (r). Fragility is an important
metric of a SCL’s glass-forming tendency that simultaneously
characterizes the rate of viscosity increase and the rate of en-
tropy decrease on approach to the glass transition temperature,
Tg , from above [26]. This dual nature of the index m readily
appears when Eqs. (1) and (2) above are combined to obtain a
reduced fragility [30]:

m∗ = (m − mo)/mo = d[Sex(T )/Sex(Tg)]

d(T/Tg)

∣∣∣∣
T →Tg

= dS∗
ex

dT ∗

∣∣∣∣
T ∗→1

, (3)

where mo = Blog10e/TgSex(Tg) ≈ 17 is the lower limit of
fragility [27]. This relationship neatly captures the deep con-
nection between kinetics and thermodynamics and explains
why the fragility is so well correlated with the step increase in
specific heat that accompanies the transition [26].

Because the bonds in network-forming glasses (NFGs)
are discrete and result in a well-defined network of covalent
linkages between atoms, these materials provide an excellent
platform for exploring inherent connections between fragility
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and the excess entropy of the SCL. The NFG structure can
be pictured as a collection of balls connected by rods and
discussed within the context of rigidity theory [31–33] and
constraint counting [34,35] approaches which consider the
competition between degrees of freedom (of the balls) and the
growing number of linear and angular constraints posed by
the rods. Rigidity is said to percolate [32] into existence when
the degrees of freedom are balanced by an equal number of
constraints and this occurs when the average number of bonds
per atom, 〈r〉, reaches 2.4. To date, many studies [36–39] of
chalcogenide solids have reported extrema in both mechan-
ical and thermal properties near this threshold, including a
vanishing nonreversing heat flow measured by temperature-
modulated differential scanning calorimetry (TMDSC) argued
as evidence for an “intermediate phase” [38] of so-called
isostatic (rigid but stress-free) networks that form over a
narrow window of compositions near 〈r〉 = 2.4. More impor-
tantly, thermodynamics can be easily incorporated into these
structural models through the addition of thermally activated
bond breaking or bond “excitation” [40]. These excitations
can be introduced using a simple two state (intact or broken)
model [40] or by employing more elaborate methods [35].

In this paper, we examine the fragility of over 150 network-
forming glasses, including both oxide and nonoxide networks
built from discrete covalent bonding. We demonstrate that the
fragilities of these network-forming glasses are universally
determined by a single mean field parameter: the connectivity
of the weakest network. This weakest network is identified by
coarse-graining over any rigid structural units that are present
and is key to observing the universal pattern. A simple two state
bond excitation model that incorporates both configurational
and vibrational contributions to the excess entropy is shown
to provide a theoretical framework for understanding this
universal pattern.

II. BACKGROUND

In Fig. 1 the reduced fragility for a series of chalcogenide
glasses [36,37] of the form GexAsxSe1−2x is plotted as a
function of φ = 〈r〉, the average atomic bond number. With
the addition of Ge and As, the average bond number increases
from 〈r〉 = 2 while the fragility drops from m∗ ≈ 4 to a
plateau of roughly m∗ = 1 beyond the rigidity threshold at
〈r〉 = 2.4. Quite remarkably, the fragility of a series of sodium
phosphate glasses [41] exhibits precisely the same decrease
but as a function of φ = 〈n〉, where 〈n〉 is the average bridging
oxygen per network-forming cation (here, the phosphor atom).
As the alkali content is reduced from the metaphosphate
(NaPO3), 〈n〉 increases from 〈n〉 = 2 to 3 and the fragility
decreases from m∗ ≈ 4 to the same plateau and finally to
m∗ ≈ 0 in P2O5. This pattern is repeated again for a series
of aluminophosphate glasses [42] as 〈n〉 is increased from
〈n〉 = 2 by the introduction of aluminum oxide which enters
the oxide network structure mainly in the form of sixfold
coordinated AlO6.

To understand the rationale for adopting 〈n〉 as an alter-
native measure of connectivity for the oxides, we highlight
several important differences between chalcogenide and oxide
networks. The O2− anion may share a common chemistry with
its companions (S2− and Se2−) in column 6 in the Periodic
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FIG. 1. The reduced fragility of GexAsxSe1−2x (diamonds
with φ = 〈r〉), (Na2O)x(P2O5)1−x (squares with φ = 〈n〉),
[Al(PO3)3]x(NaPO3)1−x (triangles with φ = 〈n〉) and
(M2O)x(B2O3)1−x (solid circles with φ = 〈n〉 and open circles
with φ = 〈nIRO〉) plotted against the connectivity, φ. Here the
fragility has been reduced using mo = 17. Two dashed lines indicate
a curve fit combining a quadratic function that vanishes at 2.4 and
a Gaussian centered near 2.5. The inset shows a snippet of the
boron glass structure illustrating the boroxol ring and its reduced
connectivity.

Table, but the manner in which it interacts with various
network-forming cations (e.g., Si4+, B3+, P5+, etc.) is
markedly different and results in quite different physical
properties of the glasses that are formed [6,28,42]. Oxide
glasses, for example, have a larger band gap than the
chalcogenides and are transparent at visible wavelengths while
many chalcogenides are opaque and exhibit semiconducting
properties. Chalcogenide networks are also more loosely
bound than their oxide counterparts [43]. Owing to its smaller
size, the O2− anion has 50% greater “field strength” (ratio
of the valence charge to ion radius) than either S2− or Se2−
and is able to form stronger bonds with the network-forming
cation. This stronger bonding is evident in Raman scattering
where the vibrational modes of the oxides appear at energies
roughly twice that of the corresponding modes in the S and
Se chalcogenides. The enhanced bonding of the O2− anion
to the cation restricts glass-forming oxides to form only at
well-defined [29] stoichiometric ratios (e.g., SiO2, GeO2,
B2O3, etc.) unlike the chalcogenides that form glasses over
a wide range of atomic compositions that permit the formation
of homopolar bonds (e.g., Se-Se).

Thus we believe the coincidence between the fragility
of chalcogenides described by φ = 〈r〉 and that of oxides
described by connectivity φ = 〈n〉 is not fortuitous, but
indicates a structural equivalence with respect to how these
two classes of NFGs deform under the sort of low frequency
stress that defines the viscosity (and in turn determines the
fragility). This equivalence is most apparent for the case
of φ = 2 where both systems are, topologically speaking,
equivalent polymeric materials: Se is a glass of long chains of
Se atoms and NaPO3 is a glass of long chains of PO4 tetrahedra.
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Both systems undergo an increasing connectivity as a result
of cross-linking or “polymerization.” For the chalcogenide,
it is the addition of Ge and As that increases the mean
connectivity via the introduction of more “rods” between the
atomic “balls.” But for the phosphates, the short-range order
(SRO) is strictly preserved [29]: homopolar bonding (e.g., P-P
or O-O) is absent and the stronger bonding of the O2− anion
with the network-forming cation promotes a stiffening of the
PO4 tetrahedral unit relative to the interconnecting bridging
oxygen bonds [29]. Degrees of freedom inside the tetrahedral
unit are internalized and cease to participate in the sort of low
frequency deformations that define the viscosity. This causes
the tetrahedral units to assume the role of balls interconnected
by a network of bridging oxygen rods. In effect, we have
argued [42–45] that the common pattern in Fig. 1 reflects
an important coarse graining of the network wherein rigid
structural units (RSUs), like the oxide tetrahedron, are treated
as autonomous objects interconnected together by relatively
weaker linkages.

A rationale for the specific shape of the master curve
in Fig. 1 is lacking, but the curve does lend itself well to
division into two separate contributions illustrated by the
dashed lines in the figure. The rapid decrease at small φ is
best captured using a quadratic function, m∗

C ≈ (φC − φ)2,
that vanishes near φC = 2.4. In light of how m∗ is directly
related to dS∗

ex/dT ∗ in Eq. (3), we suspect this contribution is
dominated by the configurational part of the excess entropy
since it appears to vanish beyond the rigidity threshold
when the degrees of freedom are exceeded by the bonding
constraints. The second contribution, that remains active above
φC = 2.4 in those overconstrained NFGs that are populated by
redundant constraints, is adequately described by a Gaussian
centered around φo = 2.6, m∗

V ≈ exp[−(φ − φo)2/σ 2], and is
presumably dominated by the vibrational contribution [26,46]
to the excess entropy.

Included in Fig. 1 are the fragilities of several alkali borate
glasses plotted as a function of the average bridging oxygen per
B atom, φ = 〈n〉. In B2O3, all B are three-coordinated and this
coordination increases with addition of alkali oxide over the
range of compositions shown [47]. Clearly the fragility now
increases with increasing 〈n〉 in contradiction to all the other
systems shown in the figure. The decrease of fragility with
cross-linking of the polymeric glasses discussed previously
is anticipated on approach toward the rigidity threshold since
excess entropy should diminish as constraints begin to overtake
degrees of freedom. But the increase of fragility in the borates
suggests this same entropy can somehow be returned by adding
more, redundant, bonds to an already highly overconstrained
network whose degrees of freedom have long since been
vanquished. The resolution to this contradiction resides in the
peculiar intermediate-range order (IRO) of the alkali borate
system [44] that contains RSUs at length scales beyond that of
the SRO [47,48]. In amorphous boron oxide, some 65%–75%
of the boron atoms participate in three-membered “boroxol”
rings [48] illustrated in Fig. 1. A sharply defined Raman mode
identifies the ring as a RSU and an additional level of coarse
graining must be applied to determine the mean connectivity
of the lattice of weakest links (the φ network) relevant to the
fragility. Although an isolated BO3 unit has n = 3 connecting
vertices, one of the two vertices of a BO3 unit participating

in a boroxol ring is (topologically) redundant and this reduces
the effective connectivity of the BO3 unit to n = 2. Treating
the BO3 units in these rings (and other RSUs that form at
higher alkali content [48]) in this way, coarse graining was
applied [44] to arrive at φ = 〈nIRO〉 describing the network
of weakest links whose fragility (see Fig. 1) is seen to again
conform to the master curve.

III. ANALYSIS

In the present work, we return to the chalcogenides
to consider a wider range of compositions of the form
GexAsy(S, Se)1−x−y formed by cross-linking either Se or S
with Ge and As. Published data [36,37,49–51] for some 74
chalcogenide glasses have been collected for analysis and the
compositional range is shown in the ternary diagram in Fig. 2.
These include glasses on either side of the stoichiometric ratio
[indicated by the join between Ge(S, Se)2 and As2(S, Se)3]
whose chalcogen contents are characterized [51] by the
deviation from the stoichiometric join, z = 1 − 3x − 2.5y.
Glasses with z > 0 are rich in chalcogen element while glasses
with z < 0 are deficient. Starting from the chalcogenide corner
of the ternary diagram, the network structure evolves from
one of long -Se- chains that are infrequently cross-linked
to compositions near the stoichiometric join (z = 0) where
these chains have shortened substantially. Here, homopolar
bonds of the form Se-Se are rare [52] and heteropolar bonds
(Se-Ge, Se-As) are common while beyond the join (z < 0), the
deficiency of Se atoms forces the appearance of unfavorable
metal-metal bonds (Ge-Ge, As-As, Ge-As).

FIG. 2. A truncated ternary phase diagram showing all the
chalcogenide compositions under investigation. Solid symbols are
GexAsySe1−x−y . Open squares are GexAsyS1−x−y . Data are taken
from Ref. [50] (triangles), Refs. [36,37] (diamonds), Ref. [51]
(circles), and Ref. [49] (squares). The solid line connecting between
the two binaries marks the location of compositions with z = 0. Two
dashed lines parallel to this mark the location of compositions with
z = −0.2 and – 0.4, respectively. The remaining dashed line in the
region z > 0 locates compositions with 〈r〉 = 2.4. The inset in the
upper left depicts edge-sharing tetrahedral units found in the Ge-rich
region at z < 0. The inset in the upper right depicts an As4(S, Se)3

molecule trapped in a network void.
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FIG. 3. The reduced fragility (mo = 17) of 153 different oxide
and nonoxide glasses combined to form a master curve as a function
of the coarse-grained connectivity of the network. Open circles are
various oxide glasses reported previously [45]. Other symbols are
as defined for Fig. 2. Inset shows the same reduced fragility of the
chalcogenide glasses when plotted using the average bond per atom,
φ = 〈r〉. The intermediate phase (IP) is typically found in a range
between 〈r〉 = 2.3 and 2.5.

For all these glasses, the average number of bonds per
atom can be calculated as 〈r〉 = 4x + 3y + 2(1 − x − y) and
the fragility is plotted as a function of φ = 〈r〉 in the inset
of Fig. 3 together with the master curve developed by the
oxide glasses discussed above. For compositions between
〈r〉 = 2 and 〈r〉 ≈ 2.5, the fragility agrees favorably with
the master curve. However, in every instance for 〈r〉 > 2.5,
the fragility begins to increase with increasing 〈r〉 in already
overconstrained networks mimicking the same contradiction
that plagued the alkali borates. Intermediate-range order has
been reported [52–57] in these chalcogen-deficient (z < 0)
glasses and the two forms of RSUs that develop (illustrated in
Fig. 2) are the likely culprit for the contradictory increase
in fragility with increasing 〈r〉. In the As-rich regions,
Raman spectroscopy has identified the formation of As4Se3

and As4Se4 molecules in roughly equal abundance [53,55].
These molecules are fully detached from the network and, as
Aitken rightly noted [58], provide no connectivity for it. In
the Ge-rich regions, Se deficiency leads to an evolution of
GeSe4/2 tetrahedra from corner-sharing to edge-sharing (ES)
configurations as evidenced by the growth of a discernible
Raman mode associated with vibrations of the two-membered
ring that is created [56,57]. Much like the boroxol rings
discussed earlier, the ES GeSe4/2 units form RSUs in which
each Ge has a redundant bond (r is thus reduced from 4 to 3)
and each Se provides no connectivity to the external network
(r = 0).

Both of these RSUs produce a reduction in the coarse-
grained connectivity and could potentially resolve the conun-
drum if the fractions of Se in molecules, f M

Se (x,y), and in ES
units, f ES

Se (x,y), were accurately known. A glass of N atoms
contains NGe = xN Ge atoms, NAs = yN As atoms, and
NSe = (1 − x − y)N Se atoms. An equal number of Ge and Se

atoms, NES
Ge = NES

Se = f ES
Se (x,y)NSe, would occur in ES units

while free molecules would consume NM
Se = f M

Se (x,y)NSe Se
atoms and NM

As = 8
7f M

Se (x,y)NSe arsenic atoms (given the
equal abundance of As4Se3 and As4Se4). Combining these
distributions with the reduced bond numbers described above,
the coarse-grained φ network would be given as

φ = 〈rIRO〉 = 1

N

{
4
(
NGe − NES

Ge

) + 3
[(

NAs − NM
As

) + NES
Ge

]

+ 2
(
NSe − NES

Se − NM
Se

)}

= 1

N

{
4
(
NGe − f ES

Se NSe
) + 3

(
NAs − 8

7
f M

Se NSe + f ES
Se NSe

)

+ 2
(
NSe − f ES

Se NSe − f M
Se NSe

)}

= 4x + 3y + 2(1 − x − y) −
{

3f ES
Se (x,y) + 38

7
f M

Se (x,y)

}

×(1 − x − y)

= 〈r〉 −
{

3f ES
Se (x,y) + 38

7
f M

Se (x,y)

}
(1 − x − y). (4)

Raman studies [53–56] provide mainly qualitative evidence
for the growth in numbers of RSUs along either of the two
binaries. Along the As-Se binary, a linear increase in the
Raman mode corresponding molecule formation is indicated
and the value of f M

Se (x,y) is reported [53] to be as high as
40% in As3Se2. Similarly, the Raman mode associated with
ES units increases in a linear manner [56] along the Ge-Se
binary. Otherwise, accurate values for the fractions f M

Se (x,y)
and f ES

Se (x,y) throughout the ternary region are not known
and so the coarse graining cannot be unambiguously applied.
Instead, what we can do is test whether the coarse graining
described in Eq. (4) is capable of transposing the errant fragility
back onto the master curve using a reasonable model that
can capture the linear increase in the numbers of RSUs seen
experimentally with the least intervention. For the molecules,
we adopt a simple linear dependence that involves only a single
adjustable parameter:

f M
Se (z,y) =

{
0 z > 0

BM
Se [y/ymax(z)]z=BM

Se [2.5y/(1 − z)]z z < 0
.

(5)

This linear dependence on z is augmented by an additional
(linear) weighing that operates along any given join of fixed
z to force molecule formation to be maximized at the As
binary, ymax(z,x = 0) = (1 − z)/2.5y, while vanishing at the
Ge binary. An identical strategy is adopted for the fraction of
Se in ES units:

f ES
Se (z,x)=

{
0 z > 0

BES
Se [x/xmax(z)]z = BES

Se [3x/(1 − z)]z z < 0
.

(6)

Together with Eq. (4), the model is limited by just one
parameter for each of the two RSU species (BM

Se and BES
Se )

and these have been independently adjusted to obtain a viable
〈rIRO〉 that could transpose the errant fragility onto the master
curve.
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IV. RESULTS

The result of coarse graining using values of BM
Se = −0.4

and BES
Se = −0.7 is shown in Fig. 3. Despite the wide

compositional range of the Se glasses, spanning from the As
binary to very near the Ge binary, this single set of parameters is
remarkably successful at transposing the fragility back onto the
master curve. Moreover, the values of f M

Se (x,y) and f ES
Se (x,y)

produced by the model compare favorably with literature
estimates. As an example, along the As-Se binary where
Lucas [53] has reported f M

Se (z = −0.5,y = 0.6) ≈ 40%, the
model favors a value of 20%. The agreement is not perfect, but
the model prediction is considered reasonable as it is of a sim-
ilar order of magnitude. Applied to the sulfide data, the same
model requires values (BM

S = −0.8 and BES
S = −1.3) that are

roughly double those of the selenides, consistent with Aitken’s
qualitative assessment [58] that molecule formation is the
“dominant structural component” in the sulfides near the As-S
binary [i.e., implying that f M

S (z ≈ −0.3,x ≈ 0.1) � 50%].
Of the 74 compositions, just three data points (two open

squares and one filled triangle in Fig. 3 at m∗ � 2.5) deviate
noticeably from the master curve. This deviation is expected
and deserves a few brief comments. The last two compositions
at the extremes of Se deficiency in the As-Se binary are
known [53] to contain As4 molecules in addition to the As4Se3

and As4Se4 molecules discussed above. These As4 molecules
are not present at y < 0.55 and were omitted in formulating our
single parameter model. Including the As4 molecules would
shift the 〈rIRO〉 of these last two compositions only to lower
values and, indeed, just 10% of As in As4 is sufficient to
achieve the needed adjustment for the datum corresponding
to As3Se2. As for the other two errant data points in the
sulfide system (open squares), it is reported that As4S4 and
As4S3 molecules increase in numbers below z = 0 but, unlike
the selenide system, these molecules abruptly vanish beyond
z < −0.3 [49,55]. If this cutoff of the molecule formation
were included, it produces precisely the needed shift of these
two data points to larger 〈rIRO〉 placing them onto the master
curve.

V. DISCUSSION

One finds in Fig. 3 a remarkably common pattern that
develops for the fragility of over 150 oxide and nonoxide NFGs
as a function of the mean field connectivity of weakest linkages
obtained through coarse graining over rigid structural units.
This includes most of the major oxides (borates, germanates,
and phosphates) and over 70 chalcogenide compositions. The
universal curve indicates that it is the network of weakest links,
the φ network, that is relevant for the liquid’s viscosity as this
is the network that dictates the fragility. But how might we
understand the origin of such a universal dependence given
the relation of fragility to changing excess entropy found
in Eq. (3)? In the following sections, we explore possible
explanations.

We begin by applying the chain rule to Eq. (3):

m∗ = dS∗
ex

dT ∗

∣∣∣∣
T →Tg

= dS∗
ex

dφ

dφ

dT ∗

∣∣∣∣
T →Tg

. (7)

FIG. 4. The intact bond probability for a two state model using
fixed �H = 2 kcal/mol and a selection of �S = 1 to 7 cal/mol K.
Regions of linear temperature dependence are highlighted by the
dashed lines. Inset shows the slope of the dashed lines and its rough
proportionality with the value of �S.

The first term represents a measure of how much entropy
gain is produced in the φ network whenever φ increases by
some small amount, regardless of whether the connectivity
change is produced thermally or chemically. That is, dS∗

ex/dφ

is inherent to the chemical structure of the NFG at a given
composition. By contrast, the second term represents the action
of thermal energy as a catalyst for disrupting the φ network
through the breaking and re-formation of bonds. For this term,
we appeal to a simple classical thermodynamic model for
insight.

A. Two-level system thermodynamics

Since the φ network represents a structure of weakest level
connections, it is not unreasonable to develop dφ/dT ∗ using
the same two-level system approach [40,46] that was first
advocated by Angell and Rao [40] over 40 years ago. All the
φ-level bonds would then be treated as energetically equivalent
and randomly “excited” by the thermal field. Every bond that
is excited from its intact ground state to an excited broken
state incurs a corresponding change in the Gibbs free energy,
�G = �H − T �S. The partition function contains just two
terms and the (molar) fraction of intact (unexcited) bonds
is given as PI = [1 + exp(−�G/RT )]−1. This probability is
plotted in Fig. 4 for the fixed enthalpy �H = 2 kcal/mol at a
series of �S between 1 and 7 cal/mol K and illustrates many
of the points that were previously emphasized [40,46]. Firstly,
the transition point (near 200 K, in this example) is determined
by �H while �S largely influences the rate (i.e., dφ/dT ∗) at
which the intact bond probability decreases at temperatures
above the transition. Secondly, the bond probability varies in a
linear fashion over some region just above the transition and, as
highlighted in the inset, the slope of this linear region is roughly
proportional to the value of �S which, by definition, equals
dS∗

ex/dφ. Since this slope is also proportional to dφ/dT ∗, we
draw from Eq. (7) the significant conclusion that the fragility
depends entirely on the inherent sensitivity of excess entropy
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to changes in the connectivity of the network:

m∗ ∝
(

dS∗
ex

dφ

)2

. (8)

Thus, at least a conceptual framework is established for
understanding the existence of a fragility master curve.

But what additional evidence might we provide to support
this relation between m∗ and dS∗

ex/dφ? In the next section
we explore the configurational entropy of a self-avoiding walk
(SAW) polymer as it becomes progressively constrained by
the sequential addition of cross-links. This is a poor model for
an actual NFG melt as it ignores the additional restrictions of
interpolymer entanglements present in the bulk. Nevertheless,
it is an exactly solvable model that can be readily evaluated to
demonstrate how (dS∗

ex/dφ)2 might reasonably be expected to
decrease with increasing φ in a fashion similar to the initial
decrease in m∗ seen experimentally.

B. Self-avoiding walk model

The enumeration of the possible conformations for a
three-dimensional (3D) self-avoiding walk is well documented
[59–61] and numerical studies have shown that the number of
possible conformations of a chain of N monomers, having a
given end-to-end separation, follows a scaling law of the form

W (N ) = AμNN−δ, (9)

where A is an arbitrary constant while μ � 4.7 and δ � 1.76
in 3D. W(N) represents all the possible microstates for the
chain consistent with its given end-to-end macrostate, and
the logarithm of this number is a precise measure of the
configurational entropy of the chain. Now imagine that i − 1
cross-links are added to the chain in such a way that the chain
is equally subdivided by the cross-links into i segments (as
illustrated in Fig. 5). As far as the polymer is concerned,
each cross-link imposes a constraint by fixing the location

FIG. 5. The change in configurational entropy, �SSAW, obtained
from Eq. (12) for the constrained SAW polymer coil discussed in the
text, is plotted against the connectivity given by Eq. (11). Inset shows
the same quantity squared as well as illustrations of how the initial
polymer coil is sequentially constrained by added cross-links.

of the corresponding monomer in the chain, thus reducing its
possible conformations. Provided the resulting chain segments
remain sufficiently long for the scaling law to apply to each
individually, the total number of conformations of the entire
chain with i − 1 cross-links would be

W
i
(Ni) = [

AμNi N−δ
i

]i = [Aμ(N1/i)(N1/i)−δ]i , (10)

while the connectivity of the system would grow as

φ = 3

(
i − 1

N1

)
+ 2

(
1 − i − 1

N1

)
. (11)

This connectivity changes by a small amount when i is in-
cremented and the corresponding change in the configurational
entropy can be directly evaluated as

dSC

dφ
= �SSAW ∝ ln

{
W

i+1 (Ni+1)

W
i
(Ni)

}

= ln A − iδ ln

(
i

i + 1

)
− δ ln

(
N1

i + 1

)
. (12)

In Fig. 5, we have plotted �SSAW against φ for the case of
N = 100. The curve can be shifted vertically by the arbitrary
parameter A (here chosen to be A = 1) but is otherwise largely
independent of the actual value of N used. When cross-links
are initially added, the entropy decreases (�SSAW < 0). This
decrease does not remain fixed with increasing connectivity,
but becomes ever smaller in magnitude as the polymer chain is
increasingly constrained. The change in the entropy becomes
vanishingly small near φ = 2.3 (in the instance where A = 1),
but at this point (i�30) the chain segments are less than
about three monomers in size and the scaling relationship
of Eq. (9) has likely become invalid. The square of the
entropy change, corresponding to m∗, is included in Fig. 5
and compares favorably with the rapidly descending curve fit
in Fig. 1 that was proposed to describe the configurational
portion of the master curve. Again, the SAW model is a
poor approximation for the bulk polymer and the purpose of
examining this simplistic model is rather to illustrate how the
configurational entropy change dS∗

ex/dφ could readily develop
a decrease with increasing connectivity in qualitative accord
with the observation for m∗.

C. Excess vibrational entropy

While it seems intuitive that the configurational entropy
would vanish in the vicinity of the rigidity threshold since
this marks (in a mean field sense) the connectivity at which
the degrees of freedom are first exceeded by an equal number
of bonding constraints, it is clear that the reduced fragility
does not similarly vanish at this location, but languishes near
a value of m∗ = 1 before appearing to vanish near φ = 3.
Thus an additional contribution to S∗

ex must be active in these
overconstrained networks that is nonconfigurational in origin.
Many have alluded to a vibrational contribution [9,26,46]
to the excess entropy of the SCL present in addition to the
configurational one. Again, this vibrational contribution is
one in excess of the crystal’s vibrational entropy and is often
described as an entropy change associated with a change in
the vibrational density of states (DOS) that results when a
bonding constraint is removed to produce a local floppy mode
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at the expense of a higher frequency mode [46]. The vibrational
contribution is also thought to be related to the presence of the
so-called boson peak [46]—a low energy addition to the DOS
beyond that of the Debye manifold that appears to be endemic
to amorphous solids. Studies of the boson peak suggest that it
is most prominent in strong glass formers [62,63] and, indeed,
these are the glass compositions (i.e., φ>2.6) where the second
contribution to m∗ is most dominant. Admittedly, this second
contribution is poorly understood at the present time, but the
fact that it vanishes for φ networks at φ = 3 is consistent
with the expectation that excessively constrained networks,
containing a vast number of redundant bonds, are less likely
to produce a local floppy mode when a bond is randomly
removed.

D. Intermediate phase

Lastly, we entertain one more experimental finding that
supports our proposition that the universal fragility master
curve is a consequence of the inherent dS∗

ex/dφ of the φ

network of weakest linkages. As mentioned in the Introduc-
tion, studies using temperature-modulated DSC (TMDSC)
have revealed a narrow range of NFG compositions near the
rigidity threshold whose so-called “nonreversing” heat flow
becomes vanishingly small. This nondissipative feature has
led some to propose that glasses in this compositional range
represent an “intermediate phase” comprised of isostatic (rigid
but stress-free) networks.

In ordinary DSC experiments, the sample temperature is
scanned in a controlled manner while heat flow into or out from
the sample is measured. In TMDSC, a temperature modulation
is added to the temperature ramp and the heat flow can be
separated into reversible and nonreversible contributions [64].
This modulation of temperature drives minor changes in the
connectivity that in turn generate changes in the excess entropy
that can be approximated by the Taylor expansion:

dSex =
(

∂Sex

∂φ

)
φ

dφ + 1

2

(
∂2Sex

∂φ2

)
φ

(dφ)2 + · · · . (13)

The first term in the series vanishes over a cycle and
represents the reversing part of the heat flow. By contrast,

the second term in the series is nonvanishing and represents
the nonreversing heat flow that produces a net transfer of
heat during the cycle. This nonreversing heat flow would
only vanish when the curvature, d2S∗

ex/dφ2, vanishes or,
equivalently, at those compositions for which the slope of
the fragility master curve is nearly zero. As seen in Fig. 3,
this flattening of the master curve corresponds closely with
those compositional ranges for which the intermediate phase
has been identified.

VI. CONCLUSION

In summary, we have found a universal dependence of
glass fragility on the coarse-grained network connectivity
obeyed by over 150 different oxide and nonoxide glass melts.
The key to this universality is a broadened definition of the
network connectivity that incorporates a coarse graining of
rigid structural units that are present. These rigid units include
the short-range ordering endemic to the oxides as well as
larger units that reflect the intermediate-range order in some
materials. Fragility, which is derived from the temperature
dependent viscosity, is a reflection of how the network
responds to low frequency deformations and the resulting
universality implies that it is only the connectivity of the lattice
of weakest linkages that matter to this particular glass-forming
metric. From a pragmatic standpoint, the result promises to
simplify the processing of glass items from the melt since
fragility (together with Tg) defines the viscous response of the
melt and can now be determined, in principle, from an intimate
knowledge of the glass structure alone. From a broader
perspective, the finding underscores the importance of coarse
graining when assessing the role of hierarchical structures
in physics. Without the coarse graining, this important tie
between melt dynamics and glass structure would otherwise
remain hidden.
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