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Internal character dictates transition dynamics between isolation and cohesive grouping
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We show that accounting for internal character among interacting heterogeneous entities generates rich
transition behavior between isolation and cohesive dynamical grouping. Our analytical and numerical calculations
reveal different critical points arising for different character-dependent grouping mechanisms. These critical
points move in opposite directions as the population’s diversity decreases. Our analytical theory may help explain
why a particular class of universality is so common in the real world, despite the fundamental differences in
the underlying entities. It also correctly predicts the nonmonotonic temporal variation in connectivity observed
recently in one such system.

DOI: 10.1103/PhysRevE.92.062803 PACS number(s): 89.65.Gh, 87.23.Ge, 87.23.Kg

I. INTRODUCTION

Dynamical grouping underlies a myriad of collective phe-
nomena across the physical, biological, chemical, economic,
and social sciences [1–8]. Whether the underlying N objects
are particles, people, or proteins, the issue of whether they
evolve as isolated individuals or aggregates has significant con-
sequences at the macrolevel [7–13]. Superradiance is driven
by two-level systems coupling coherently via a background
boson mode [14]; many neurodegenerative diseases are driven
by aggregation of proteins [15]; large market movements are
driven by traders’ herding [16–18]; insurgencies are driven
by informal human groupings [19–22] as are gangs and
online guilds [23]; brain activity features collective neuronal
avalanches [24]; and many-body coherence phenomena are
impacted by connectivity within exotic materials [25,26] and
networks [11,12].

It is tempting to try applying physics models of interacting,
identical particles to describe grouping dynamics in living
systems. However, a serious shortcoming is that the underlying
objects (e.g., people, cells, and animals) are typically not
identical and it is this heterogeneity that typically dictates
their interactions and ultimately their collective behavior. Even
simple cells of a given type can have chemical, physical,
and conformational differences that affect their interactions,
while for humans it is usually the characteristics of other
group members that dictate whether individuals join or leave
[27,28]. Outstanding questions are therefore how this diversity
in individual characters affects the dynamics of groups [27–31]
and how this individual-level heterogeneity can be reconciled
with the emergent universality observed across many diverse
real-world phenomena.

This paper attempts to address these questions by adding a
simple, continuous character variable xi to each object i and
then allowing objects’ characters to influence how they interact
with each other. We assign static xi’s randomly from a given
distribution q(x), though this should be generalized in future
work, e.g., to incorporate experience. A single scalar parameter
has already been adopted in other contexts within the social
science literature [29]. Breaking a link in systems such as
insurgencies [19,20,32], financial trading [16,17], neuronal
systems [24], and quantum systems [25] (e.g., through a loss
of common purpose, loss of trust, loss of coordination, or loss
of coherence, respectively) can lead to complete fragmentation

of the group (cluster) [16–20,33]. We therefore implement a
character-driven fission-fusion mechanism (Fig. 1) that mimics
these features, producing sparse networks that are visually
similar to those observed empirically [Fig. 1(b)]. Previous
work [30,31,34,35] including in the absence of character
suggests that our main conclusions could hold for a variety
of model generalizations.

II. MODEL

We define the similarity between objects i and j as
Sij ≡ 1 − |xi − xj |. Though we choose 0 � {xi} � 1, wider
ranges do not affect our main conclusions. Objects i and j

with similar characters have Sij near unity while those with
dissimilar characters have Sij near zero. At each time step
t , with probability p an as-yet nonexistent link is randomly
chosen as a candidate to form. If it forms following the
grouping rules based on Sij (see below and Table I) it will join
together the two groups to which i and j belong [Fig. 1(a)].
With probability 1 − p, an existing link is randomly chosen
as a candidate to fragment. If it fragments following the
grouping rules, the group within which it resides also frag-
ments, mimicking the loss of common purpose, loss of trust,
loss of coordination, or loss of coherence mentioned above
[Fig. 1(a)].

We first consider each simulation being run using one (and
only one) of the following grouping mechanisms. For M1,
groups favor similar characters (i.e., favors kinship) as in
Fig. 1(c). At a link-forming time step, the probability that the
candidate link actually forms is Sij . At a link-breaking time
step, the probability that the candidate link actually breaks is
1 − Sij . For M2, groups favor diverse characters (i.e., arguably
more like a team) as in Fig. 1(d). At a link-forming time
step, the probability that the candidate link actually forms is
1 − Sij . At a link-breaking time step, the probability that the
candidate link actually breaks is Sij . For comparison, we also
consider intermediate (M3) and character-free (M4) grouping
mechanisms. Grouping mechanisms M4 does not use character
as a rule for group formation. See Table I.

A. Numerical results

Figure 2 shows that even for a uniform character distribution
q(x), rich behavior emerges. As p increases, the average
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FIG. 1. (Color online) (a) Our model of interacting characters
comprises two types of process: link formation leading to joining
two groups and link breaking leading to group fragmentation.
(b) Representative portion of PIRA insurgency network in Northern
Ireland, adapted from Ref. [32]. Different symbols and colors
represent different character types (e.g., bomb maker). It is slightly
more connected than our model since all empirical link information
is aggregated over a year [32]. (c) Groups favoring similar characters
(i.e., like kinship) illustrated by similar shades. Underneath, group
size distribution nk showing simulation (symbols) and analytical
(lines) results for different p values. (d) Same as (c) but now for
groups favoring diverse characters (i.e., like a team).

number of links per object 〈λ〉 increases from zero, indicating
groups spontaneously forming from a population of isolates.
Figure 2(b) shows the corresponding rate of change. The posi-
tion and shape of the onsets depend on the group mechanism,
with the M2 onset more abrupt than M1 but requiring much

FIG. 2. (Color online) (a) Plot of 〈λ〉 versus p for N = 104

objects. Grouping mechanism M1 (blue inverted triangles) favors
similar characters, e.g., kinship; M2 (orange diamonds) favors diverse
characters, i.e., teamlike; M3 (triangles) is intermediate between M1
and M2; and M4 (black circles) is character-free. (b) Rate of change.
Data points are calculated numerically for a uniform distribution of
character values q(x), while the lines are a best fit through these data
points. (c) Plot of pc for M1–M4 versus inverse standard deviation
σ−1 for a Gaussian character distribution q(x) centered on μ = 0.5.

higher p. This implies that high-diversity groups and teams
need to be encouraged by externally establishing a high p

(>pc), while kinship groups will naturally arise for almost

TABLE I. Values associated with different grouping mechanisms.

Link-forming Link-breaking
Grouping mechanism probability probability pc (mean-field theory) pc (numerical simulation) F Q

M1 (e.g., kinship) Sij 1 − Sij 3/11 0.10 2/3 1/4
M2 (e.g., team) 1 − Sij Sij 3/5 0.51 1/3 1/2
M3 intermediate Sij Sij 9/17 0.49 2/3 3/4
M4 character-free 1 1 1/2 0.50 1 1
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any p. Interestingly, the M1 and M2 onsets are less sharp than
the intermediate M3 or the character-free M4. This suggests
that real-world populations in which character dictates the
grouping dynamics will show far more glassy transitions
indicative of frustrated dynamics as compared to the sharp ones
in character-free physics models. Results shown are averages
over simulations with N = 104 objects, with each simulation
comprising 105 time steps and data collected in the steady
state. (See later Fig. 5 for other N values.)

B. Analytical approach

Our analytical analysis is a mean-field approach, starting
with the coupled differential equations for nk , the number of
groups of size k at time step t for k � N :

ṅk = −(1 − p)Q
(k − 1)nk∑∞
r=2(r − 1)nr

− 2Fp
knk

N2

∞∑
r=1

rnr

+ Fp

N2

k∑
r=1

rnr (k − r)nk−r , k � 2 (1)

ṅ1 = (1 − p)Q

∑∞
k=2 k(k − 1)nk∑∞
r=2(r − 1)nr

− 2pF
n1

N2

∞∑
r=1

rnr , (2)

where F is a mean-field probability of a link being formed
between two randomly chosen objects, while Q is a mean-field
probability that an arbitrarily chosen link will break and hence
that group will fragment. Since our focus is on networks
that are naturally sparse [19,20], we take a group of size
k as having k − 1 links [19,20] in Eq. (1), though any
number O(k) would generate similar conclusions. In the steady
state, these equations yield two possible solutions for the
number of isolated individuals (see the Appendix): n1 = N

or n1 = pF+(1−p)Q
2pF

N . Since n1 � N , a transition will arise
when [pF + (1 − p)Q] = 2pF from a population comprising
100% isolates to one with cohesive groups, i.e., at the critical
point

pc = Q(F + Q)−1. (3)

For p > pc, each nk for k � 2 changes from zero to the exact
expression

nk =
∣∣∣∣1

2
!

[
2kγ (k!)

(
1

2
− k

)
!

]−1

(4γ n1)k
∣∣∣∣ (4)

where

γ = pF (N − n1){N [Q(1 − p)N + 2pF (N − n1)]}−1. (5)

We can evaluate F and Q analytically to obtain pc for grouping
mechanisms M1–M4: For a uniform character distribution
q(x), the probability density function (PDF) f (y) of the
similarity y = Sij is given by f (y) = 2y, with y ∈ [0,1].
For mechanism M1, the probability F that two objects will
be linked is

∫ 1
0 f (y)y dy = 2/3. Similarly, the PDF of y

associated with links is g(y) = 3y2, hence the probability Q

that a randomly selected link breaks is
∫ 1

0 g(y)(1 − y)dy =
1/4. For M2, g(y) = 6(1 − y)y. This procedure yields the
theoretical values in Table I.

Figures 1(c) and 1(d) and Table I show good agreement
between numerical simulation and our mean-field theory for
{nk} and {pc}. Differences are due to neglect of higher-order
correlations. Equation (4) further reduces (see the Appendix)
to the approximate form for p > pc:

nk = N

2
√

π

p(1 − pc)

p − pc

[
1 −

(
pc(1 − p)

p(1 − pc)

)2]k

k−5/2. (6)

Equation (6) predicts an approximately exponential cutoff at
high k that depends on the grouping mechanism through pc =
Q(F + Q)−1, together with a 5/2 power-law exponent that
does not. As data from real-world systems improves, it should
be possible to estimate pc and p, and hence Q/F , to infer likely
character-driven grouping mechanisms in a given system.

Figure 2(c) shows that pc shifts in opposite directions for
M1 and M2 as the heterogeneity of the underlying population
is reduced, using a Gaussian character distribution q(x) with
mean μ = 0.5 and standard deviation σ . To the extent that
M1 and M2 represent simplified versions of kinship and
teamlike grouping dynamics, respectively, this observation
suggests that teams require an ever higher p to form as a
population becomes more homogeneous, with the population
eventually comprising completely isolated individuals for all
p. By contrast, kin groups require an ever lower p to form.
Figure 3 shows the regime diagram. It bounds the parameter’s
region where our model yields to the creation of groups or
where objects are isolated. The group cohesion regime is
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M4
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Group
Cohesion
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σ↓

σ↓

0.0 0.2 0.4 0.6 0.8 1.0
0
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6

7
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Q
/F

FIG. 3. (Color online) Regime diagram illustrating the parameter
range corresponding to isolation and group cohesion. The curved
regime boundary is our mean-field analytical result p ≡ pc = Q(F +
Q)−1. Diamonds show pc in the case of uniform character distribution
q(x) for M1–M4. Stars show numerical results for pc with Gaussian
q(x) from Fig. 2(c). For M1, blue stars show that pc moves toward
the lower left part of the curve with decreasing standard deviation σ .
For M2, orange stars show that pc moves toward the upper right part
of the curve with decreasing standard deviation σ . Hence the critical
points pc for M1 and M2 move in opposite directions as the diversity
σ is reduced.
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characterized by a common macroscopic order; the group’s
size distribution nk . Regardless of the formation mechanism,
nk follows a 2.5 power-law distribution as illustrated in
Figs. 1(c) and 1(d) and predicted by our mean-field approach
in Eq. (6). Therefore, our model goes from a disordered regime
of isolated objects to an ordered one of group formation whose
sizes share a common macroscopic structure. In addition,
the numerical simulation results lie remarkably close to
the analytic curve Q/F = pc(1 − pc)−1, providing further
support for our mean-field analysis.

III. REAL-WORLD COMPARISONS

While we are not suggesting that our simple model is an
accurate representation of any particular real-world system,
it is interesting to note that the 5/2 exponent is exactly that
observed empirically for (i) the severity of attacks inflicted
by insurgent groups on a civilian population, indicating the
size distribution of the insurgent groups [21,22]; (ii) the
distribution of stock transaction sizes, indicating the herd sizes
of similar-minded traders [17]; (iii) the size distribution of
neuronal avalanches, given avalanche initiation by a randomly
chosen neuron (i.e., kk−5/2 ≡ k−3/2 [24]); and (iv) the size
distribution of pockets of superconducting coherence in
fragmented materials [25]. It is also very close to the values
of 2.3 obtained from a study of 100 gangs in Chicago and
separately in Manchoukuo [36]. Future detailed empirical
work is required to clarify the underlying mechanisms of these
diverse systems to understand the extent to which they might
be consistent with the mechanisms considered here. However,
these empirical observations will hopefully serve to motivate
further interest in our model.

We can however make a simple but nonetheless instructive
comparison to the real-world Provisional Irish Republican
Army (PIRA) system [Fig. 1(b)], which is the best-known
insurgency network to date [32]. Although the data are
still unfortunately insufficient to infer the actual grouping
mechanism since links are aggregated over years, which is
why it appears more dense than snapshots of our model,
we can test our model against the empirical finding that the
PIRA underwent a bottom-up transition over time: from a
rather homogeneous organization toward teamlike structures
facilitated through a process of individual contact. We start
our model PIRA population with an M1 grouping mechanism
favoring similar character links. An individual is introduced
who uses an M2 grouping mechanism favoring diverse charac-
ter links and hence favoring team formation and who is able to
spread its use to anyone with whom he or she instantaneously
shares a cluster. They then become spreaders (susceptible →
infected), reflecting the fact that the teamlike structure became
recognized as improving the PIRA’s operational efficacy and
hence got reinforced over time by contacts at grass-roots
level. Figure 4 shows the resulting prediction concerning
connectivity from our model and the actual PIRA data. For
both cases, we measure the average number of links per actor
(object) λ and the fraction of isolated actors n1/N . We note that
Fig. 4 has multiple dynamical features that are not necessarily
dependent and yet our model is still able to capture their overall
nonlinear dependence. By contrast, we find that other group
formation mechanisms do not reproduce these features.

FIG. 4. (Color online) Our model’s prediction (line without
crosses) vs actual PIRA temporal variation (line with crosses) for
the fraction of isolated individuals n1/N (top two curves) and the
ratio between the total number of links in the network and the total
number of individuals λ (bottom two curves). The PIRA data are from
Ref. [32]. The model considers equally formation and fragmentation
time steps (p = 0.5). At t = 0, most of the objects follow M1
rules with only one object following M2 rules. However, this object
spreads M2 rules as it join other groups. Over time, this spreading
serves to drive the formation rules from mostly M1 to M2, just like
the bottom-up transition from homogeneous to teamlike structure
experienced by the PIRA. A time step in the model corresponds to a
day in terms of the real data.

IV. SYSTEM SIZE AND COMPOSITION

Figure 5 illustrates how similar transition results emerge for
a given mechanism, as N increases. Specifically, Fig. 5 shows

FIG. 5. (Color online) Results for 〈λ〉 as a function of p for
different values of N for (a) M1, (b) M2, (c) M3, and (d) M4. Vertical
dashed lines show the critical point pc predicted by our mean-field
theory. Insets show the rate of change.
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FIG. 6. (Color online) Distribution of similarities Sij ≡ 1 −
|xi − xj | within groups for M1 and M2, from simulation with different
values of the parameter p for a uniform character distribution. The
histogram is a snapshot of the numerical simulation in the steady state
for 104 objects. Solid lines are the corresponding mean-field results:
g(y) = 3y2 for M1 and g(y) = 6(1 − y)y for M2, where y = Sij .

〈λ〉 as a function of p for the grouping mechanisms M1–M4
and different values of the number of objects N . For M2–M4,
the transition gets sharper in the region of the critical point
pc as N is increases, as predicted by the mean-field approach
(dashed vertical line). Insets show the rate of change for N =
104. Interestingly for M1, the transition remains smooth and
hence more glassy in appearance than the others. In terms of
the distribution of links within the groups for the different
mechanisms, Fig. 6 illustrates this for M1 and M2 in the case
of a uniform character distribution. It shows their nontrivial
nature based on their respective tendencies to favor similarity
and dissimilarity, respectively. Solid lines are the PDF g(y)
associated with link formation from our mean-field approach.
The agreement is noteworthy, especially for larger p. Future
work should attempt to predict these distributions for model
variants beyond those in Table I.

V. SUMMARY

In summary, we have shown that rich transition dynamics
emerge when the objects in a population possess an internal
character variable. Our analytical theory offers an explanation
for why a particular statistical universality is so ubiquitous
in real-world systems, despite fundamental differences in the
composite objects and their interactions. Our findings also
help open a path toward understanding how different grouping

mechanisms (e.g., M1 vs M2) affect spreading in realistic (i.e.,
heterogeneous) populations. In physical systems, the different
group mechanisms (e.g., M1 vs M2) may conceivably be used
to mimic the tuning of particle-particle interactions in an exotic
material, with p acting like an inverse temperature.
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APPENDIX: ANALYTIC DERIVATION OF nk

The two master equations are as follows: For k � 2,

∂nk

∂t
= −P (size k group fragments)

+P (smaller groups combine to size k)

−P (size k groups joins other groups), (A1)

and for k = 1,

∂n1

∂t
= −P (single actor joins other group)

+P (big group fragments). (A2)

Mathematically, the equation for k � 2 becomes

∂nk

∂t
= −(1 − p)Q

(k − 1)nk∑∞
r=2(r − 1)nr

− 2pF
knk

N2

∞∑
r=1

rnr

+pF
1

N2

k∑
r=1

rnr (k − r)nk−r . (A3)

Here nk is the number of groups of size k. The equation for
k = 1 becomes

∂n1

∂t
= −2pF

n1

N2

∞∑
r=1

rnr + (1 − p)Q

∑∞
k=2 k(k − 1)nk∑∞
r=2(r − 1)nr

.

(A4)

In the steady state, the left-hand side of each of these equations
becomes zero. Using

∑∞
r=1 rnr = N and (k − 1)nk ≈ knk , we

get from Eq. (A3) that

knk = pF (N − n1)

N [Q(1 − p)N + 2pF (N − n1)]

k∑
r=1

rnr (k − r)nk−r ≡ γ

k∑
r=1

rnr (k − r)nk−r . (A5)

Let g(w) = ∑∞
r=2 rnre

−wr , hence

g(w)2 = (2n2e
−2w + 3n3e

−3w + 4n4e
−4w + · · ·)(2n2e

−2w + 3n3e
−3w + 4n4e

−4w + · · ·)
= (3n1n3 + 4n2

2 + 3n1n3)e−4w + (4n1n4 + 6n2n3 + 6n2n3 + 4n1n4)e−5w + · · · − 6n1n3e
−4w − 8n1n4e

−5w − · · ·

=
4∑

r=1

rnr (4 − r)n4−re
−4w +

5∑
r=1

rnr (5 − r)n5−re
−5w + · · · − 6n1n3e

−4w − 8n1n4e
−5w − · · ·

= 1

γ
[2n2e

−2w + 3n3e
−3w + 4n4e

−4w + 5n4e
−5w + · · · − 2n2e

−2w − 3n3e
−3w]
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− 2n1e
−w(2n2e

−2w + 3n3e
−3w + 4n4e

−4w + · · · − 2n2e
−2w)

= 1

γ
[g(w) − 2n2e

−2w − 3n3e
−3w] − 2n1e

−w[g(w) − 2n2e
−2w]. (A6)

From Eq. (A5) we have 2n2 = γ n2
1 and 3n3 = 4γ n1n2, so

Eq. (A6) becomes

g(w)2 −
[

1

γ
− 2n1e

−w

]
g(w) + n2

1e
−2w = 0. (A7)

For w = 0 we have g(0) = ∑∞
r=2 rnr = N − n1, hence we get

g(0) = γN2 and

n1 = N − g(0) = N (1 − γN ). (A8)

Note that γ is itself a function of n1. Equation (A8) can be
solved for n1. The solutions are

n1 = N or n1 = pF + (1 − p)Q

2pF
N. (A9)

The smaller root is kept as the physical solution. Under the
condition that pF+(1−p)Q

2pF
� 1, i.e.,

p � Q

F + Q
, (A10)

n1 becomes N , indicating that there are only isolated actors in
the system, as claimed earlier.

Consider now the case of any general value of w. The
quadratic equation (A7) can be solved to give

g(w) = 1

2γ
− n1e

−w ± 1

2γ

√
1 − 4γ n1e−w. (A11)

The solution with the negative sign in the square root is kept.

Using the property that
√

1 + x = ∑∞
k=0

( 1
2 )!

k!( 1
2 −k)!

xk , we have

g(w) = − 1

2γ

∞∑
k=2

(
1
2

)
!

k!
(

1
2 − k

)
!
(−4γ n1e

−w)k

=
∞∑

k=2

knke
−kw. (A12)

Therefore, the group size distribution for k � 2 is

nk = − 1

2γ k

(
1
2

)
!

k!
(

1
2 − k

)
!
(−4γ n1)k. (A13)

This is the full (exact) form of the group distribution {ns}. Note
that this expression also holds for n1, i.e., plugging in k = 1
gives the previous n1.

Using the property of the gamma function,

(
1

2
− n

)
! = �

(
1

2
− n + 1

)
= (−1)n−12n−1√π

(2n − 3)!!
. (A14)

For n = 0 we have ( 1
2 )! =

√
π

2 . The (2n − 3)!! term can be
expressed as

(2n − 3)!! = (2n − 2)!

2n−1(n − 1)!
. (A15)

Therefore,

1

k

(
1
2

)
!

k!
(

1
2 − k

)
!

= 2(2k − 2)!

(−1)k−1(k!)24k
. (A16)

Substituting into Eq. (A13) and using the Stirling approxima-
tion

ln(z!) ≈ 1
2 ln 2π +

(
z + 1

2

)
ln z − z, (A17)

we have for large k that ln nk is given approximately by the
expression

k ln(γ n1) +
(

2k − 3
2

)
ln(2k − 2) − (2k − 2)

−2
(
k + 1

2

)
ln k + 2k − 1

2 ln 2π − ln γ. (A18)

Taking 2k − 2 ≈ 2k, we have

ln nk ≈ k ln(γ n1) + (
2k − 3

2

)
ln(2k) − 2k

−2
(
k + 1

2

)
ln k + 2k − 1

2 ln 2π − ln γ

= k ln(γ n1) − 5
2 ln k + 2k ln 2 − 3

2 ln 2 − 1
2 ln 2π − ln γ

= k ln(4γ n1) − 5
2 ln k − 2 ln 2 − 1

2 ln π − ln γ. (A19)

Therefore,

nk ∼ 1

4γ
√

π
(4γ n1)kk−5/2, (A20)

which is equivalent to Eq. (6).
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